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Abstract
Expectation maximization (EM) is a technique for estimating maximum-likelihood
parameters of a latent variable model given observed data by alternating between
taking expectations of sufficient statistics, and maximizing the expected log likeli-
hood. For situationswhere sufficient statistics are intractable, stochastic approximation
EM (SAEM) is often used, which uses Monte Carlo techniques to approximate the
expected log likelihood. Two common implementations of SAEM, Batch EM (BEM)
and online EM (OEM), are parameterized by a “learning rate”, and their efficiency
depend strongly on this parameter. We propose an extension to the OEM algorithm,
termed Introspective Online Expectation Maximization (IOEM), which removes the
need for specifying this parameter by adapting the learning rate to trends in the param-
eter updates. We show that our algorithm matches the efficiency of the optimal BEM
and OEM algorithms in multiple models, and that the efficiency of IOEM can exceed
that of BEM/OEM methods with optimal learning rates when the model has many
parameters. Finally we use IOEM to fit two models to a financial time series. A
Python implementation is available at https://github.com/luntergroup/IOEM.git.

Keywords Stochastic approximation expectation maximization · Sequential Monte
Carlo · Latent variable model · Online estimation

1 Introduction

ExpectationMaximization (EM) is a general and widely used technique for estimating
maximum likelihood parameters of latent variable models (Dempster et al. 1977). It
involves iterating two steps: computing the expected log-likelihoodmarginalizing over
the latent variable conditioned on parameters and data (the E step), and optimizing
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parameters to maximize this expected log-likelihood (theM step). In important special
cases the E-step is analytically tractable; examples include linear systems with Gaus-
sian noise (Shumway and Stoffer 1982) and finite-state hiddenMarkov models (Baum
1972). In general however, Monte Carlo techniques such as Stochastic EM (SEM;
Celeux and Diebolt 1985; Celeux et al. 1995) and Monte Carlo EM (MCEM; Wei
and Tanner 1990) are necessary to approximate the required integral. The stochastic
nature of Monte Carlo techniques result in noisy parameter estimates, and to address
this, methods such as Stochastic Approximation EM (SAEM; Nowlan 1991; Celeux
and Diebolt 1992; Delyon et al. 1999) were developed that make smaller incremental
updates parameterized by a learning rate γ or learning schedule {γt }.

In this paper we focus on models where the latent variable has a longitudinal
structure and follows a Markov model (see e.g. Lopes and Tsay 2010 for examples
in financial econometrics). For such models, the required samples from the poste-
rior distribution can be generated using Sequential Monte Carlo (SMC) techniques
(see Doucet et al. 2001; Doucet and Johansen 2009 and references therein). In one
approach, the Batch EM (BEM) algorithm processes a contiguous chunk of data to
generate latent variable samples from the posterior, which are used in the M step
to update parameters. An alternative approach is online EM (OEM; Mongillo and
Denève 2008; Cappé 2009), in which parameters are continuously updated as data are
processed. Analogous to SAEM, OEM algorithms have a parameter γ controlling the
learning rate, an idea apparently first introduced in this context by Jordan and Jacobs
(1993). Several recent papers have addressed related problems. For instance Yildirim
et al. (2013) use a particle filter to implement an online EM algorithm for change
point models (see also Fearnhead 2006; Fearnhead and Vasileiou 2009), which uses a
pre-specified learning schedule (called “step-size sequence” in their work) to control
convergence. Le Corff and Fort (2013) introduced a “block online” EM algorithm for
hiddenMarkov models that combines online and batch ideas, controlling convergence
through a block size sequence τk .

All these algorithms thus require choosing tuning parameters in the form of a
batch size, block sequence, learning rate or a learning schedule. It turns out that this
choice can strongly influences the performance of these algorithms. For instance, for
BEM, very large batch sizes lead to inaccurate estimates because of slow convergence,
whereas very small batch sizes lead to imprecise estimates due to the inherent stochas-
ticity of themodel within a small batch of observations. The optimal batch size in BEM
or the optimal learning rate in OEM depends on the particularities of the model.

This raises the question of how to choose this tuning parameter. Several authors
have proposed adaptive acceleration techniques for EMmethods that obviate the need
for choosing tuning parameters (Jamshidian and Jennrich 1993; Lange 1995;Varadhan
and Roland 2008), but thesemethods require that the E-step is analytically tractable. In
the context of (stochastic) gradient descent optimization (Bottou 2012), several influ-
ential adaptive algorithms have recently been proposed (Zeiler 2012; Kingma and Ba
2015; Mandt et al. 2016; Reddi et al. 2018) that have few or no tuning parameters.
In principle, these methods can be used to find maximum likelihood parameters, but
unless data is processed in batches, applying these methods to state-space models
with a sequential structure is not straightforward. In addition, EM approaches enjoy
several advantages over gradient descent methods, including automatic guarantees of
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parameter constraints and increased numerical stability (Xu and Jordan 1996; Cappé
2009; Kantas et al. 2009; Chitralekha et al. 2010).

Here we introduce a novel algorithm, termed Introspective Online EM (IOEM),
which removes the need for setting the learning rate by estimating optimal parameter-
specific learning rates from the data. This is particularly helpful when inferring
parameters in a high dimensional model, since the optimal learning rate may dif-
fer between parameters. IOEM can be applied to inference in state-space models
with observations Yt and state variables Xt governed by transition probability
function f (xt+1|xt , θ) and observation probability function g(yt |xt , θ), for which
f (xt |xt−1, θ)g(yt |xt , θ) belongs to an exponential family with sufficient statistic
s(xt−1, xt , yt ). Broadly, IOEM works by estimating both the precision and the accu-
racy of parameters in an online manner through weighted linear regression, and uses
these estimates to tune the learning rate so as to improve both simultaneously.

The outline of this paper is as follows. Section 2 introduces BEM, OEM, and a sim-
plified version of IOEM in the context of a one-parameter autoregressive state-space
model. Section 3 introduces the complete IOEM algorithm required for inference in
the full 3-parameter autoregressive model. Section 4 discusses simulation results of
the algorithms for these two models. In addition we consider a 2-dimensional autore-
gressive model to show the benefit of the proposed algorithm when inferring many
parameters, and we demonstrate desirable performance in the stochastic volatility
model, an important case as it is nonlinear and hence relevant to actual applications
of SAEM. In Sect. 5 we apply IOEM with the autoregressive and stochastic volatility
models to a financial time series, and we end the paper with a brief discussion.

2 EM algorithms for a simplified autoregressive model

Here we review BEM (Dempster et al. 1977), OEM (Cappé 2009) and SMC (Doucet
and Johansen 2009), and present the IOEM algorithm in a simplified context. This
illustrates the main ideas behind IOEM before presenting the full algorithm in Sect. 3.

We consider a simple noisily-observed autoregressive model with one unknown
parameter, equivalent to an ARMA(1,1) model. We observe the sequence of ran-
dom variables Y1:t := {Yk}k=1,...,t that depend on the unobserved sequence X1:t :=
{Xk}k=1,...,t as follows:

Xt = aXt−1 + σwWt ,

Yt = Xt + σvVt , (1)

where Wt and Vt are i.i.d. standard normal variates, a = 0.95 and σ 2
w = 1 are known

parameters, and σ 2
v is unknown. Under this model, we have the following transition

and emission densities:

f (xt |xt−1) = (2πσ 2
w)−1/2 exp

{
− (xt − axt−1)

2

2σ 2
w

}
,

g(yt |xt ) = (2πσ 2
v )−1/2 exp

{
− (yt − xt )2

2σ 2
v

}
.
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We have chosen σ 2
v as the unknown parameter as it is the most straightforward to esti-

mate, allowing us to introduce the idea of IOEMwhile avoiding certain complications
thatwe address inSect. 3.As f and g aremembers of the exponential family of distribu-
tions, theM step of EMcan be done using sufficient statistics, and the E step amounts to
calculating their expectation. In this model, the parameter σ 2

v has the sufficient statistic

St = EX1:t |Y1:t ,θ

[
1

t

t∑
k=1

(Yk − Xk)
2

]
. (2)

The estimate of σ 2
v is obtained by setting σ̂ 2

v,t = Ŝt . More generally, for an unknown

parameter θ , θ̂t = Λ(Ŝt ) where Λ is a known function mapping sufficient statistics to
parameter estimates.

To estimate St , we use sequential Monte Carlo (SMC) to simulate particles X (i)
1:t

and their associated weights w(X (i)
1:t ), i = 1, . . . , N , so that

N∑
i=1

w(X (i)
1:t )δX (i)

1:t
(3)

approximates the distribution p(X1:t |Y1:t , θ). The standard MCEM approximation of
p(X1:t |Y1:t , θ̂ ) would require storage of all observations Y1:t and simulation of X (i)

1:t
each time θ̂ is updated, and ideally an increasing Monte Carlo sample size as the
parameter estimates near convergence. To avoid this, we employ SAEM (Celeux and
Diebolt 1992) which effectively averages over previous parameter estimates as an
alternative to generating a newMonte Carlo sample every time an estimate is updated,
and hence is more suitable to online inference. This method as proposed in Cappé and
Moulines (2009) approximates the expectation in (2) recursively.

The outline of the SMC with EM algorithm we consider in this paper is as follows
(Doucet and Johansen 2009):

Algorithm 1 Sequential Importance Resampling (bootstrap filter)

For time t ≥ 1:

1. For i = 1, . . . , N :

Sample X (i)
t ∼

{
μ(·|θ̂0), if t = 1

f (·|X (i)
t−1, θ̂t−1), if t ≥ 2

2. Compute normalizedweights satisfyingwt (X
(i)
1:t ) ∝ wt−1(X

(i)
1:t−1)·g(Yt |X (i)

t , θ̂t−1)

3. Update θ̂t−1 to θ̂t using chosen EM method
4. Resample particles if ESS < N

2
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Here μ(·|θ̂0) is the initial distribution for X1, ESS is the effective sample size defined
as [∑N

i=1 wt (X
(i)
1:t )−2]−1, w0(·) = 1/N , and X (i)

t is shorthand for the t th coordinate

of X (i)
1:t . In models with multiple unknown parameters, each parameter is updated in

step 3 of the algorithm, however we will refer only to a single parameter θ to keep the
notation simple.

Throughout this paper we follow common practice in using the fixed-lag technique
in order to reduce the mean square error between St and Ŝt (Cappé and Moulines
2005; Cappé et al. 2007). We choose a lag Δ > 0 and at time t , using particles X (i)

1:t
shaped by data Y1:t , we estimate the t −Δth term of the summation in (2). We will use
X (i)
1:t (t − Δ) to denote the t − Δth coordinate of the particle X (i)

1:t , but we will continue
to write X (i)

t as a shorthand for X (i)
1:t (t). (See Table 1 for an overview of notation used

in this paper).
The fixed-lag technique involves making the approximation

St ≈ EX1:t |Y1:t ,θ

⎡
⎣ 1

t − Δ

t−Δ∑
j=1

s(Y j , X j )

⎤
⎦ ≈ 1

t − Δ

t−Δ∑
j=1

EX1: j+Δ|Y1: j+Δ,θ̂

[
s(Y j , X j )

]

where we assume that St can be written as

St = EX1:t |Y1:t ,θ
t∑

j=1

s(Y j , X j )

This allows St to be updated in an online manner by computing the component-wise
sufficient statistics

s̃t := EX1:t |Y1:t ,θ
[
s(Yt−Δ, X1:t (t − Δ))

]

≈
∑
i

wk(X
(i)
1:t )s(Yt−Δ, X (i)

1:t (t − Δ)),

allowing Ŝt to be updated as

Ŝt = γt · s̃t + (1 − γt ) · Ŝt−1,

with some learning schedule γt ; in (3) γt = 1/(t − Δ). This approach is slightly
different from that of Cappé and Moulines (2005); see Sect. 7.1 for a discussion.

Choosing a large value of Δ allows SMC to use many observations to improve the
posterior distribution of Xt−Δ. However the cost of a large Δ is an increased path
degeneracy due to the resampling procedure, which increases the sample variance.
The optimal choice forΔ balances the opposing influences of the forgetting rate of the
model and the collapsing rate of the resampling process due to the divergence between
the proposal distribution and the posterior distribution. For the examples in this paper
we chose Δ = 20 as recommended by Cappé and Moulines (2005), which seems to
be a reasonable choice for our models.
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1324 D. Henderson, G. Lunter

There are various other techniques to improve on this basic SMCmethod, including
improved resampling schemes (Douc and Cappé 2005; Olsson et al. 2008; Doucet and
Johansen 2009; Cappé et al. 2007), and choosing better sampling distributions through
lookahead strategies or resample-move procedures (Pitt and Shephard 1999; Lin et al.
2013; Doucet and Johansen 2009), which are not discussed further here. Instead, in the
remainder of this paper, we focus on the process of updating the parameter estimates
θ̂t . The remainder of this section describes the options for step 3 of Algorithm 1.

2.1 Batch expectationmaximization

Batch Expectation Maximization (BEM) processes the data in batches. Within a batch
of size b, the parameter estimate stays constant (θ̂t = θ̂t−1) and the update to the
sufficient statistic

s̃t :=
∑
i

wt (X
(i)
1:t ) · (Yt−Δ − X (i)

1:t (t − Δ))2,

is collected at each iteration t . At the end of the mth batch we have t = mb, at which
time

ŜBEM
t := 1

b

mb∑
k=(m−1)b+1

s̃k,

is our approximation of S, and σ̂ 2
v,t := ŜBEM

t .
The batch size determines the convergence behavior of the estimates. For a fixed

computational cost, choosing b too small will result in noise-dominated estimates
and low precision, whereas choosing b too large will result in precise but inaccurate
estimates due to slow convergence.

2.2 Online expectationmaximization

BEMonlymakes use of the collected evidence at the end of each batch, missing poten-
tial early opportunities for improving parameter estimates. OEM addresses this issue
by updating the parameter estimate at every iteration. The approximation of S at time t
is a running average of {s̃k}k=Δ+1,...,t , weighted by a pre-specified learning schedule.
The choice of learning schedule determines how quickly the algorithm “forgets” the
earlier parameter estimates. In OEM at time t ,

ŜOEM
t = γt · s̃t + (1 − γt ) · ŜOEM

t−1 , (4)

where {γt }t=1,2,... is the chosen learning schedule, typically of the form

γt = t−c (5)

123



Efficient inference in state-space models through… 1325

for a fixed choice of c ∈ (0.5, 1] (Cappé 2009). Note that when using lag Δ, γt =
(t −Δ)−c for t ≥ Δ. This update rule ensures that at time t , ŜOEM is a weighted sum
of {s̃k}k=Δ+1,...,t where the term s̃k has weight

ηtk := γk(1 − γk+1) · · · (1 − γt−1)(1 − γt ). (6)

Algorithm 2 Online Expectation Maximization for a simplified autoregressive model

For time t ≥ 1:

1. Simulate and calculate weights of new particles as outlined in Algorithm 1
2. Collect sufficient statistic s̃t = ∑N

i=1 wt (X
(i)
1:t ) · (Yt−Δ − X (i)

1:t (t − Δ))2

3. Update running average of sufficient statistics ŜOEM
t = γt s̃t + (1 − γt )ŜOEM

t−1

4. Maximize expected likelihood by setting θ̂t := ŜOEM
t

Although thismethod can outperformBEMas parameters are updated continuously, its
performance remains strongly dependent on the parameter c determining the learning
schedule γt , and a suboptimal choice can reduce performance by orders of magnitude.
At one extreme, the estimates will depend strongly only on the most recent data,
resulting in noisy parameter estimates and low precision. At the other extreme, the
estimates will average out stochastic effects but be severely affected by false initial
estimates, resulting in more precise but less accurate estimates. Again, the best choice
depends on the model.

A pragmatic approach to the problem of choosing a tuning parameter in OEM
takes inspiration from Polyak (1990). In this method, a learning schedule that empha-
sizes incoming data is used to ensure quick initial convergence, while imprecise
estimates are avoided at later iterations by averaging all OEM estimates beyond a
threshold t0.

θ̂ AVG
t =

⎧⎨
⎩

θ̂OEM
t for t < t0

1
t−t0+1

∑t
k=t0 θ̂OEM

k for t ≥ t0.

Choosing an appropriate threshold t0 can be more straightforward than choosing c for
γt = t−c, but it still requires the user to have an intuition for how the estimates for
each parameter will behave. We will refer to this method as AVG, use c = 0.6, and
set t0 = 50,000 which is half the total iterations for our examples.

2.3 Introspective online expectationmaximization

We now introduce IOEM to address the issue of having to pre-specify a learning
schedule {γt }t=1,.... The algorithm is similar to OEM, but instead of pre-specifying γt ,
we estimate the precision and accuracy in the sufficient statistic updates {s̃k}k=Δ+1,...,t
anduse these to determineγt+1.More precisely,wekeeponline estimates of aweighted
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regression on the dependent variables {s̃k}k=Δ+1,...,t where k− t serves as the (shifted)
explanatory variable:

s̃k = β0 + β1(k − t) + εk (7)

where εk ∼ N (0, σ 2), and data point (k−t, s̃k) hasweight (6) as before. Thisweighted
regression results in intercept and slope estimates β̂0, β̂1 and variance estimates σ̂ 2

0 ,
σ̂ 2
1 , where at convergence β̂0 is the sought-after estimate and β̂1 � 0. We do not

use standard weighted regression, in which weights are inversely proportional to the
variance of the observation, as this assumption is not justified here and would lead
to biased estimates of σ̂ 2

0,1. Instead we assume that observations share an unknown
variance, and we use the weights to modulate the influence of each observation to
the regression estimates, to reduce the impact of the bias in earlier observations; see
Sect. 7.2 for details.

We next use the regression coefficients to estimate the past iteration where the drift
term |β̂1|(k − t) is of the same order as the uncertainty σ̂0 in the main estimate β̂0:

t − k = α
σ̂0

|β̂1| + σ̂1
, (8)

where σ̂1 ensures that division by zero does not occur, and α tunes the algorithms’s
sensitivity to model misfit due to underlying parameter changes; we use α = 1 unless
stated otherwise. We propose a learning rate γ

reg
t+1 that results in a characteristic for-

getting time 1/γ reg
t+1 matching this distance:

γ
reg
t+1 = |β̂1| + σ̂1

ασ̂0
. (9)

This choice ensures that a substantial slope estimate |β̂1| indicating that β̂0 has low
accuracy puts large weight on the incoming statistic, improving accuracy, whereas a
large σ̂0 reflecting low precision in estimate β̂0 results in a small weight, smoothing out
successive estimates and improving precision. We impose restrictions on γt+1 which
keep it between the most extreme valid learning schedules for OEM. Taken together,
the update step for γ becomes

γt+1 = min
(
(t + 1)−c,max

(
γ
reg
t+1, γt/(1 + γt )

))
(10)

where c > 0.5 is chosen to be very close to 0.5 and guarantees convergence. These
restrictions ensure that our algorithm satisfies the assumptions of Theorem 1 of Cappé
and Moulines (2009), namely that 0 < γt < 1,

∑∞
t=1 γt = ∞, and

∑∞
t=1 γ 2

t <

∞. Hence for any model for which f and g satisfy the assumptions guaranteeing
convergence of the standard OEM estimator, the IOEM algorithm is also guaranteed
to converge. The precise conditions are detailed in Assumption 1, Assumption 2, and
Theorem 1 of Cappé and Moulines (2009).
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Algorithm 3 Introspective Online Expectation Maximization for a simplified autore-
gressive model

For time t ≥ 1:

1. Simulate and calculate weights of particles using SMC with parameter θ̂t−1

2. Collect sufficient statistic s̃t = ∑N
i=1 wt (X

(i)
1:t ) · (Yt−Δ − X (i)

1:t (t − Δ))2

3. Maximize expected likelihood by setting θ̂t = Ŝ I OEM
t := γt · s̃t +(1−γt )· Ŝ I OEM

t−1
4. Perform weighted regression on s̃ to calculate γt+1 via (9-10).

3 The IOEM algorithm for the full autoregressivemodel

The adapting learning schedule {γt }t=1,... sets IOEM apart from OEM. However, the
way γt is calculated inAlgorithm3onlyworks in the special case that a single sufficient
statistic and the single parameter of interest coincide (here, σ̂ 2

v,t = Ŝt ). In general, the

sufficient statistics Ŝ are mapped to parameter estimates θ̂ by a function Λ, leading
to a more involved setup that we explore here. To this end, we now consider the full
noisily-observed autoregressive model AR(1) with master equations as in (1), but now
with unknown parameters a, σw, and σv . We define four sufficient statistics,

S1,t = EX1:t |Y1:t ,θ

[
1

t − 1

t−1∑
k=1

X2
k

]
,

S2,t = EX1:t |Y1:t ,θ

[
1

t − 1

t−1∑
k=1

Xk · Xk+1

]
,

S3,t = EX1:t |Y1:t ,θ

[
1

t − 1

t∑
k=2

X2
k

]
,

S4,t = EX1:t |Y1:t ,θ

[
1

t

t∑
k=1

(Yk − Xk)
2

]
.

Then, in BEM and OEM, we update the parameter estimates to

ât = Ŝ2,t/Ŝ1,t , (11)

σ̂w,t = (Ŝ3,t − (Ŝ2,t )
2/Ŝ1,t )

1/2, (12)

σ̂v,t = (Ŝ4,t )
1/2, (13)

where Ŝt is an approximation of St .
In most cases, as above, the function Λ mapping Ŝt to θ̂t is nonlinear, and requires

multiple sufficient statistics as input. To avoid bias, we want all sufficient statistics that
inform one parameter estimate to share a learning schedule {γt }t=1,2,.... We therefore
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1328 D. Henderson, G. Lunter

estimate an adapting learning schedule for each parameter independently, by perform-
ing the regression on the level of the parameter estimates (Algorithm 4), rather than
on the level of the sufficient statistics. We will calculate Ŝt as in OEM (4) using our
adapting learning schedule instead of a user specified learning schedule. Because the
adapting learning schedule is specific to each parameter, we will have multiple esti-
mates of certain summary sufficient statistics. In this case S1,t and S2,t are estimated
by Ŝa1,t and Ŝa2,t for (11) and by Ŝσw

1,t and Ŝσw

2,t for (12).

Simply regressing on θ̂1:t with respect to t would correspond to regression on Ŝ1:t ,
not s̃1:t . As Ŝ is a running average, there is a strong correlation between Ŝt−1 and Ŝt and
hence also a strong dependence between θ̂t−1 and θ̂t . In order to perform the regression
on the parameters we must “unsmooth” θ̂1:t to create pseudo-independent parameter
updates θ̃t (see Algorithm 4). This is accomplished by taking linear combinations,

θ̃t := 1

γt
· θ̂t +

(
1 − 1

γt

)
· θ̂t−1,

where the coefficients are chosen so as to minimize the covariance between successive
updates, justifying the term pseudo-independent. The resulting updates correspond
with the unsmoothed sufficient statistics updates s̃t used in Sect. 2.3. See Sect. 7.3 for
further details on this step.

Algorithm 4 Introspective Online Expectation Maximization (general case)

For time t ≥ 1:

1. Simulate and calculateweights of newparticles using SMCwith parameter θ̂ I OEM
t−1

2. Collect sufficient statistics s̃t
3. Update running average of sufficient statistics

Ŝt = γt s̃t + (1 − γt )Ŝt−1
4. Maximize expected likelihood by setting θ̂t = Λ(Ŝt )
5. Create pseudo-independent parameter updates

θ̃t = 1
γt

· θ̂t + (1 − 1
γt

) · θ̂t−1

6. Perform weighted regression on θ̃ to calculate γt+1

4 Simulations

We performed inference on different models using the BEM, OEM and IOEM algo-
rithms as described above. For BEM we used batch sizes from 100 to 10,000, and for
OEMwe used learning schedules γt = t−c with c ranging from 0.6 to 0.9. In all cases
the bootstrap filterwas runwith N = 100 particles, and the algorithmwas run from t =
1 to t = 100,000. For all parameter choices, 100 independent replicates were gener-
ated, and we show the distribution of inferred parameter values across these replicates.
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Efficient inference in state-space models through… 1329

Fig. 1 Comparison of EM methods on simplified AR model with known true parameters a = .95, σw = 1,
and unknown true σ 2

v = 30, and initial parameter estimate σ 2
v,0 = 20. σ̂ 2

v,100k is plotted for 100 replicates,
N = 100

4.1 Inference with the simplified IOEM algorithm

We first applied the simplified IOEM algorithm (Algorithm 3) to the problem of
inferring σ 2

v in model (1), with all other parameters assumed known, and compared
the results with the BEMandOEMalgorithms (Fig. 1). The choice of tuning parameter
in BEM and OEMmakes a significant difference to the precision of the estimate even
after 100,000 observations. IOEMwas able to recognize that behavior similar to BEM
with b = 10,000 or OEM with c = 0.9 was optimal. The accuracy and precision of
IOEM are comparable with those of the post-OEM averaging technique (AVG) with
parameters c = 0.6 and t0 = 50,000.

4.2 Inference with the complete IOEM algorithm

We next treated all four parameters of the AR(1) model (1) as unknown, and inferred
themusing the full IOEMalgorithm (Algorithm4). Estimates for thea parameter under
different EM methods are presented in Fig. 2; for the other parameter inferences see
Sect. 7.5, Fig. 6.

In the AR(1) model, IOEM outperforms most other EM methods when estimating
the a parameter, while AVG for the chosen parameter settings (c = 0.6, t0 = 50,000)
provides slightly more precise estimates at similar accuracy. It is worth noting that in
this case, OEMwith c = 0.6 substantially outperforms OEMwith c = 0.9, in contrast
to the results shown in Fig. 1. This is a result of the bad initial estimates. OEM with
c = 0.6 forgets the earlier simulations much faster than OEM with c = 0.9 and
hence is able to move its estimates of a, σw, and σv much more quickly. Here IOEM
recognizes that it should have similar behavior to OEM with c = 0.6, whereas in the
inference displayed in Fig. 1 IOEM chose behavior similar to OEM with c = 0.9.
IOEM can indeed adapt to the model.
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1330 D. Henderson, G. Lunter

Fig. 2 Comparison of EM methods on full autoregressive model with unknown true parameters a = 0.95,
σw = 1, σv = 5.5 and initial parameters a0 = 0.8, σw,0 = 3, σv,0 = 1. ât at t = 100,000 is plotted for
100 replicates, N = 100

4.3 Inference of multiple parameters

Next we investigated amodel with a larger number of parameters and varying accuracy
of initial parameter estimates. One of the advantages of the IOEMalgorithmoverOEM
is its ability to adapt to each parameter independently. To highlight this, we applied
IOEM to a simple 2-dimensional autoregressive model. For this model we consider
the sequences {Y A,Y B}1:t as observed, while {X A, XB}1:t are unobserved, where

X A
t = aAX A

t−1 + σ A
w W A

t , XB
t = aB X B

t−1 + σ B
w WB

t ,

Y A
t = X A

t + σvV
A
t , Y B

t = XB
t + σvV

B
t . (14)

Note that Y A and Y B are uncoupled, and that their master equation have independent
parameters except for a shared parameter σv . By giving component A good initial
estimates and B bad initial estimates, we can see how the different EM methods cope
with a combination of accurate and inaccurate initializations. IOEM is able to identify
the set with good initial estimates (aA, σ A

w ) and quickly start smoothing out noise. To
IOEM, the other parameters appear to not have converged (σ B

w and σv because they
are at the wrong value, aB because it will be changing to compensate for σ B

w and σv).
Figure 3 shows the inference of σv , which due to its dependence on components

A and B, suffers the most from a blanket choice of tuning parameter in BEM or
OEM. OEM with c = 0.6 and OEM with c = 0.9 both suffer in this model as they
are both well suited to parameter estimation in one of the components, but not the
other. AVG provides precise but biased estimates in this case, because of its reliance
on a fast-forgetting initial OEM stage which again is suited to only one of the model
components. IOEMon the other hand is able to capture the best of bothworlds, striving
for precision in component A and initially foregoing precision in favour of accuracy
in component B.
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Fig. 3 Comparison of EMmethods on 2-dimensional autoregressivemodelwith true parameters aA = 0.95,
σ A
w = 1, σv = 5.5, aB = 0.95, σ B

w = 1 and initial parameters aA0 = 0.95, σ A
w,0 = 1, σv,0 = 3, aB0 = 0.95,

σ B
w,0 = 3. σ̂v,t at t = 100,000 is plotted for 100 replicates, N = 100

The inference of the other parameters and comparisons with a different choice of
AVG threshold are shown in Sect. 7.5, Figs. 7, 8, 9, 10.

4.4 Inference of parameters of a stochastic volatility model

The previous sections have demonstrated IOEM is comparable to choosing the optimal
tuning parameter in OEM or BEM in certain models. However, the models shown
have all been based on the noisily observed autoregressive model, which is a linear
Gaussian case where in practice analytic techniques would be preferred over SAEM.
We now examine the behaviour of these algorithms when inferring the parameters of
a non-linear stochastic volatility model defined by transition and emission densities

f (xt |xt−1) = (2πσ 2)−1/2 exp
{

− (xt − φxt−1)
2

2σ 2

}
, (15)

g(yt |xt ) = (2πβ2ext )−1/2 exp
{

− 1

2β2ext
y2t

}
. (16)

We define four summary sufficient statistics,

S1,t = EX1:t |Y1:t ,θ

[
1

t − 1

t−1∑
k=1

Xk · Xk+1

]
,

S2,t = EX1:t |Y1:t ,θ

[
1

t − 1

t−1∑
k=1

X2
k

]
,
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Fig. 4 Estimates of φ in stochastic volatility model

S3,t = EX1:t |Y1:t ,θ

[
1

t − 1

t∑
k=2

X2
k

]
,

S4,t = EX1:t |Y1:t ,θ

[
1

t

t∑
k=1

e−Xk · Y 2
k

]
.

Then the set of parameters that maximises the likelihood at step t are

φ̂t = Ŝ1,t/Ŝ2,t , (17)

σ̂t = (Ŝ3,t − (Ŝ1,t )
2/Ŝ2,t )

1/2, (18)

β̂t = (Ŝ4,t )
1/2, (19)

Again IOEM results in similar estimates to the optimal BEM/OEM and the online
averaging technique with a well-chosen threshold (see Fig. 4 and Sect. 7.5, Fig. 11).

5 Application to financial time series

We next applied our approach to daily log returns for US dollar to UK pound exchange
rates, obtained from oanda.com. Between 18/05/2010 to 2/3/2016, roughly the
period between the 2010 flash crash and the Brexit referendum, rates were fairly
stable and might be described by an ARMA(1,1) model equivalent to (1). To assess
confidence in estimates, we independently inferred model parameters 24 times from
day-on-day log returns measured at every full hour (Fig. 5). We note that these time
series are not fully comparable due to intraday seasonalities (Cornett et al. 1995), an
effect that may be expected to increase the observed variation between the 24 time

123



Efficient inference in state-space models through… 1333

Fig. 5 Running estimates of parameters of model (1) (top) and model (16) (bottom) on time series of
daily GBP/USD log returns (top left panel) based on 24 different hourly offsets (colours) using IOEM
(N = 5000). We used α = 2 to reduce the impact of underlying parameter changes; for results with α = 1
see Figs. 15 and 16 (color figure online)

series, which would lead to conservative confidence estimates. Results suggest a weak
negative correlation of successive daily log returns (a < 0), which is supported by
a direct fit of an ARMA(1,1) model to the data (Fig. 12). Although the ARMA(1,1)
model assumes fixed parameters and in particular constant volatility, running infer-
ences strongly indicate volatility variations (Figs. 5 and 13), suggesting model (16)
might be appropriate. Inferred values of φ indicate substantial day-to-day inertia in
volatility. Running estimates of parameters are fairly constant in time, although those
for β show that the model has difficulty tracking the two sudden drops in volatility
that occurred in this period, indicating model misfit.

6 Conclusion

Stochastic Approximation EM is a general and effective technique for estimating
parameters in the context of SMC. However, convergence can be slow, and improv-
ing convergence speed is of particular interest in this setting. We have shown that
IOEM produces accurate and precise parameter estimates when applied to continu-
ous state-space models. Across models, and across varying levels of accuracy of the
initial estimates, the efficiency of IOEMmatches that of BEM/OEM with the optimal
choice of tuning parameter. The AVG procedure also shows good behaviour, but like
BEM/OEM it has tuning parameters, and when these are chosen suboptimally per-
formance is not as good as IOEM (Figs. 9 and 10). BEM/OEM/AVG all make use
of a single learning schedule {γt }, and for more complex models a single learning
schedule generally cannot achieve optimal convergence rates for all parameters, as we
have shown for the 2-dimensional AR example. In addition, AVG works by post-hoc
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averaging of noisy estimates, and since the inferences depend on the noisy estimates
themselves, this implicitly relies on the model being sufficiently linear around the true
parameter value. We expect IOEM to be more resilient to strong nonlinearities than
AVG, but we have not explored this idea further here.

IOEM finds parameter-specific learning schedules, resulting in better performance
than standard methods with a single learning rate parameter are able to achieve. IOEM
can be applied with minimal prior knowledge of the model’s behavior, and requires no
user supervision, while retaining the convergence guarantees of BEM/OEM, therefore
providing an efficient, practical approach to parameter estimation in SMC methods.
While not the focus of this paper, application to a financial time series suggests that
IOEM may be useful in informally assessing model fit; it would be interesting to
investigate whether this could be made rigorous.
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7 Appendix

7.1 Fixed-lag technique

Our fixed-lag technique is slightly different than that proposed in the literature (Cappé
and Moulines 2005; Olsson et al. 2008). Compared to the existing approach it uses
less intermediate storage. Recall that the approximation we aim to evaluate is

Ŝt =
∑
i

wt (X
(i)
1:t ) ·

t∑
u=1

su(X
(i)
1:t (u),Y (u)),

where the sufficient statistic is written explicitly as a sum over the path traced out
by the particle X (i)

1:t . The drawback is that for u 	 t the paths will have collapsed
due to resampling, increasing the variance for those contributions to S. The solution
proposed in Cappé and Moulines (2005) is to use instead the approximation

Ŝt ≈
∑
i

( t−Δ∑
u=1

wu+Δ(X (i)
1:u+Δ)su(X

(i)
1:u+Δ(u),Y (u))

+ wt (X
(i)
1:t )

t∑
u=t−Δ+1

su(X
(i)
1:t (u),Y (u))

)
.

123

http://creativecommons.org/licenses/by/4.0/


Efficient inference in state-space models through… 1335

This requires storing the quantities

{su(X (i)
1:u+Δ(u)), Y (u)}u=t−Δ,...,t

for each sufficient statistic and each particle. This storage can be expensive if large
numbers of sufficient statistics are tracked. Instead, at iteration t we use the approxi-
mation

Ŝt ≈
t−Δ∑
u=1

∑
i

wu+Δ(X (i)
1:u+Δ)su(X

(i)
1:u+Δ(u),Y (u)).

By disregarding terms involving su for u > t −Δ and switching the summation in this
way, we can now update Ŝ at each iteration by adding the contribution of the current
particles to a single summary statistic at a distance Δ, without requiring per-particle
storage other than each particle’s recent history.

7.2 Weighted regression

The term “weighted regression” usually refers to regression where the errors are
independent and normally distributedwith zeromean and knownvariance (up to amul-
tiplicative constant), and the data is weighted inversely proportionally to its variance.
In our case, the data is assumed to drift, contributing an additional, non-independent
term to the error. Weights are used to only focus on recent data where the drift con-
tributes an error of the same order ofmagnitude as the normally distributed noise, while
discounting the impact of data points further away. In this setup we are interested both
in estimating the regression coefficients, and the error in these estimates.

Perry Kaufman’s adaptive moving average (AMA) (Kaufman 1995) is a similar
averaging technique which reacts to the trends and volatility (jointly referred to as the
behavior) of the sequence. The difference lies in the measure of the behavior. AMA
relies on a user specified window length n. The n most recent data points are used
to measure the behavior. This would be equivalent to using equally-weighted linear
regression over the last n points. By using weighted regression, the contribution of
points to the behavior measures is also influenced by the previously observed behavior.
For example, a sharp trend will effectively employ a smaller n value as we have lost
interest in the behavior before that trend.

Let X be the 2 × n matrix consisting of a column of 1s and a column with the
dependent variable, let y be the vector of observations, let β be the two coefficients,
and ε the vector of errors, with εk ∼ N (0, σ 2). Finally let w be a vector of weights.
We estimate β by minimizing

s2 = (Xwβ − yw)
(Xwβ − yw),

where Xw and yw are defined as

Xw :=
⎡
⎢⎣

w1 w1 · (−n + 1)
...

...

wn wn · 0

⎤
⎥⎦ ; yw :=

⎡
⎢⎣

w1 · y1
...

wn · yn

⎤
⎥⎦ .
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Setting the derivative ∂s2/∂β = 2(Xwβ − yw)
Xw to zero and solving for β results
in weighted regression estimator β̂ = (X


w Xw)−1X

w yw, or explicitly

β̂1 =
(∑

w2
k x2k yk

) − (∑
w2
k x2k

) (∑
w2
k yk

)
(∑

w2
k x

2
2k

) − (∑
w2
k x2k

)2 ,

β̂0 =
(∑

w2
k x

2
2k

) (∑
w2
k yk

) − (∑
w2
k x2k yk

) (∑
w2
k x2k

)
(∑

w2
k x

2
2k

) − (∑
w2
k x2k

)2 .

From this expression we can see that β̂ can be updated in an online manner as k
increases simply by updating the above summations. The variance in β̂ can be esti-
mated as follows:

var β̂ = var(X

w Xw)−1X


w yw

= E
[
(X


w Xw)−1X

wεwε


w Xw(X

w Xw)−1

]

= (X

w Xw)−1X


w diag(w2
kσ

2)Xw(X

w Xw)−1.

Ifw2
k = 1 this simplifies to the usual var β̂ = σ 2(X
X)−1. Writing out the expression

for var β̂ explicitly shows that it is again possible to find online updates for the relevant
terms.

7.3 Pseudo-independent parameter updates

In order to perform our regression on the level of the parameters, we need to map from
s̃(t) to Ŝ(t) and then to θ̂ (t). We do not wish to regress on θ̂ (1:t), as θ̂ (t−1) and θ̂ (t) are
highly correlated. Instead we want a sequence defined in the parameter space where
the correlations resemble those in s̃(1:t). We define this sequence as

θ̃t := 1

γt
θ̂t +

(
γt − 1

γt

)
θ̂t−1.

Here we show that θ̃i and θ̃ j are uncorrelated for all i �= j , under the assumption that
s̃i and s̃ j are uncorrelated (i �= j). Define {ηtk}k=0,...,t to be the sequence that satisfies

Ŝt = ∑t
k=0 ηtk s̃k and

∑t
k=0 ηtk = 1. Note that ηtt = γt , ηtt−1 = γt−1(1 − γt ), and so

on. Now,

cov(θ̃i , θ̃ j ) = cov

(
1

γi
θ̂i + γi − 1

γi
θ̂i−1,

1

γ j
θ̂ j + γ j − 1

γ j
θ̂ j−1

)

= 1

γiγ j
cov(θ̂i , θ̂ j )

+ 1

γ j

(
1 − 1

γi

)
cov(θ̂i−1, θ̂ j )
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+ 1

γi

(
1 − 1

γ j

)
cov(θ̂i , θ̂ j−1)

+
(
1 − 1

γi

) (
1 − 1

γ j

)
cov(θ̂i−1, θ̂ j−1). (20)

Writing θ̂i = f0 + f1
∑i

k=0 ηik s̃k and recalling that

cov(s̃i , s̃ j ) =
{
0, if i �= j

σ 2
i , if i = j,

it follows that

cov(θ̂i , θ̂ j ) = cov
(
f1

i∑
k=0

ηik s̃k, f1

j∑
k=0

η
j
k s̃k

)

=
i∑

k=0

f 21 ηikη
j
kσ

2
i ,

for i < j . Substituting into the four terms of (20) yields

cov(θ̃i , θ̃ j ) = 1

γiγ j

i∑
k=0

f 21 ηikη
j
kσ

2
k

+ 1

γ j

(
γi − 1

γi

) i−1∑
k=0

f 21 ηi−1
k η

j
kσ

2
k

+ 1

γi

(
γ j − 1

γ j

) i∑
k=0

f 21 ηikη
j−1
k σ 2

k

+
(

γi − 1

γi

) (
γ j − 1

γ j

) i−1∑
k=0

f 21 ηi−1
k η

j−1
k σ 2

k .

If we define

a := f 21 ηiiη
j−1
i σ 2

i ,

b :=
i−1∑
k=0

f 21 ηi−1
k η

j−1
k σ 2

k ,

and note that

η
j
k = (1 − γ j )η

j−1
k for all k < j,

then

cov(θ̃i , θ̃ j ) = 1

γiγ j
(1 − γ j )a + 1

γiγ j
(1 − γi )(1 − γ j )b

+ 1

γ j

(
γi − 1

γi

)
(1 − γ j )b
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+ 1

γi

(
γ j − 1

γ j

)
a + 1

γi

(
γ j − 1

γ j

)
(1 − γi )b

+
(

γi − 1

γi

) (
γ j − 1

γ j

)
b

= 0.

Hence, if s̃i and s̃ j are independent for all i �= j , then θ̃i and θ̃ j are uncorrelated
(i �= j), justifying the term “pseudo-independent updates” for θ̃i .

7.4 Notation reference

See Table 1.

Table 1 Notation used in this paper

Notation Meaning Associated methods

θ True parameter All

θ̂t Parameter estimate at time t All

θ̃t Pseudo-independent parameter update IOEM

s̃t Sufficient statistic update at time t All

Ŝt Summary sufficient statistic from averaging s̃ All

N Number of particles All

Δ Lag of fixed-lag technique All

β̂0 Regression intercept ML estimate IOEM

β̂1 Regression slope ML estimate IOEM

σ̂ 2
0 Variance of regression intercept ML estimate IOEM

σ̂ 2
1 Variance of regression slope ML estimate IOEM

7.5 Figures

See Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

Fig. 6 Comparison of EM methods on full autoregressive model with unknown true parameters a = 0.95,
σw = 1, σv = 5.5 and initial parameters a0 = 0.8, σw,0 = 3, σv,0 = 1. Parameter estimates at t = 100,000
are plotted for 100 replicates, N = 100
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Fig. 7 Comparison of EMmethods on 2-dimensional autoregressivemodelwith true parameters aA = 0.95,
σ A
w = 1, σv = 5.5, aB = 0.95, σ B

w = 1 and initial parameters aA0 = 0.95, σ A
w,0 = 1, σv,0 = 3, aB0 = 0.95,

σ B
w,0 = 3. Parameter estimates at t = 100,000 are plotted for 100 replicates, N = 100

Fig. 8 Parameter-specific convergence in the 2-dimensional autoregressive model over 100,000 observa-
tions. Each columndisplays information for a single parameter. The top row shows the sequence of parameter
estimates for three EMmethods. The bottom row shows the learning schedule γt for the three EMmethods.
Blue solid line: IOEM; red dashed line: OEM with c = 0.6; green dash-dot line: OEM with c = 0.9;
magenta solid line: averaged OEM technique with a threshold t0 = 50,000 (color figure online)
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Fig. 9 Comparison of EMmethods on 2-dimensional autoregressivemodelwith true parameters aA = 0.95,
σ A
w = 1, σv = 5.5, aB = 0.95, σ B

w = 1 and initial parameters aA0 = 0.95, σ A
w,0 = 1, σv,0 = 3, aB0 = 0.95,

σ B
w,0 = 3. Parameter estimates at t = 100,000 are plotted for 100 replicates, N = 100

Fig. 10 Parameter-specific convergence in the 2-dimensional autoregressive model over 100,000 obser-
vations. Each column displays information for a single parameter. The top row shows the sequence of
parameter estimates for four EM methods. The bottom row shows the learning schedule γt for the three
EM methods. Blue solid line: IOEM; red dashed line: OEM with c = 0.6; green dash-dot line: OEM with
c = 0.9; magenta solid line: averaged OEM technique with a threshold t0 = 10,000 (color figure online)
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Fig. 11 Comparison of EMmethods on stochastic volatility model with unknown true parameters φ = 0.1,
σ = √

2, β = 1 and initial parameters φ0 = 0.5, σ0 = 1, β0 = √
2. Parameter estimates at t = 100,000

are plotted for 100 replicates, N = 100

Fig. 12 Implied day-to-day correlation of log returns ρI OEM , ρARMA(1,1) for the 24 daily time series,

calculated as ρI OEM = a/(1 + (1 − a2)σ 2
v /σ 2

w) and ρARMA(1,1) = 1 + 2φθ + θ2/(φ + θ)(1 + φθ),
where the AR coefficient φ, a governs the asymptotic falloff in correlation in the two parameterizations,
and θ is the coefficient of the moving average component. Results indicate a non-significant trend for a
negative day-to-day correlation of log returns across the period studied. Inferred values of ρ across 24
different hourly offsets are themselves correlated but not identical between the two models, as expected
as IOEM emphasizes recent observations over earlier ones, in contrast to the global optimization used for
fitting the ARMA(1,1) model

Fig. 13 Memory length (γ −1
t ) for the three parameters of model (1) for the 24 daily time series. The data

does not appear to support a stationary model, particularly for σw and σv , as can be seen from the collapse
of the memory length γ −1

t particularly around t = 650 and t = 1150, coinciding with periods of low
volatility
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Fig. 14 Memory length (γ −1
t ) for the three parameters of model (16) for the 24 daily time series. The

inferred parameters (see Fig. 5) appear to support a stationary model, although the collapse in memory
length for parameter β due to apparent drift indicates the model’s difficulty in tracking sudden changes in
volatility around t = 650 and t = 1150

Fig. 15 Running estimates of parameters of model (1) on daily GBP/USD log returns, and memory length,
inferred using α = 1
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Fig. 16 Running estimates of parameters of model (16) on daily GBP/USD log returns, and memory length,
inferred using α = 1
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