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Purpose: Recently, laser refractive surgery options, including laser epithelial
keratomileusis, laser in situ keratomileusis, and small incision lenticule extraction,
successfully improved patients’ quality of life. Evidence-based recommendation for an
optimal surgery technique is valuable in increasing patient satisfaction. We developed
an interpretable multiclass machine learning model that selects the laser surgery
option on the expert level.

Methods: A multiclass XGBoost model was constructed to classify patients into four
categories including laser epithelial keratomileusis, laser in situ keratomileusis, small
incision lenticule extraction, and contraindication groups. The analysis included 18,480
subjects who intended to undergo refractive surgery at the B&VIIT Eye center. Training
(n = 10,561) and internal validation (n = 2640) were performed using subjects who
visited between 2016 and 2017. The model was trained based on clinical decisions
of highly experienced experts and ophthalmic measurements. External validation
(n = 5279) was conducted using subjects who visited in 2018. The SHapley Additive
ex-Planations technique was adopted to explain the output of the XGBoost model.

Results: The multiclass XGBoost model exhibited an accuracy of 81.0% and 78.9%
when tested on the internal and external validation datasets, respectively. The SHapley
Additive ex-Planations explanations for the results were consistent with prior knowl-
edge fromophthalmologists. The explanation fromone-versus-one andone-versus-rest
XGBoost classifiers was effective for easily understanding users in the multicategorical
classification problem.

Conclusions: This study suggests an expert-levelmulticlassmachine learningmodel for
selecting the refractive surgery for patients. It also provided a clinical understanding in
a multiclass problem based on an explainable artificial intelligence technique.

Translational Relevance: Explainable machine learning exhibits a promising future for
increasing the practical use of artificial intelligence in ophthalmic clinics.

Introduction

Refractive surgery techniques were developed
during the past decade and successfully improved
patients’ quality of life. Laser refractive surgery
procedures including laser epithelial keratomileusis

(LASEK), laser in situ keratomileusis (LASIK), and
small incision lenticule extraction (SMILE) produced
excellent visual outcomes for patients with refractive
error.1 Currently, a selection of refractive surgery
options are available in most eye clinics to treat
refractive error by considering each patient’s
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ophthalmologic information. Each surgical option
exhibits advantages and disadvantages, and thus a
surgeon should recommend an optimal option after
carefully reviewing patient data.2

Recently, machine learning, which is an area of
artificial intelligence research, is increasingly popular
in clinical medicine due to its ability to handle large
data with high accuracy. It constructs statistical predic-
tion models from datasets and estimates a new data
instance. Support vector machines (SVMs), random
forests (RFs), artificial neural networks (ANNs),
and least absolute shrinkage and selection opera-
tor (LASSO) constitute widely used approaches in
machine learning.3,4 A previous study indicated that
the machine learning technique can evaluate medical
information to identify candidates for corneal refrac-
tive surgery.5 However, previous machine learning
models are considered as a black box and lack an
explicit knowledge representation.6 They are unable to
provide reasoning and explanations on a decision in a
manner similar to human experts.

Currently, the concept of explainable artificial intel-
ligence is introduced in the field of medicine.7 The
explainable model allows users to focus on a ratio-
nal decision and to verify if the model operates
properly. The SHapley Additive ex-Planations (SHAP)
is a promising solution to construct an explainable
system.8 This technique is used in several tasks in data
mining research while selecting informative variables
and predicting clinical values with higher interpretabil-
ity. With advances in the visualization method for
SHAP values, the technique is widely used to analyze
data.9 However, previous methods were limited in
explaining the result of a single instance in a multicat-
egorical problem because it is impossible for a single
SHAP value to indicate 3 or more classes.10

To determine the optimal surgical technique based
on medical evidence and patient’s expectation for
surgery and recovery, surgeons should consider several
ocular measurements and patient factors such as dry
eye, lifestyle, and budget. In the study, we constructed
an expert-level decision support system to recommend
the surgical option based on large clinical data and
machine learning. An explainable machine learning
method was adopted to demonstrate as to why the
machine learning model should decide the surgery
technique in each case. Specifically, we construct a
multicategorical prediction model because there are
multiple surgical options, including LASEK, LASIK,
SMILE, and contraindication to corneal laser surgery.
The machine learning model was constructed based on
clinical decisions of highly experienced experts andwas
validated in a Korean population.

Methods

Study Population and Dataset

Study subjects included 18,480 healthy Korean
patients who intended to undergo refractive surgery
at the B&VIIT Eye Center from January 2016 to
June 2018.5 The retrospective study adhered to the
tenets of the Declaration of Helsinki. The study
protocol was approved by the Institutional Review
Board of the Korean National Institute for Bioethics
Policy (KoNIBP, 2018-2734-001). Written consent
from subjects was waived because of the retrospective
design of the present study. Protected personal health
information was removed for the purpose of the study.

All patients underwent preoperative measurements
of corrected distance visual acuity, manifest refraction,
slit-lamp examination, and dilated fundus examina-
tion. A Pentacam scheimpflug device (Oculus GmbH,
Wetzlar, Germany) was used tomeasure corneal topog-
raphy. Pachymetry (NT-530P; Nidek Co., Ltd., Aichi,
Japan) was used to evaluate the central corneal thick-
ness. Pupil size was measured via Keratograph 4
(Oculus GmbH, Wetzlar, Germany) and noninva-
sive tear breakup time (NIBUT) was determined via
Keratograph 5M (Oculus GmbH, Wetzlar, Germany).
Each patient was interviewed and asked to complete a
questionnaire survey on his or her occupation, antic-
ipated surgery option, anticipated recovery period
after surgery, budget concerns, and medical history
(Table S1). The patients determined the anticipated
surgery options after consulting an expert advisor.
Eighty features from the corneal tomography on both
eyes were automatically extracted from the 4 Maps
Refractive Display via a custom-built optical charac-
ter recognition (OCR) algorithm that simply converted
digits in a Pentacam image into text data. We manually
reviewed the digitized Pentacam data within the top
and bottom 1% of all collected values, and all digital-
ized values were transformed properly via OCR. A
total of 142 variables including the demographics data,
ophthalmic measurements, and interview question-
naires are listed in Table S2. The same surgery
technique was conducted in both eyes simultaneously.
Moreover, keratoconus is the most important status
for refractive surgery, present bilateral, but asymmet-
rically progressive thinning of the cornea.11 Therefore,
measurements of both eyes should be included in the
analysis.

All patients were categorized into 4 groups based
on the type of surgery conducted—LASEK, LASIK,
SMILE, and contraindication to corneal laser surgery.
A reference standard categorization was assigned
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based on the clinical decision obtained from a full
evaluation by 9 experts. Before surgery, the expert made
a decision on the surgery option based on a patient’s
condition. Essentially, a surgeon was involved in a
surgery option decision for each patient. All experts
were board-certified ophthalmologists with an average
experience of 10 years in refractive surgery. General
criteria for consideration in surgery (which may vary
in terms of several items from criteria used in other
refractive practices) included the following parame-
ters: age 18 years or older; myopia spherical equiva-
lent>−10.0 diopters (D); hyperopia spherical equiv-
alent< +4.50 D; central corneal thickness, measured
with pachymetry, >500 μm for LASIK and >480 μm
for LASEK and SMILE; residual corneal thickness
>380mm after surgery, NIBUT>5 s for LASIK; and
absence of corneal abnormalities suggestive of kerato-
conus or other corneal ectatic diseases. Photorefrac-
tive keratectomy (PRK) procedures have evolved, and
LASEK may combine several advantages presented
by both PRK and LASIK.12 Therefore, PRK has
currently been replaced by LASEK in the B&VIIT
Eye Center, and PRK was not considered as a surgi-
cal option. In this center, corneal refractive surgery
has been considered as the primary correction method
for refractive error. If a patient is not a candidate
for corneal ablation as determined in the preoperative
examination, phakic intraocular lens (ICL) is consid-
ered as an alternative treatment. The aforementioned
are not absolute criteria, and expert ophthalmolo-
gists can recommend corneal refractive surgery based
on their own clinical experience. An ophthalmologic
examination was performed postoperatively at 1 and 6
months to screen for postoperative ectasia.

The study protocol is defined in our previous study.5
Recent studies have shown that there has been a lack
of external validation for novel prediction models.13
Therefore, both internal and external validation proce-
dures have been recommended and splitting the data
by calendar time was determined as a good option for
the development of prediction models.14 We built a
machine learning model and it was validated prospec-
tively according to the design of a previous study.3,15
Training and internal validation were performed using
subjects who visited between 2016 and 2017. These
subjects were considered as retrospective cohorts for
model construction and calibration. The dataset was
randomly separated into training (80%, n = 10,561)
and validation sets (20%, n = 2640). In the training
dataset, we designed a 10-fold cross-validation, which
currently corresponds to the preferred technique in
data mining to assess performance and to optimize the
prediction models. To obtain the optimal result, we
adopted a grid search (Cartesian method) in which a

range of parameter values were tested via the 10-fold
cross-validation strategy. This method trains machine
learning models with each combination of possible
hyperparameter values, and selects a hyperparameter
to maximize accuracy.16 The model was trained based
on clinical decisions of highly experienced experts
and large multi-instrument measurements. External
validation (n = 5279) was conducted using subjects
who visited in 2018. These subjects were considered
as independent prospective cohorts to validate the
machine learning model prospectively.

Machine Learning Technique

An architecture of our proposed machine learn-
ing model is shown in Figure 1. The study focuses on
XGBoost (a recently developedmeta-algorithm) due to
its reliable and superior performance compared with
other classic machine learning methods.17 Addition-
ally, XGBoost is derived from the extreme gradient
boosting, which falls under larger parallel tree boost-
ing. The technique optimizes both the training loss
and regularization of the model for the ensemble of
the trees generated. In the study, we used XGBoost to
predict the surgery option class yi for the given input
feature vectors Xi = {x1, x2,���, xN} including preop-
erative measurements and questionnaires. The train-
ing procedure was conducted via an additive strategy.
Given a residue i with Xi, a tree ensemble model uses
K additive functions to predict the output value ŷi as
follows:

ŷi =
K∑

k=1

fk (Xi) , fk ∈ F

where fk(Xi) denotes an independent tree structurewith
leaf scores of Xi and F denotes the space of functions
containing all regression trees. The XGBoost algorithm
introduces the regular function to control overfitting.
The target function of XGBoost is expressed as follows:

min {Obj} = min

{∑
i

l (yi, ŷi) +
∑
t

� ( ft )

}

� ( ft ) = γT + 1
2
λ

T∑
j=1

ω j
2

where l (yi, ŷi) denotes a function of the difference
between the ground truth value and predicted value
of the ith observation in the iteration. The �(ft) term
penalizes the complexity of the model where T denotes
the number of leaves and ωj denotes the leaf node
output in each subdecision tree model. The variables
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Figure 1. Architecture of the proposed machine learning models for corneal laser refractive surgery recommendation.

γ and λ are constants that control the degree of
regularization. In the iterative learning process of
XGBoost, the loss function is expanded into the Taylor
second order series to quickly optimize the objective
function while L1 and L2 regularizations are intro-
duced to solve in a manner similar to penalty functions
of LASSO and ridge regression.18 Hence, the XGBoost
model offers a more accurate prediction model and
efficiently prevents overfitting.19

Although a multiclass XGBoost model analyzes
the multiple surgery option dataset simultaneously,
we also adopted additional two strategies including
one-versus-rest (OVR) and one-versus-one (OVO) for
explainable classification.20 The OVR method corre-
sponds to the simplest multiclass classification as
shown in Figure S1. The final decision function selects
the class that corresponds to the maximum value of
binary decision function among all OVR binary classi-
fiers. The OVOmethod constructs binary classifiers for
all pairs of classes. The decision function selects the
class that exhibits the largest number of votes by all
binary classifiers as shown in Figure S2. In our study
using the 4-class dataset, the OVR XGBoost classifier
requires four binary classifiers and the OVO XGBoost
classifier uses 6 pairwise binary classifiers for voting.

Other representative machine learning methods
were also used for comparison purposes. The SVM is
based on mapping data to a higher dimensional space
via a kernel function and selects the maximum-margin
hyperplane that separates training data.21 The hyper-
plane is located based on a set of boundary training
instances known as support vectors. Thus, the goal of
the SVM is to improve accuracy by the optimization of
space separation and it is well fitted for binary classi-
fication problems. The SVM was the most important
development before the introduction of deep learning
and tree-based techniques. The optimization process

is formulated in a way that allows for nonseparable
data by penalizing misclassifications. The OVR, OVO,
and directed acyclic graph (DAG) SVM were adopted
for multicategorical classification.20 When the SVM
models were built, feature selection using informa-
tion gain technique was also performed to increase
accuracy.22 RF is an ensemble learning method for
classification and consists of a collection of decision
trees.23 Specifically, RF can withstand high dimen-
sional data in training faster than other methods
with extremely robust performance in a multicategor-
ical classification problem. An ANN model based on
multilayer perceptron uses mathematical systems that
mimic biological neural networks.We used a multilayer
perceptron neural network with backpropagation for
nonlinear pattern classification.

SHAP Technique

SHAP is a recently developed technique that aims
to interpret black box machine learning models.8
It provides a post-hoc interpreting method that is
more aligned with human intuition.24 Most previous
machine learning algorithms provide predictors with
global feature importance, and it is difficult to interpret
each prediction case. However, the SHAP technique
calculates the contribution of each input variable in
each decision of a machine learning model. The SHAP
value corresponds to the measure of additive feature
attributions. The calculation formula for the SHAP
value ∅i is defined as follows:

∅i =
∑

S∈If\{i}

|S|! × (M − |S| − 1)!
M!

× [
fS∪{i}

(
xS∪{i}

) − fS (xs)
]
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Figure 2. Schematic diagram of our proposed interpretable model for corneal laser refractive surgery recommendation.

where If denotes the set of input features, S denotes
a subset of input features, and M denotes the number
of input features. The term fS∪{i}(xS∪{i}) corresponds
to the machine learning model output when the ith
feature is present. The term fS(xs) denotes the output
when the ith feature is withheld. A novel SHAP
package developed by Lundberg provided a sampling-
based and decision tree–based estimation of SHAP
value.25 The package computes the SHAP values of
each prediction case with local interpretability, and
this is shown via a force plot. A force plot is a
new method for visualizing individual model predic-
tions using the SHAP technique. In this plot, red
arrows show the feature effects that drive the XGBoost
results higher while blue arrows present the feature
effects that drive these outcomes lower. Global inter-
pretability was calculated by aggregating the SHAP
values across the instances. The SHAP value can
provide almost a full explanation that is crucial for
a machine learning decision considering the effects
of all variables. It was difficult for the current form
of SHAP to show an intuitive diagram for multi-
class classification, and thus we adopted the OVR and
OVO strategies. We extracted information necessary
to explain the results from listing the OVR and OVO
XGBoost-based classification (Fig. 2). In our study, we
noted only two most influential factors for a better
view of the result. The detailed method to compare
the primary factors between the explainable XGBoost
model and clinician’s decision is presented in Figure S3.
We sampled subsets from all classes for manual chart
review due to the large number of patients in this
study.

Training Process

Imbalanced data is a challenging problem in
multiclass machine learning because it signifi-
cantly decreases the classification performance.26
We adopted the synthetic minority oversampling
technique (SMOTE) to overcome our data imbalance.
The SMOTE method is an oversampling method
that randomly generates new instances of minor-
ity class to balance the number of classes.27 The
method is the most popular and effective method to
balance the dataset during a training process. In the
study, the SMOTE technique was applied to generate
a completely balanced dataset including the same
number of instances based on the major group. When
a binary variable (gender or yes/no questionnaires)
was generated by SMOTE, a round off function was
applied after the SMOTE process to recover the binary
variable property. In the SMOTE process, the orthog-
onality of the questionnaire features for anticipated
recovery and dry eye symptoms was preserved by
selecting the feature with the highest value.

We faced a multiclass classification problem, and
thus the measurement of multicategorical classifier
performance was based on accuracy, relative classifier
information (RCI), and Cohen’s κ metric.28 Accuracy
is a standard metric to evaluate a classifier. Specifically,
RCI denotes the performance with unbalanced classes
capable of distinguishing among different misclassifi-
cation distributions. Kappa is a standard meter for a
multicategorical problem that is generally applied in
several fields.29 The detailed calculation methods are
introduced in Table S3.
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The parameter optimization under 10-fold cross-
validation was operated to maximize accuracy under
the SMOTE process. In the 10-fold cross-validation,
the training dataset was randomly partitioned into
10 equal sized subgroups. One subgroup was retained
as the validation set for testing the machine learn-
ing model, and the remaining 9 subgroups were used
as training data. This cross-validation process was
then repeated 10 times as each of the subgroups
were used once for validation. The optimal model of
multiclass XGBoost corroborated that the eta corre-
sponded to 0.3, maximum tree depth for base learn-
ers corresponded to 5, and γ corresponded to 0.01,
while maintaining default values of the other param-
eters. The OVR and OVO XGBoost models shared the
parameters of the multiclass model. In the DAG SVM
model, the optimal model was obtained via a Gaussian
kernel function with a penalty parameter C corre-
sponding to 10.0 and a scaling factor γ correspond-
ing to 0.1. The OVR and OVO SVM models shared
the parameters of the DAG model for the purpose
of convenience. In RF, the optimal number of trees
corresponded to 1000, and the number of predictors
for each node corresponded to 3. The optimal multi-
layer perceptrons for the ANNmodel were set with two
hidden layers (5 and 2 nodes). The neurons that exhib-
ited rectified linear unit (ReLU) activation were used,
and other training parameters were set to the default
values of scikit-learn. ReLUs have been reported to be
easier to optimize and are more easily generalized than
Sigmoid or Tanh functions.30

The scikit-learn Python library and R version 3.5.1
(The Comprehensive R Archive Network; http://cran.
r-project.org) were adopted to perform XGBoost and
SHAP algorithms. We used the SHAP and XGBoost
packages that are available on GitHub repository
(https://github.com/slundberg/shap and https://github.
com/pablo14/shap-values).

Data Availability

Data are not easily redistributable to researchers
other than those engaged in the Institutional Review
Board–approved research collaborations with the
B&VIIT Eye Center, South Korea. The datasets
utilized during the study are not publicly available due
to reasonable privacy and security concerns.

Results

The characteristics of the subjects are listed in
Table 1. Among a total of 18,480 subjects, 4893

subjects underwent LASEK, 6123 underwent LASIK,
and 5834 underwent SMILE surgery as recommended
by the surgeon. After a comprehensive examination,
the remaining 1630 subjects were considered to exhibit
a contraindication to corneal refractive surgery. The
comparison between 4 groups shows significant differ-
ences in all variables as listed in Table 1. Supplemen-
tary Table S4 lists the characteristics of the subjects
in terms of the training, internal validation, and exter-
nal validation datasets. During the study, post-LASIK
ectasia was developed in one patient among the devel-
opment dataset including follow-up data. All patients
were followed with for 6 months and there were no
perioperative complications.

Table 2 shows the performance of final multiclass
classifiers via 10-fold cross-validation in the training
dataset with the SMOTE process. We obtained the
accuracy of the multiclass, OVR, and OVO XGBoost
models corresponding to 82.1%, 81.7%, and 81.9%,
respectively. The average accuracy of random forest,
OVR SVM, OVO SVM,DAG SVM, and ANNmodels
corresponded to 81.5%, 75.3%, 75.7%, 75.5%, and
76.0% respectively. The multiclass XGBoost model
performed statistically better than the SVM and ANN
models (P < 0.001). Similarly, consistent results were
obtained by using other metrics including average RCI,
and Cohen’s κ. Without the SMOTE process, a multi-
class XGBoost accuracy of 80.2% was obtained via
10-fold cross-validation. When the variables of the
anticipated option were excluded, the average accuracy
of the multiclass XGBoost was 70.2%. Additionally,
SHAP importance results from the 10-fold cross-
validation procedure are shown in Figure 3. The
results indicated that the multiclass XGBoost did not
explain each decision for a specific surgery option in
a multicategorical setting. Each OVR model showed
the global interpretable form as to why the surgery
option is selected. The SHAP importance from 4
OVRXGBoost classifiers revealed that different factors
affected each classifier. Specifically, the anticipated
option of patients exhibited the greatest effect on the
decision in each OVRmodel for LASEK, LASIK, and
SMILE. The SHAP clustering force plots are presented
in Figure S4, and they also demonstrated that the antic-
ipated option of patients was a major factor in surgery
selection.

As shown in Figure 4, the XGBoost-based methods
are successfully performed in the internal and external
validation dataset. The multiclass XGBoost indicated
that the performance in the training set and exhib-
ited an accuracy of 81.0% in the internal validation
set and 78.9% in the external validation set. Perfor-
mances varied for the multiclass, OVR, and OVO
XGBoost models in the internal and external validation

http://cran.r-project.org
https://github.com/slundberg/shap
https://github.com/pablo14/shap-values
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Table 1. Comparison Between LASEK, LASIK, SMILE, and Contraindication Cases

LASEK LASIK SMILE Contraindication P Valuea

Number 4893 6123 5834 1630
Age (years) 26.9 ± 5.6 27.3 ± 6.1 27.3 ± 6.0 33.8 ± 8.0 <0.001
Sex, female (%) 2723 (55.7) 3202 (52.3) 3069 (52.6) 868 (53.3) <0.001
Spherical equivalent (Diopter) −5.38 ± 2.23 −3.94 ± 1.84 −4.39 ± 1.69 −7.82 ± 5.02 <0.001
CDVA (logMAR) −0.012 ± 0.039 −0.012 ± 0.038 −0.011 ± 0.038 0.017 ± 0.121 <0.001
IOP (mm Hg) 15.1 ± 3.5 15.5 ± 3.4 15.4 ± 3.0 15.2 ± 2.4 <0.001
Pupil diameter (mm) 2.93 ± 0.62 2.88 ± 0.55 2.88 ± 0.57 2.86 ± 0.52 <0.001
Central corneal thickness (μm) 530.5 ± 33.0 549.3 ± 27.4 545.9 ± 33.1 503.8 ± 42.9 <0.001
NIBUT (seconds) 6.67 ± 6.40 7.04 ± 6.70 7.06 ± 6.67 5.20 ± 3.61 <0.001
Anticipated surgery option
LASEK (%) 2402 (49.1) 1586 (25.9) 1488 (25.5) 448 (27.5) <0.001
LASIK (%) 983 (20.1) 2951 (48.2) 915 (15.7) 463 (28.4) <0.001
SMILE (%) 1052 (21.5) 1193 (19.5) 3296 (56.5) 523 (32.1) <0.001
ICL or none 456 (9.3) 392 (6.4) 134 (2.3) 196 (12.0) <0.001

Occupation
Sports (%) 680 (13.9) 380 (6.2) 583 (10.0) 155 (9.5) <0.001
Driver (%) 298 (6.1) 416 (6.8) 543 (9.3) 1277 (7.8) <0.001
Computer or smartphone (%) 2906 (59.4) 3472 (56.7) 3506 (60.1) 950 (58.3) <0.001

Anticipated recovery time
One day (%) 274 (5.6) 1702 (27.8) 1762 (30.2) 414 (25.4) <0.001
Three days (%) 2251 (46.0) 3594 (58.7) 2818 (48.3) 843 (51.7) <0.001
One week (%) 1649 (33.7) 1163 (19.0) 1202 (20.6) 328 (20.1) <0.001

Concern about budget (%) 3303 (67.5) 4298 (70.2) 4230 (72.5) 1154 (70.8) <0.001
CDVA, corrected distance visual acuity; IOP, intraocular pressure; NIBUT, noninvasive breakup time.
aComparison using the 1-way ANOVA test and χ2 test.

Table 2. Classification Performance of Machine Learning Models to Predict Laser Corneal Refractive Surgery
Option Via 10-Fold Cross-Validation

Accuracy (%) (95% CI) RCI (95% CI) κ (95% CI) P Valuea

Trained with SMOTE
Multiclass XGBoost 82.1 (81.1–83.0) 0.537 (0.525–0.549) 0.758 (0.747–0.769) Reference
One-versus-rest XGBoost 81.7 (80.7–82.6) 0.531 (0.519–0.543) 0.753 (0.742–0.764) 0.578
One-versus-one XGBoost 81.9 (80.9–82.8) 0.534 (0.522–0.546) 0.756 (0.745–0.767) 0.780
Random forest 81.5 (80.5–82.4) 0.527 (0.515–0.539) 0.750 (0.739–0.761) 0.407
One-versus-rest SVM 75.3 (74.2–76.3) 0.422 (0.410–0.434) 0.668 (0.656–0.680) <0.001
One-versus-one SVM 75.7 (74.7–76.7) 0.428 (0.415–0.441) 0.674 (0.662–0.686) <0.001
DAG SVM 75.5 (74.5–76.5) 0.425 (0.412–0.438) 0.671 (0.659–0.683) <0.001
Artificial neural network 76.0 (74.9–77.0) 0.432 (0.419–0.445) 0.677 (0.665–0.689) <0.001

Trained without SMOTE
Multiclass XGBoost 80.2 (79.2–81.2) 0.514 (0.502–0.526) 0.730 (0.719–0.741) 0.011
One-versus-rest XGBoost 80.1 (79.1–81.1) 0.513 (0.501–0.525) 0.727 (0.715–0.738) 0.015
One-versus-one XGBoost 78.5 (77.4–79.5) 0.505 (0.493–0.517) 0.721 (0.709–0.732) 0.001

Without anticipated surgery option
Multiclass XGBoost 70.3 (69.2–71.4) 0.407 (0.394–0.420) 0.593 (0.581–0.605) <0.001
One-versus-rest XGBoost 68.8 (67.7–69.9) 0.385 (0.372–0.398) 0.571 (0.559–0.583) <0.001
One-versus-one XGBoost 68.3 (67.2–69.4) 0.380 (0.366–0.393) 0.565 (0.552–0.568) <0.001

CI, confidence interval; RCI, relative classifier information; SVM, support vector machine.
aComparison of accuracy with the best machine learning technique (multiclass XGBoost with SMOTE).
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Figure 3. Global feature importance estimates selected by the XGBoost-based SHAP technique. (A) Multiclass (4 classes) classification
problem. (B) Binary classification with LASEK versus rest groups. (C) Binary classification with LASIK versus rest groups. (D) Binary classifi-
cation with SMILE versus rest groups. (E) Binary classification with Contraindication versus rest groups.

Figure 4. Confusion matrix of multiclass XGBoost and performance for multiclass XGBoost and other algorithms. (A) Performance in the
internal validation. (B) Performance in the external validation. The error bars demonstrate the 95% confidence intervals.

sets. The multiclass XGBoost models exhibited better
accuracy than the SVM and ANNmodels (P < 0.001).
The RCI and Cohen’s κ metrics indicated a perfor-
mance similar to the accuracies of machine learning
models. Figure 5 presents a comparison of the primary
factors between the explainable XGBoost model and
the clinician’s decision among the external validation
dataset. Most electronic charts did not present the
factors used for the clinical decision. In the surgical
cases, the major factor for making a decision was the
patient’s anticipated option. The agreement rate of the
primary decisional factor was 92.7% in the subjects

with identified decisional factors in their medical
records.

A classification result from randomly selected
SMILE case is demonstrated in Figure 6. The force
plots include the prediction explanation bar that
exhibits pink blocks that push the prediction value
higher and blue blocks that push the value lower.
The blocks labelled by variables were sorted based on
their impact on the result. The results of the OVR
XGBoost model explained that SMILE was the choice
because the patient’s keratometric power of corneal
back surface was inside a safe range and the patient
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Figure 5. Comparison of the primary factors between the explainable XGBoost model and clinician’s decision. The surgical decision was
based on a review of electronic health records. One hundred samples for each group were extracted randomly from the external validation
dataset for comparison.

Figure 6. SMILE case example showing the machine learning prediction result with local interpretation via force plots.

anticipated SMILE surgery. The OVOmodel explained
as to why SMILE corresponded to a better option
than LASEK and LASIK. In this case, the patient’s
anticipation for SMILE was the most influential factor
in the decision. It also revealed that the patient was
a candidate for surgery due to the safe keratometric
power of corneal back surface and normal corneal
thickness. The SHAP explanations for the results were
consistent with prior knowledge from ophthalmolo-
gists. Figure 7 shows an example contraindication case
for corneal refractive surgery. The results indicated

that thin corneal thickness and high myopia of the
patient contributed to the machine learning decision.
The informed machine learning prediction can enable
surgeons in more effectively and objectively reviewing
patients’ data to determine the surgery option on the
expert level.

We analyzed the training time to build an explain-
able XGBoost model using the whole training dataset.
The training process was completed within 45 minutes
to obtain the final multiclass model. During the valida-
tion process, the execution time required for one case
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Figure 7. Contraindication case example showing the machine learning prediction result with local interpretation via force plots.

was 30 ms using our platform without a graphic
processing unit.

Discussion

The study presents a multicategorical explain-
able machine learning framework for laser refrac-
tive surgery selection. In the study, the explainable
XGBoost technique was successfully extended to a
multiclass classification problem. An appropriate
laser surgery strategy for refractive correction is an
important issue to decrease postoperative compli-
cations. Prior to surgery, an expert decides on the
surgery option based on a patient’s condition. The
proposed method involves comprehensively combin-
ing ophthalmic data and patients’ interview data to
select the surgery option on the expert level based on
the clinical decision database. We built the machine
learning model based on the retrospective cohorts
(training and internal validation), and it was prospec-
tively validated (external validation). The final model
predicted the surgery option with an accuracy of 78.9%
in external validation, and this corresponded to the
multicategorical classification problem of the 4 classes.
The framework adopts intuitive interpretability and is
expected to assist in making user friendly and less risky
clinical decision. To the best of the authors’ knowledge,
this is the first study to select the corneal refractive
surgery option on the expert level using artificial
intelligence.

As indicated by a previous study, machine learning
has not yet been perfected to predict keratoconus.31
No complications were noted in the patients during
the postoperative period except for the diagnosis of
post-LASIK ectasia in one patient. Because there is
no definitive diagnosis method, the decision of the
expert was used for reference. Although the multi-
class machine learning model was trained to imitate

the expert clinicians, the preoperative selection of
forme furste keratoconus is key for selecting the ideal
surgical option. Recently, several techniques have been
developed to deal with a large amount of clinical
information to screen for keratoconus.32 Our previ-
ous study demonstrated that artificial intelligence can
integrate medical information to identify candidates
for corneal refractive surgery.5 The XGBoost model
in this study extended the previous binary model to a
multiclass machine learning model for more compre-
hensive support of the final decision. In the future,
measurements of the biomechanical properties of the
corneal tissue will be combined with themachine learn-
ing models to improve the keratoconus screening and
surgery selection.

We contemplated the interpretability of the multi-
class prediction result to understand machine learn-
ing users. The explanation involved listing the force
plots of the OVR and OVO XGBoost models and
was effective in terms of easily understanding the
users in the study. The previous SHAP technique
is suitable for regression and binary classification
problems.8 Zhang et al.10 indicated that it is more
difficult to understand interpretability in a multiclass
setting. His research team developed additive postpro-
cessing for interpretability technique, and this trans-
formed a machine learning model to a simplified form
for global interpretability. The approach involved a
complex computational procedure and did not exhibit
local interpretability for each instance. We offered a
simple solution to overcome the problem by using the
OVR and OVO classification. The computational load
increases exponentially when the number of classes
increases in an OVR classification strategy and this
is disadvantageous. However, the proposed approach
exhibited an intuitive and task-based interface that a
patient can understand. The explainablemodel answers
why the surgery is selected and why other options are
not recommended, and it does not break the inter-
pretability of the SHAP technique.
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The agreement rate between the explainable
XGBoost model and the clinician’s decision was
92.7% although the anticipated option of the patients
was the most influential factor in most surgery cases.
The results also revealed that the anticipation of a
specific option for the patients affected the decisions,
and this is potentially because most patients could
consider all surgery options. Recent technical advances
developed various surgical options available to patients
who seek refractive surgery. In order to satisfy patients,
it is vital for surgeons to consider the pros and cons of
each refractive surgery option.1 The proposed model
provided an surgical option on the expert level based on
a large clinical decision database. Generally, LASEK
is a good choice for patients with thin cornea and high
risk to expose to ocular trauma. However, it involves
several disadvantages includingmore painful postoper-
ative periods, longer visual recovery, and risk of corneal
opacity.2 Specifically, LASIK exhibits advantages of
fast and painless recovery although it can cause dry eye
syndrome due to corneal nerve damage.33 Additionally,
SMILE is a flapless and minimally invasive procedure
that shows the benefits of fast recovery of vision and
reduced symptom of dry eyes.34 However, SMILE is a
relatively new technique, and thus it is generally more
expensive than other methods in South Korea. Our
SHAP importance result indicates that the explainable
machine learning model reflects the advantages and
disadvantages of each option.

In our study, the interpretability of our explainable
machine learning model suffered from the lack of a
validation scheme and the presence of multicollinear-
ity. A method for achieving an objective validation of
the interpretability has not yet been found. The inter-
pretability is able to elucidate the logic of the decisions
made by the model, but it may sometimes provide a
local neighborhood of the input and fail to obtain
insight into the underlying mechanism.35 The explana-
tions provided by the interpretability may occasionally
be unreliable and misleading because the explainable
machine learning technique generally uses important
factors that allow for safe applications.36 Our results
might be considered as a failure in obtaining insight
into the underlying mechanism because the machine
learning model demonstrated that patients’ anticipated
option was frequently the most influential factor in
determining surgery. However, we believe that it is
another insight explaining themachine learningmodel.
The explainable system has a potential to discover
deep patterns for personalized medicine, which are not
accessible to clinicians, and it could provide a tool to
understand factors used to select the surgery technique
for patients.37 Additionally, the multicollinearity of the
variables affected the interpretability of our model.

Because both eyes were included in the analysis
and the variables were highly correlated to each
other (Fig. S5), the XGBoost models selected impor-
tant factors from both eyes with an inconsistent
logic. Future studies attempting to achieve explainable
machine learning should be carried out to solve these
issues.

Moreover, there were significant differences of
the decisional factors between surgeons (Fig. S6),
and this shows the interclinician variability in select-
ing surgical options. Clinical data accumulation and
machine learning techniques could potentially elimi-
nate the possibility of interclinician variability with
evidence-based decision making. In this study, only
9 clinicians were represented from the same location,
and they attempted to follow the same criteria when
considering surgical options. As there are significant
variations in defining surgical criteria between the
modalities used in different eye clinics, it would be
difficult to use our machine learning model to predict
the recommendations of other clinics. In particular,
the data we used was set for the specific measurement
equipment and consulting system for surgery selection
present at the chosen eye clinic. If the measurement
process is changed or the surgical criteria are updated,
the machine learning system would be unusable and
a new model should be built from the newly collected
data.

In the study, machine learning models using
XGBoost performed better than other methods
based on various performance metrics. Previous
studies indicated that tree algorithms performed
well in predicting the multiclass disease classification
problem.5,38 Decision tree–based XGBoost exhibited
advantages including flexibility, regularization, parallel
processing, and feature selection.39 A previous study
revealed that the multiclass OVO XGBoost model
performed well in various datasets.19 The XGBoost
model adjusted several scalable variables and can be
highly adopted to specific datasets because overfitting
is avoided by regularization processing. Although
the XGBoost is limited by combining weak learn-
ers, it can select important features and can render
a complicated problem by constructing sparse classi-
fication rules.17 Parallel computing of XGBoost can
offer better optimization via generating a number of
examples. As shown in previous studies, XGBoost
constitutes an extremely powerful technique and is
applied with immense success in several regression
and pattern classification problems.40 However, there
is a paucity of studies on the usefulness of XGBoost
in ophthalmology. Given its efficiency, it is expected
that XGBoost will be increasingly used by medical
researchers and clinicians in the future.
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In training the OVR classifiers, a severely imbal-
anced distribution of the training dataset occurred. To
overcome this imbalance, the minor training datasets
were augmented with SMOTE to obtain balanced
training, and the slight improvements in the predic-
tions were experimentally demonstrated. Because the
XGBoost and SVM tend to fit large datasets to increase
accuracy, SMOTE generally improves the classifica-
tion performances of these methods.41 Previous studies
have demonstrated successful applications of SMOTE
in various datasets.27,42 However, this technique can
sometimes disregard the dominating training set and
increase overfitting because the algorithm generates
new instances close to an existing cluster of the minor
datasets.43 In SMOTE, the synthesized samples were
created within a data space and feature space, and
there was no data transformation in this study. A
previous study found that SMOTE did not change
the data properties by calculating the average, kurto-
sis, and skewness compared to propensity score match-
ing.44 This means that the SMOTE did not disturb the
data distribution of the contraindication group that
included patients with pathologic high myopia, thin
cornea, or keratoconus. Because Euclidean distances
were used to determine the nearest neighbors in
SMOTE, unimportant factors might affect the gener-
ation of samples. Although we equally balanced the
classes using SMOTE, an optimal imbalanced ratio
could exist. Therefore, future studies need to include a
more elaborate evaluation of SMOTE to maximize the
accuracy of the constructed models.

There are several limitations in the study. First, the
study was performed in a single center. Specifically,
there was no absolute criteria for corneal refractive
surgery selection. Given that SMILE is a relatively
novel technique, many eye clinics have not established
equipment for SMILE. Therefore, it is not possible
to apply our proposed model to other eye clinics.
Second, the study did not analyze the cost of surgery
in a quantitative method. Although medical indica-
tion is important, the cost can significantly affect
surgery selection for the patients. Ophthalmic clinics
for refractive surgery compete over price and service
in South Korea. If there are changes in surgery costs,
our machine learning model should be also modified
after reviewing new data. Third, the study did not
include subjects who underwent customized treatments
such as corneal topography-guided laser ablation and
collagen cross-linking with laser ablation. The afore-
mentioned methods can affect surgery indication and
represent a significant cost increase.45 Future studies
should focus on automatic identification of candi-
dates for customized treatment with a combination
of the proposed surgery recommendation framework.

Fourth, we did not consider the surgeon factor. In
our study, the surgeons possessed significant experi-
ence and were skilled in all surgery options. However,
it is possible that incorrectly classified cases can be
associated with a surgeon’s preference for a specific
option. Fifth, whether the result of the machine learn-
ing algorithm is optimal cannot be decided because
there is no ground truth. Interclinician variability in
this study also undermines the practical usefulness of
this machine learning model from a clinical point of
view. Additional postoperative data are required to
overcome this fundamental problem.

Overall, medical society is moving toward artifi-
cial intelligence, and there is a demand for a better
understanding of the operation of machine learning
models to promote application of the decision support
system. The study shows the potential of a multi-
class explainable machine learning method in predict-
ing corneal refractive surgery option on the expert
level. Although the study was limited to corneal refrac-
tive surgery, the interpretability extension based on
the OVR and OVO framework provides more inter-
pretable decision systems in various multiclass medical
problems. Explainable machine learning exhibits a
promising future to increase the practical use of artifi-
cial intelligence in ophthalmic clinics.
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