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Abstract 

The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data 
suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information 
about this cellular response has been collected over the following decades. In this review, we will focus on a few 
of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the 
diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of 
antimicrobial resistance, and its relationship with mobile genetic elements.
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The SOS response is a cellular mechanism induced by 
agents that threaten DNA integrity in prokaryotes that aids 
cell survival under stressful situations, since an unrepaired 
DNA damage may lead to deleterious mutations or even cell 
death. Cells are constantly exposed to environments that may 
contain DNA-damaging agents. These agents can be either 
a physical agent such as UV light and ionizing radiation, or 
a chemical compound such as alkylating and crosslinking 
agents. However, the threats that a cell has to face are not 
only external but also internal, such as the reactive oxygen 
species (ROS), metabolic byproducts that cause DNA damage.

Miroslav Radman used the distress signal “SOS” 
to define how bacterial cells sense genome instability, 
while studying DNA damage and replication blockages in 
Escherichia coli (Radman, 1974). This phenomenon triggers a 
pathway of physiological responses to deal with these adverse 
conditions, mainly DNA damage repair and/or tolerance and 
mutagenesis. Pathways induced by SOS include damage repair 
and tolerance mechanisms such as nucleotide excision repair 
(NER), photoreactivation, homologous recombination (HR) 
and translesion synthesis (TLS) (Erill et al., 2006). Despite 
the induction of pathways that promote DNA integrity in 
an error-free manner, there is also the involvement of error-
prone elements in this response, responsible for improving 
cell survival under severe DNA damage, however exhibiting 
elevated mutagenesis as a consequence (Henrikus et al., 2018). 
SOS is subject to complex regulation controlled by the lexA 
and recA gene products, due to its mutagenic potential.

Fundamentals of SOS response regulation
Induction of the SOS regulon is triggered by single-

stranded DNA (ssDNA) present in the cell as a consequence 

of replication and repair of damaged DNA (Sassanfar and 
Roberts, 1990). Briefly, this response is regulated by the 
LexA and RecA proteins in which the former plays a role as 
a transcriptional repressor by binding to the promoter region 
of genes controlled by this regulon, and the latter functions as 
a positive regulator of the system (Little et al., 1980; Little, 
1983, 1991; Aksenov, 1999).

LexA – a self-cleaving repressor
Regulation of SOS response genes depends on 

transcriptional repression by the LexA protein, which binds 
to an operator sequence, within the promoter, known as the 
SOS box (Walker, 1984) and prevents RNA polymerase 
binding and transcription (Berg, 1988). LexA functions as a 
repressor in the form of a dimer consisting of two domains 
joined by a peptide linker: a DNA-binding domain located in 
the amino-terminal (NTD) and serine protease domain located 
in the carboxi-terminal (CTD). The CTD domain plays a role 
in the homodimerization of LexA (Zhang et al., 2010).

LexA repressor undergoes self-cleavage under SOS-
inducing conditions (Slilaty et al., 1986). In E. coli, the 
enzyme has a conserved serine-lysine catalytic domain that 
self-cleaves its peptide bond between Ala84-Gly85 near the 
middle of the protein, thus losing its repressor function (Little, 
1991). Structural studies in E. coli have shown that the CTD 
domain can be found in two different conformations: a basal 
cleavage-incompetent conformation and a cleavage-proficient 
conformation (Luo et al., 2001). In vivo, LexA self-cleavage 
occurs when it interacts with activated RecA protein (RecA*) 
(Little et al., 1980).

RecA – a DNA damage sensor
RecA protein is a key player in DNA repair, being 

required not only for SOS induction, but for homologous 
recombination and translesion synthesis as well. In the absence 
of ATP, RecA is found as monomers that are capable of 
associating with ssDNA, being able to protect DNA strand from 
degradation but staying in a functionally-inactive conformation 
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(Yu and Egelman, 1992). When ATP molecules are available, 
the RecA-ssDNA complex is converted to the functionally-
active conformation: RecA* nucleoprotein filament, a structure 
functioning as a co-protease responsible for inducing self-
cleavage of LexA (Cox, 2007). This structure has many 
other functions, such as searching for homologous dsDNA to 
promote homologous recombination (Tsang et al., 1985). The 
RecA*-stimulated auto-cleavage of LexA expose previously 
inaccessible residues, facilitating proteolytic degradation of 
both fragments (Neher et al., 2003). Once LexA protein levels 
start to decrease, expression of SOS genes is triggered (Little 
and Mount, 1982).

SOS response in a nutshell
Most of the findings regarding SOS response regulation 

and dynamics were made using the model bacterium E. coli. 
Once DNA breaks or other types of damage emerge within the 
cell, RecA monomers readily associate with ssDNA assuming 
its active form (RecA*), inducing LexA self-cleavage which 
causes it to dissociate from SOS-regulated promoters, thereby 
relieving repression of the SOS regulon (Figure 1). One 
important aspect of SOS dynamics is that lexA itself is an SOS 
gene, thus generating a negative-feedback loop to re-establish 
repression after the induction signal is ceased. Besides that, 
LexA is constantly expressed during late SOS to ensure that 
SOS induction is interrupted once stress signal decreases and 
LexA degradation is not favored anymore (Walker, 1984).

The dynamics of the SOS response can be manipulated 
by proteins that interact with RecA filament and modulate the 
time of induction and recovery rate of the response (Lusetti et 
al., 2004). The inhibitor of RecA is the RecX protein, which 
at low concentrations can suppress many RecA functions 
(Stohl et al., 2003) and blocks RecA filament polymerization 
(Drees et al., 2004), leading to filament dismantling (Ragone 
et al., 2008).

The response is orchestrated according to several 
variables, including the extent in which DNA was damaged and 
the time passed since such damage was identified (Courcelle 
et al., 2001; Quillardet et al., 2003), in such a way that SOS-
regulated genes have different timing and levels of induction. 
Housekeeping and error-free repair processes comprise 
the initial phase of SOS, such as NER and homologous 
recombination. SulA protein, a division inhibitor, allows 
the bacterium to complete DNA repair before finalizing its 
cell division. Lastly, if the damage was severe and remains 
unrepaired, TLS-polymerases are induced leading to elevated 
mutagenesis but allowing replication to resolve, thus improving 
cell survival (Henrikus et al., 2018). It is also important to point 
out that RecA-mediated cleavage of LexA occurs when LexA 
is DNA-free but not when bound to its target DNA (Butala et 
al., 2011; Kovačič et al., 2013), adding more complexity to 
the timing of expression of SOS-regulated genes.

The dynamics of SOS genes in E. coli is also influenced 
by the strength of different SOS boxes (Figure 1). Usually, the 
consensus SOS box sequence displays a higher affinity for 
LexA binding since its sequence is a palindrome and optimal 
for LexA association: TACTG(TA)5CAGTA. Any modification 
within this sequence may interfere with LexA affinity for a 
given operator. The heterology index (HI) measures how much 

an SOS box differs from the consensus: the higher the HI value, 
the lower LexA affinity for the operator, as shown in E. coli 
(Lewis et al., 1994; Fernández de Henestrosa et al., 2000) 
and in Salmonella enterica (Mérida-Floriano et al., 2021). 
This process corroborates the idea that affinity of LexA is 
also an important factor, since lower affinity implies an earlier 
transcriptional derepression, consequently regulating genes 
that should be expressed early or late in the SOS response. 

DNA damage response heterogeneity
To this date, the vast majority of studies measuring SOS 

induction have been using the “uniform expression model” 
(McCool et al., 2004). In this model, it is not clear whether 
the activity of a particular promoter is equally distributed 
across cells in a population or has a different expression for 
a subpopulation of cells (Kenyon and Walker, 1980; Salles 
and Defais, 1984). Measuring the activity of SOS regulated 
promoters in transcriptional fusions to reporter genes is an 
example that represents a population average and relies on 
the uniform expression model.

However, fluorescence microscopy studies to assess 
SOS induction at the single cell level pointed to limitations 
of measuring SOS induction at the population level (McCool 
et al., 2004; Britton et al., 2007; Jones and Uphoff, 2021). 
In this methodology, fluorescent proteins are fused to an 
SOS regulated gene and through microscopy analysis, rather 
than a population measurement, it is possible to determine 
subpopulations of cells displaying a variety of SOS induction 
patterns. This model is called the “two population model” 
and has shown how heterogeneous the induction of the SOS 
response within a cell population may be, allowing a much 
more accurate and comprehensive analysis for quantifying 
the SOS response.

DNA damages and other stressors leading to 
SOS induction

An SOS response is triggered when single-stranded DNA 
(ssDNA) is present in the cell, which is one of the consequences 
of DNA damage. Repair of double-stranded DNA (dsDNA) 
breaks is a fundamental aspect of genome conservation. 
These potentially lethal lesions frequently occur during DNA 
replication (Pennington and Rosenberg, 2007). The enzymes 
RecA and RecBCD are the initiators required for double-strand 
breaks (DSBs) repair and homologous recombination. The type 
of DNA damage determines in which state the SOS response 
is triggered. These two enzymes at the same time degrade 
and unwind DNA from DSB in vitro (Chaudhury and Smith, 
1985; Anderson and Kowalczykowski, 1997).

Several stresses, including quinolone treatment, high 
pressure and radiation lead to SOS induction as a result of 
DSB (Anderson and Kowalczykowski, 1997; Anderson and 
Kowalczykowski, 1998). RecBCD, responsible for processing 
DSBs, is a molecular machinery that binds to the damaged 
site and initiates the unwinding of the double-helix (Singleton 
et al., 2004). RecB is a helicase coupled to an endonuclease 
domain that initially degrades the 3’-tail more efficiently than 
the 5’-tail. RecC splits the DNA strands to each helicase (RecB 
and RecD) and scans for a recombinational hotspot, known 
as Chi (ꭓ) site (5’ GCTGGTGG 3’), where it can bind to and 
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Figure 1 – Model of SOS response activation. The presence of DNA damage may block DNA replication and expose ssDNA within the cell. RecA 
protein associates with ssDNA, assuming its functionally-active conformation: RecA* nucleoprotein filament. This protein complex is responsible for 
inducing LexA self-cleavage, thus enabling transcription of SOS regulated genes. LexA repressor displays a dynamic of binding/dissociating with its 
target sequence and can only be cleaved once it is dissociated from DNA. Note that a stronger SOS box implies a lower dissociation constant, meaning 
that in this scenario, LexA is more likely to be associated with DNA and thus repressing its target. Therefore, gene expression can be modulated by SOS 
box strength: the weaker the operator strength, the sooner a gene will be expressed.

prevent further degradation from the 3’ end strand (Anderson 
and Kowalczykowski, 1997,1998). 

This event results in an ssDNA loop in the 3’ end strand 
to which RecA can be loaded. At the same time, RecD helicase 
is able to access the nuclease site more frequently, leading to 
a higher degradation rate of the 5’ end strand (Singleton et al., 
2004). The classical DSB repair mechanism in E. coli occurs 
through homologous recombination (HR), which is dependent 
on homologous fragments from either exogenous DNA or 
a recently duplicated sequence after DNA replication. The 
nucleoprotein filament (ssDNA-RecA) from the 3’ end strand 

interacts with homology sequences, forming a heteroduplex 
structure with the intact dsDNA. Finally, DNA polymerase 
uses the complementary strand as a template to reconstitute 
double-stranded DNA and repair the DSB damage (Danilowicz 
et al., 2021).

DNA lesions can produce chemical alteration of the base 
structure, modifying the coding sequence of the molecule. The 
best example of base damaging agent is ultraviolet radiation, 
which leads to photochemical reactions between neighboring 
bases (Sassanfar and Roberts, 1990). It was found that in E. 
coli the recF pathway proteins, such as RecF, RecO, and 
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RecR, are necessary to restore replication after UV radiation-
induced damage. recF, recO, and recR mutants have enhanced 
sensitivity to DNA damage and show delayed SOS induction. 
RecFOR complex proteins stabilize and strengthen the binding 
of RecA (Bork et al., 2001; Rangarajan et al., 2002).

Replication forks frequently stall due to physical 
blockages. RecA* activation following replication blockage 
requires RecFOR complex for processing. There are several 
pathways supported by genetic evidence for homologous 
recombination and post replication repair in E. coli and the 
fact that the recA gene is required in all of these pathways 
suggests that other genes involved in the process of repair and 
recombination provide activities that help RecA. It is essential 
for genomic integrity that accurate replication recovery occurs 
after DNA damage and repair (Tseng Y-C et al., 1994). 

Antibiotics that do not interfere directly with DNA 
replication may also induce the SOS response. Penicillin and 
related beta-lactams interfere with peptidoglycan metabolism 
by disturbing the activity of penicillin-binding proteins (PBPs). 
Impairment of PBPs activity by beta-lactams causes the 
induction of the two-component signal transduction system 
DpiBA in E. coli. DpiA has affinity to AT rich sequences and 
interferes with DnaA and DnaB binding at the replication 
origin, leading to SOS activation (Miller et al., 2003, 2004; 
Cho et al., 2014). 

In pathogens such as Staphylococcus aureus and 
Pseudomonas aeruginosa, the SOS response is involved in 
the mutagenesis leading to antibiotic resistance (Blázquez et 
al., 2006; Cirz et al., 2006, 2007; Maiques et al., 2006). SOS 
induction by antibiotics has many important implications, 
since it can increase error-prone polymerases that mediate 
mutagenesis and help in the spread of mobile genetic elements 
and pathogenicity islands (Úbeda et al., 2005), as discussed 
in subsequent sections.

Intracellular pH is regulated in E. coli cells by redox 
and proton pumps. However, a disturbance in pH regulation 
can lead to SOS induction (Padan et al., 1976; Padan and 
Schuldiner, 1986; Simmons et al., 2008). A mechanism for 
pH-induced expression of the SOS response is related to pH 
altering the structure and function of LexA (Dri and Moreau, 
1994; van der Veen et al., 2010). According to Sousa et al. 
(2006), in the low pH of 4.0, LexA has the tendency to self-
aggregate, preventing its binding to the SOS box. Further in this 
condition, LexA has increased affinity for non-specific DNA, 
meaning that SOS box is also derepressed by titrating LexA 
to other DNA sequences in the genome. However, operons 
regulated by LexA are not transcriptionally active until mild 
condition (pH 5.0 – 6.0) is achieved, where cell metabolism 
is restored and LexA operators are still predominantly free 

of repression. The hypothesized mechanism would explain 
how the SOS response can be activated in a RecA independent 
manner to increase bacterial survival rate after an episode of 
stressful low pH condition.

High pressure also leads to DNA breaks and SOS 
response induction. In E. coli a mechanism for high-pressure-
mediated DNA break has been linked to the expression of 
endogenous endonucleases that promote DSB after a high-
pressure stress, which consequently triggers the SOS response 
(Aertsen et al., 2004). During food preservation processes 
bacterial pathogens are often exposed to high pressure to 
inactivate them, and SOS induction may contribute to their 
survivability (Alpas et al., 2000; Aertsen and Michiels, 2005; 
Simmons et al., 2008). 

Diversity of the SOS response among bacterial 
species

Escherichia coli has served as the premier model from 
which almost all the fundamental aspects of SOS regulation 
and physiology have been derived. Nevertheless, it is now 
clear that the SOS response displays considerable variability 
among phylogenetically different bacteria. This variability is 
observed in two key aspects: the SOS box sequence (Table 1) 
and the set of genes repressed by LexA.

Genes under LexA repression show variation between 
different bacterial species, however many cellular functions 
are commonly upregulated, for example genes encoding 
polymerases responsible for carrying out translesion synthesis, 
DNA repair proteins, cell division inhibitors, among others 
(Courcelle et al., 2001; da Rocha et al., 2008; Cirz et al., 
2006, 2007).

The difference between the sequence recognized by LexA 
and the set of genes under its control seems to have an important 
role among species and how they respond to DNA damage 
(Erill et al., 2007). It can even be noted that it has already 
been described in some species, such as Pseudomonas putida 
and Xanthomonas axonopodis for example, the existence 
of two lexA regulons with independent LexA proteins and 
binding sequences (Yang et al., 2002; Abella et al., 2007). 
Furthermore, some bacteria also show SOS-independent DNA 
damage responses (e. g. Modell et al., 2014; Müller et al., 
2018; Blanchard and Groot, 2021). 

The differences in the SOS boxes makes the regulator 
of one species unable to exert its function in other species 
(Lovett Jr et al., 1994), demonstrating their evolutionary 
importance, and being a possible factor that led to the formation 
of branches in the bacterial evolutionary tree (Mazón et al., 
2004), since the LexA-binding sequence is monophyletic 
for phyla and classes (Erill et al., 2003). P. aeruginosa have 

Table 1 – Sequence of the SOS operator (SOS box) in different bacterial species.

Bacteria species SOS box Reference

Bacillus subtilis CGAACN4GTTCG Au et al., 2005

Caulobacter crescentus GTTCN7GTTC da Rocha et al., 2008

Escherichia coli TACTG(TA)5CAGTA Lewis et al., 1994

Pseudomonas aeruginosa CTGN2TN7CAG Cirz et al., 2006

Staphylococcus aureus CGAACN4GTTCG Cirz et al., 2007
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consensus SOS box almost identical to the E. coli one and both 
are notably unrelated to the ones present in Staphylococcus 
aureus and Bacillus subtillis. These latter two species share 
similar SOS box consensus, with the LexA homolog being 
called DinR the regulator in B. subtillis (Table 1) (Winterling  
et al., 1997). On the other hand, the model organism 
Caulobacter crescentus has an SOS box composed of a 
direct repeat, which is found in other phylogenetically related 
bacteria (da Rocha et al., 2008). 

In B. subtillis subtilis only seven genes that are among 
the 33 genes under the control of LexA can be found in  
E. coli regulon composition. Under DNA damage, P. 
aeruginosa seems to upregulate the recX and recN whose 
gene products are recombination repair proteins, while B. 
subtillis upregulates uvrBA and ruvAB operons and E. coli 
upregulates all the genes cited above (Courcelle et al., 2003; 
Au et al., 2005). C. crescentus also shows upregulation in the 
expression of recN, uvrA and ruvCAB operon (da Rocha et al., 
2008). On the other hand, S. aureus seems to downregulate the 
recN and ruvBA repair systems and upregulate uvrBA operon 
under damage induced by ciprofloxacin (Cirz et al., 2007).

The variation in the DNA damage response is illustrated 
by comparing the well-studied organisms E. coli and P. 
aeruginosa. The characterization of the SOS response in E. 
coli showed the derepression of 43 genes, in contrast with 
the 15 LexA-controlled genes in Pseudomonas aeruginosa 
(Courcelle et al., 2001; Cirz et al., 2006). Nevertheless, the 
response to DNA damage is more complex in P. aeruginosa 
because other regulons controlled by LexA-like repressors, 
with auto-cleavage promoted by activated RecA, are also 
induced alongside the canonical SOS response (Courcelle 
et al., 2001; Cirz et al., 2006). Such repressors are the PrtR 
protein - responsible for the repression of prtN, activator of 
the pyocin production (Matsui et al., 1993) and also required 
for expression of the type III secretion system (T3SS) through 
its repressive role on PtrB (Sun et al., 2014) – and the 
AlpR protein, which represses indirectly a self-lysis pathway 
promoted by the alpBCDE cluster (McFarland et al., 2015, 
Peña et al., 2021).

Two of the key aspects of the SOS response, cell division 
inhibition and translesion synthesis, show interesting variation 
in their main players when different bacteria are compared. 
Translesion synthesis and the consequent mutagenesis are 
mediated by error-prone DNA polymerases, mainly Pol V in E. 
coli (Goodman and Woodgate, 2013). Nevertheless, different 
bacteria use different SOS-regulated TLS pathways, as first 
evidenced by the characterization of DnaE2 and accessory 
proteins (Boshoff et al., 2003; Galhardo et al., 2005), as 
discussed in the next section. 

To avoid DNA replication and segregation problems, 
the SOS response activates inhibitors of cell division. The 
cell division in E. coli under DNA damage stops when the 
product of sulA gene interacts with FtsZ and inhibits its GTPase 
activity (Trusca et al., 1998). FtsZ is a GTP-binding protein 
abundant during the early stage of cell division, responsible 
for polymerizing a ring structure in the middle of the bacterial 
cell where the future separation of cells occurs in normal 
conditions (De Boer et al., 1992). It has already been shown 

that the SulA protein also interacts with FtsZ in P. aeruginosa, 
however the ability to inhibit cell division per se has not 
yet been confirmed (Cordell et al., 2003). In SOS-inducing 
conditions, C. crescentus upregulates the imuA gene that shows 
weak, but enough homology to be confounded with sulA in 
a few bacterial genomic annotations, like in Pseudomonas 
putida, for example (Erill et al., 2006; McHenry, 2018). Yet, 
it is known that in C. crescentus, the filamentation caused by 
DNA-damage occurs through the inhibition of the final step 
of cell division by the interaction of a small inner membrane 
protein, product of sidA gene, with FtsW, one of the proteins 
responsible for cell constriction (Modell et al., 2011). In 
B. subtillis the inhibition of cell division occurs through 
YneA, also a membrane protein, that when expressed upon 
SOS-inducing conditions, promotes cell elongation (Kawai 
et al., 2003). However, the FtsZ ring is still polymerized, 
so YneA acts via protein-protein interaction with proteins, 
other than FtsZ, that could be part of the divisome, therefore 
differing in activity from SulA (Mo and Burkholder, 2010). 
S. aureus displays a similar mechanism where the SosA 
membrane protein inhibits the division septum formation 
causing filamentation probably through interaction with 
proteins responsible for a later stage of the division like in 
B. subtillis (Bojer et al., 2019).

Characterization of the SOS regulon of C. crescentus 
(da Rocha et al., 2008; Modell et al., 2011) exemplifies how 
the study of the SOS response in different bacterial species 
may reveal novel aspects of prokaryotic DNA repair and 
cellular defense mechanisms. Two SOS-regulated genes 
(mmcA and mmcB) were identified as agents protecting cells 
from Mitomycin C, a cross-linking agent. MmcA is probably 
a detoxifying enzyme, while MmcB is an endonuclease from 
the PD-(D/E)XK family (Lopes-Kulishev et al., 2015), also 
mediating resistance to cisplatin (Price et al., 2018). MmcB 
has been hypothesized to participate in a repair pathway also 
involving translesion synthesis polymerases to allow removal 
of interstrand crosslinks (Lopes-Kulishev et al., 2015). Another 
pair of SOS-regulated genes encode a toxin-antitoxin system 
(HigAB). The RNAse activity of the toxin HigB targets key 
mRNAs, therefore acting as a growth regulator after DNA 
damage (Kirkpatrick et al., 2016).

Besides the difference in LexA binding sites and set of 
regulated genes, the regulator itself can also vary between 
species. In the Streptococcacea family, SOS response is 
regulated by the HdiR repressor, a peptidase of the S24-family 
such as LexA, which similarly to LexA has the ability to 
self-cleave in the presence of ssDNA-RecA and release the 
transcription of an SOS regulon composed basically of error-
prone polymerases (Savijoki et al., 2003). The same occurs 
in the Moraxellaceae family but the regulator is the UmuDab 
protein (Hare et al., 2014). In the phylum of Bacteroidetes, 
the SOS response is regulated by a new peptidase from the 
S24-family of phage-like repressors which, when derepressed, 
activates the expression of standard SOS genes (Sánchez-
Osuna et al., 2021). The evolution of these peptidases with 
independent DNA-binding domains once again shows how 
heterogeneous this response can be.
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Translesion synthesis, mutagenesis and 
bacterial evolution

One of the most intensely studied aspects of the SOS 
response is its influence on mutagenesis. Early studies on 
mutagenesis induced by ultraviolet radiation have led to the 
recognition that mutations are not always the result of passive 
replication errors caused by mutagens – on the contrary, 
these mutations are the result of active processing of DNA 
damage by the cellular machinery (reviewed by Friedberg et 
al., 2006). This fascinating concept has emerged from studies 
by Jean Weigle, in which UV irradiated λ bacteriophage was 
shown to have improved survival if the host cells had been 
pre-irradiated as well. In the same way, mutagenesis resulting 
from such irradiation of phages with UV light was only 
observed if the host cells had been pre-irradiated (Weigle, 
1953). These phenomena were named respectively “Weigle 
reactivation” and “Weigle mutagenesis”. These observations 
led to the correct conclusion that mutagenesis requires an 
active processing of the damaged DNA by cells, which is 
mediated by an inducible cellular component. 

This is a consequence of translesion DNA synthesis 
(TLS) polymerases, one of the pathways repressed by LexA 
and regulated by the SOS response. All living organisms are 
dependent on DNA polymerases for efficiently replicating their 
genetic material, however DNA damage causes blockage of the 
replisome and induction of the SOS response, a situation that 
can be circumvented by TLS-polymerases. These polymerases 
lack proofreading exonuclease activity and are error-prone, 
leading to incorporation of incorrect nucleotides (Goodman 
and Woodgate, 2013). However, their flexible active sites and 
additional little finger domain allow them to achieve TLS, 
using damaged DNA as templates and continuing replication 
(Boudsocq et al., 2004; Friedberg et al., 2006). Even though 
this process is essential for bacterial survival in adverse 
conditions, it could be detrimental due to the generation of 
deleterious mutations, making it crucial for bacteria to tightly 
regulate induction of TLS. On the other hand, it also may lead 
to bacterial evolution and diversity in virtue of mutagenesis 
(Galhardo et al., 2007; Goodman and Woodgate, 2013; Zhang, 
2020). In fact, recent findings suggest that E. coli cells may 
use TLS as the first choice to deal with replication blockage, 
rather than error-free damage avoidance pathways, favoring 
the generation of genetic variability (Naiman et al., 2014).

In E. coli, three DNA polymerases are regulated by LexA: 
Pol II (polB), Pol IV (dinB) and Pol V (umuDC) (Courcelle et 
al., 2001), all of which are involved in mutagenesis to some 
extent (Napolitano et al., 2000). The induction of polB and 
dinB occurs early in the SOS response, related to the weak 
binding of LexA (Fernández de Henestrosa et al., 2000). 
These are responsible for TLS in specific DNA damages, in 
contrast to umuDC, considered as much more error-prone 
and able to bypass a more diverse set of DNA lesions, used 
as last resource and being strongly regulated (Sommer et al., 
1993; Fernández de Henestrosa et al., 2000).

Pol II (polB) is a B-family polymerase that had its TLS 
function, bypass abasic lesions (Bonner et al., 1988), unveiled 
years after its first characterization by Knippers (1970), 
with low involvement in mutagenesis. UmuC and DinB are 
members of the Y-family of DNA polymerases, which includes 

many bacterial, archaeal and eukaryotic enzymes (Ohmori et 
al., 2001; reviewed by Jarosz et al., 2007).

Although a physiological role for DinB in DNA damage 
tolerance was harder to identify on the basis of phenotypes of a 
dinB mutant strain, it has been implicated in tolerance to some 
types of DNA damage, especially adducts in position N2 of 
guanines and alkylative lesions (Kim et al., 2001, Jarosz et al., 
2006; Bjedov et al., 2007). DinB has an error rate between 10-3 
and 10-5 in vitro (Tang et al., 2000; Jarosz et al., 2007) when 
using a non-damaged DNA as a substrate. Overexpression of 
dinB is heavily mutagenic to E. coli, introducing mainly -1 
frameshifts at G:C runs (Kim et al., 1997), the same being 
observed in in vitro gap filling assays using the lacZ gene 
as a target (Kobayashi et al., 2002). Mutagenesis caused by 
overexpression of DinB occurs preferentially in the lagging 
strand (Kuban et al., 2005), a smaller but significant number 
of base substitutions are also observed. 

E. coli DinB promotes TLS across adducts in the N2 
position of guanine with high efficiency and accuracy (Jarosz 
et al., 2007). Genetic data also indicate that DinB takes place 
in error-free TLS in sites of endogenous alkylation damage 
that accumulates in repair-deficient strains (Bjedov et al., 
2007). Lastly, dinB plays a major role in the process of stress-
induced mutagenesis in non-growing cells (Mckenzie et al., 
2001; Galhardo et al., 2009). 

DinB is expressed as part of an SOS-regulated operon, 
which also contains the yafN-yafO toxin-antitoxin system 
and yafP (Singletary et al., 2009). The yafP gene encodes a 
putative acetyl-transferase probably involved in the metabolic 
transformation of genotoxic compounds (Gutierrez et al., 
2011). Interestingly, umuDC is tightly repressed in SOS-
uninduced cells, whereas dinB has a significant basal level 
of expression. In fact, about 250 molecules of DinB are 
present in cells, in contrast to only about 10-20 molecules 
of the holoenzyme of DNA Pol III, the enzyme responsible 
for normal replication (Fijalkowska et al., 2012). Upon SOS 
induction, the number of DinB molecules rises 10-fold to about 
2500 molecules per cell (Kim et al., 2001). DinB expression 
and activity are subject to several levels of control. The dinB 
gene is also induced independently of the SOS response 
both as part of the stationary phase regulon controlled by the 
alternative sigma factor RpoS (Layton and Foster, 2003) and 
after exposure to beta-lactam antibiotics (Pérez-Capilla et al., 
2005). Activity of this polymerase is modulated by a plethora 
of interactions, including UmuD, polyphosphate kinase (ppk), 
Rep helicase, RecA and the transcription elongation factor 
NusA (Stumpf and Foster, 2005; Godoy et al., 2007; Cohen 
et al., 2009; Sladewski et al., 2011). 

Pol V (umuDC) is highly mutagenic, being considered 
the most important TLS-polymerase according to its capacity 
to bypass diverse forms of DNA lesions (Goodman and 
Woodgate, 2013). In accordance, this is the most studied TLS-
polymerase, with orthologs identified in diverse prokaryotes 
and mobile genetic elements (Vaisman et al., 2012), such as 
the homologs mucAB described in plasmids (Perry and Walker, 
1982) and rumAB in integrative and conjugative elements 
(ICEs) (Kulaeva et al., 1995). The function of UmuDC was 
first observed in the 70s, by Miroslav Radman and Evelyn 
Witkin (Radman, 1974; Sikand et al., 2021), although at that 
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time the specific polymerase responsible for the mutagenic 
activity in the SOS response had not been elucidated (Sikand 
et al., 2021). Genetic identification of umuDC genes was first 
reported in a search for E. coli strains lacking UV-inducible 
mutagenesis (Kato and Shinoura, 1977). In the 80s umuC and 
umuD genes were revealed as an operon regulated by LexA and 
RecA (Bagg et al., 1981; Elledge and Walker, 1983; Shinagawa 
et al., 1983), but only in the late 90s purification and study 
of the mutagenic activity of UmuDC were achieved (Bruck 
et al., 1996; Tang et al., 1998, 1999; Reuven et al., 1999).

The complex modulation of DNA Pol V also involves 
the RecA protein. RecA is necessary both for the induction 
of the SOS response and for UmuD cleavage, in a process 
similar to what occurs to LexA with the involvement of 
RecA*. RecA* induces self-cleavage of UmuD in UmuD’, 
forming the complex with UmuC – UmuD’2C (Pol V) (Jiang 
et al., 2009). Additionally, early genetic studies have shown 
that RecA performs a third role in umuDC-dependent SOS 
mutagenesis (Blanco et al., 1982; Nohmi et al., 1988; Dutreix 
et al., 1989; Sweasy et al., 1990). In vitro experiments have 
shown that RecA bound to ssDNA is necessary for mutagenesis, 
with latest models suggesting that the “mutasome” complex 
operating in TLS is a molecular assembly of UmuD’2C-
RecA-ATP (reviewed by Fujii and Fuchs 2020; Jaszczur et 
al., 2016; Sikand et al., 2021). RecFOR proteins also have 
a role in the formation of the RecA filament necessary for 
UmuD’2C TLS (Fujii et al., 2006). The mutagenic activity of 
Pol V is not only capable of incorporating incorrect nucleotides 
into DNA lesions, but also upstream and downstream of it 
(Maor-Shoshani et al., 2000; Isogawa et al., 2018; Fujii and 
Fuchs, 2020).

Bacteria that do not possess Pol V, approximately two 
thirds of the bacteria with known genomes (Sheng et al., 2021), 
may possess an SOS cassette consisting of imuABC (imuAB 
and dnaE2), responsible for TLS and mutagenic activity in 
stressing conditions, mainly distributed among Proteobacteria 
(Galhardo et al., 2005; Erill et al., 2006; McHenry, 2011). 
However, it is important to emphasize that genetic composition 
and configuration of this cassette is variable among bacterial 
species, some of them lacking imuA or with different genes 
supporting DnaE2 activity (Erill et al., 2006; Timinskas and 
Venclovas, 2019; Blanchard and Groot, 2021). 

The relation of imuC (dnaE2) with mutagenic activity was 
first established in studies with Mycobacterium tuberculosis 
(Boshoff et al., 2003). Additionally, it was shown that dnaE2 
is co-transcribed with imuA and imuB in C. crescentus and a 
reduced damage-induced mutagenesis activity was observed 
when any of these three genes were deleted (Galhardo et al., 
2005). Later, a role for imuABC-like cassettes in damage-
inducible mutagenesis and DNA damage tolerance was 
confirmed in other bacterial species (Koorits et al., 2007; 
Zeng et al., 2011; Blanchard and Groot, 2021; Sheng et al., 
2021). In contrast to its role in TLS, involvement of ImuC in 
spontaneous mutagenesis in C. crescentus is minor (Valencia 
et al., 2020), and not enhanced by a constitutively transcribed 
imuABC operon (Alves et al., 2017). More recently it has been 
shown that non-dividing C. crescentus cells employ ImuC in 

DNA synthesis during gap filling of nucleotide excision repair 
intermediates (Joseph et al., 2021).

ImuA is a protein distantly related to SulA and RecA, 
ImuB is a catalytically dead Y-family polymerase, whereas 
ImuC (DnaE2) is a paralog of the Pol III´s alpha subunit 
without proofreading exonuclease activity, consequently error-
prone and SOS-mutagenic (Galhardo et al., 2005; Warner et 
al., 2010; Timinskas et al., 2014). In M. tuberculosis, ImuC 
mutagenesis is also dependent on ImuA and ImuB supporting 
activity, ImuB being responsible for making the connection 
of ImuC with the β-clamp in the replication fork, making 
possible for ImuC to continue its function (Warner et al., 
2010). Unlike SOS mutagenesis in E. coli, ImuABC activity 
in C. crescentus is independent of RecA, which leads to 
the hypothesis that ImuA may perform a similar role as the 
former in TLS (Alves et al., 2017). Recent results obtained in 
Myxococcus xanthus revealed that ImuA does not bind DNA, 
but interferes with RecA activity, which may indicate that this 
protein has a role in inhibiting competing pathways such as 
homologous recombination (Sheng et al., 2021).

The mutagenic activity of translesion DNA polymerases 
may be described as targeted (damaged DNA) or untargeted 
(undamaged and distant DNA sites), these events are constantly 
checked by DNA mismatch repair (MMR) systems, as a 
form of preventing misincorporations and mutations after the 
replication (Lewis et al., 2021). However, one of the most 
intriguing consequences of TLS-polymerases action is the 
phenomenon of antibiotic-induced mutagenesis. Antimicrobial 
agents of different types of action, and of regular clinical usage, 
are involved in the induction of the SOS response by ROS 
generation (Kohanski et al., 2007; Dwyer et al., 2014; Memar 
et al., 2018; Crane et al., 2021), consequently triggering the 
hypermutation phenotype and bacterial evolution that TLS 
polymerases may potentiate, including mutations that cause 
acquisition of adaptive mechanisms and resistance to antibiotics 
(Goodman, 2016; Memar et al., 2020). The contribution of 
ROS to bacterial killing by antibiotics is still under debate 
(Liu and Imlay, 2013; Keren et al., 2013), but it has become 
increasingly clear that antibiotics, at least in part through ROS 
generation, induce an SOS-dependent increase in mutagenesis 
(Pribis et al., 2019; Rodríguez-Rosado et al., 2019). 

Targeting the SOS DNA repair system as a 
countermeasure to antibiotic resistance

The rise of antibiotic resistant bacteria poses an 
unprecedented concern since the discovery of penicillin 
(Sengupta et al., 2013). The underlying mechanism for the 
increasing threat is related to the large amount and misuse of 
antibiotics in agricultural/livestock production and therapy, 
where a range of sub-lethal antibiotic concentrations are 
released in the environment (Mann et al., 2021). Beta-lactams, 
quinolones and aminoglycosides are known to ultimately 
produce ROS in bacteria, which can directly damage proteins, 
DNA and cell membrane (Kohanski et al., 2007). However, 
while sub-therapeutic concentrations of antibiotics are not 
sufficient to kill bacteria, they still stimulate the SOS response 
by DNA damage (Kohanski et al., 2010; Thi et al., 2011). SOS 
increases the number of mutational events by upregulating 



Lima-Noronha et al.8

error-prone TLS polymerases (Boshoff et al., 2003) and 
stimulates horizontal gene transfer (Beaber et al., 2004; Crane 
et al., 2018), biofilm formation (Gotoh et al., 2010) and the 
appearance of small colony variants, all of which have the 
potential to increase tolerance against antibiotics (Memar et 
al., 2020; Podlesek and Bertok, 2020).

It has been shown that combining antibiotics and 
suppression of the SOS response decreases the formation 
of resistant strains (e. g. Cirz et al., 2005; Thi et al., 2011; 
Recacha et al., 2017, Valencia et al., 2017). The most studied 
approaches to block the SOS response are prevention of 
either the activation of RecA protein or the autocatalysis of 
LexA cleavage. There are different alternatives to interfere 
with RecA activity, for example, disturbing proper filament 
RecA-ssDNA formation (Lee et al., 2005; Petrova et al., 2009; 
Nautiyal et al., 2014), or affecting the RecA ATP binding/
ATPase activity that is necessary for its activation (Wigle and 
Singleton, 2007; Bellio et al., 2017; Ojha and Patil, 2019). 
Both strategies affect RecA-dependent LexA proteolysis, thus 
blocking the SOS response.

However, RecA has homology to a human recombinase 
Rad51 (Kawabata et al., 2005). This raises a concern on the 
usage of these compounds in combination with antibiotics. 
A better alternative would be to target LexA, as there are no 
corresponding orthologs in the human genome. A study found 
that phenylboronic derivatives could interfere with LexA self-
cleavage by forming an acyl-enzyme intermediate with the 
catalytic Ser-119 (Bellio et al., 2020). Nevertheless, research 
on SOS inhibition directly affecting LexA is still very scarce.

Although no drug targeting the SOS machinery has 
been approved yet, there is no doubt that suppressing 
evolutionary mechanisms responsible to increase tolerance 
against bactericidal agents is a very promising approach to 
extend the shelf life of antibiotics in use today.

Relationship between SOS response and 
mobile genetic elements

When lysogenized bacteria undergo DNA damage, 
bacteriophages switch to the lytic cycle, presumably to escape 
from an endangered host and disperse in the environment 
(Little, 2005). This early observation in phage biology 
underlies a phenomenon shared by other mobile genetic 
elements (MGEs), such as integrons (Guerin et al., 2009), 
chromosome cassettes (Liu et al., 2017), pathogenicity islands 
(Chittò et al., 2020) and integrative and conjugative elements 
(ICEs) (Beaber et al., 2004; Auchtung et al., 2005). Figure 2 
depicts the relationship of the SOS response with MGEs.

The SOS regulators RecA and LexA are both involved 
in the regulation of MGEs transfer (Fornelos et al., 2016). 
Several chromosomal and mobile integrons show SOS box 
sequences in promoter regions (Guerin et al., 2009), as well as 
ICEs that may possess repressors regulated by RecA (Beaber 
et al., 2004), consequently showing that induction of the SOS 
response also regulates MGEs transfer and chromosomal 
rearrangement during conjugation (Baharoglu et al., 2010).

It was initially observed that DNA damage was able 
to cause changes in the life cycle of temperate phages, from 
lysogeny to the lytic cycle (Little, 2005). Multiple phages are 
SOS-induced and regulated by LexA, others use their own 

RecA-controlled repressors in a similar mechanism to the self-
cleavage of LexA by RecA*. The most prominent example is 
the λ phage that is maintained integrated in the chromosome 
through the CI repressor and when there is DNA damage, 
RecA* induces autocleavage of CI and expression of λ phage 
genes (Hochschild and Lewis, 2009; Fornelos et al., 2016).

ICEs from the SXT/R391 family encode the SetR 
repressor, from the same family of the λ-CI repressor, showing 
self-cleavage activity regulated by RecA in the SOS response 
(Beaber et al., 2004; González et al., 2019). SetR is responsible 
for repressing setCD, two genes involved in the transfer of 
ICEs (Beaber et al., 2002, 2004), and, along with LexA and 
CroS, also regulates the mutagenic activity of the umuDC 
homologs rumAB encoded in the ICE (González et al., 2019; 
McDonald et al., 2021). It is interesting to note that some 
species that often carry SXT/R391 elements such as Proteus 
mirabilis, are naturally devoid of chromosomal umuDC genes. 
This species is accordingly non-mutable by UV irradiation, 
but acquisition of SXT/R391 elements provides TLS and 
mutagenesis capacity to this bacterium. Furthermore, rumAB 
genes improve conjugation of the ICE to new hosts (Sato et 
al., 2022), demonstrating an intricate relationship of these 
MGEs with the SOS response.

LexA is not only able to mediate control over MGEs 
horizontal transfer but also over the expression of virulence 
factors and bacteriocins carried by MGEs (Fornelos et al., 
2016). For example, clusters present in plasmids are responsible 
for the expression of the toxic colicin protein, which is capable 
of killing competing bacteria and enforcing the maintenance 
of the plasmids in the host through the expression of immunity 
proteins (Cascales et al., 2007; Budič et al., 2011; Fornelos 
et al., 2016). An interesting observation was also made by 
Kamruzzaman and Iredell (2019) that conjugative plasmids 
(mainly IncI and IncF) benefited from a toxin-antitoxin system 
(parDEI) that is induced by stress and also elicits the SOS 
response, that provides antibiotic tolerance and allows the 
plasmid to successfully stabilize in the bacterial cell.

Diverse MGEs influence the host’s SOS response. The 
acquisition of new MGE is a distress event that induces the 
SOS response, caused by the filamentation of RecA in the 
ssDNA – intermediate form of transfer of MGEs – mainly in 
DNA with low homology to the chromosome (Baharoglu et 
al., 2010; Al Mamun et al., 2021). There is also development 
of systems to repress the SOS response so that the MGE can 
successfully integrate or perpetuate itself in the new host 
(Memar et al., 2020; Al Mamun et al., 2021). It has been 
shown that SOS inhibiting proteins, such as PsiB (Bagdasarian 
et al., 1992; Petrova et al., 2009) and SSB, are translocated 
through the secretion system (T4SS) together with the MGEs 
ssDNA, which facilitates the maintenance of these elements 
(Al Mamun et al., 2021). The regulation of frequency of 
transmission is also important for the survival of the MGE in 
observation that excess of horizontal transfer causes impact 
in the host cell (Touchon et al., 2014). 

Overall, the SOS response protects cells from DNA-
damaging environmental stressors and is a main player in the 
acquisition of antimicrobial resistance through mutagenic 
activity and induction of horizontal transfer of MGEs carrying 
these traits.
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Figure 2 – Schematic representation of the involvement of SOS response with mobile genetic elements (MGE). (1) Entry of mobile elements ssDNA in 
the host cell induces the SOS response by the formation of RecA* filaments, however some MGE encode proteins (such as PsiB) that are able to bind 
free RecA, avoiding all functions of RecA including the initiation of the SOS response. (2) The SOS response regulates the transfer of integrative and 
conjugative elements (ICEs) from the SXT/R391 family by interacting with SetR, repressor that self-cleaves after RecA* stimulus. (3) Bacteriophages 
may go from lysogeny to lytic cycle after induction of the SOS response, some phages show an SOS box sequence on promoter regions, others may 
encode represors, like the lambda bacteriophage CI repressor that self-cleaves after RecA* stimulus. (4) Chromosomal and mobile integrons show SOS 
box sequences in promoter regions, with transfer and rearrangement in the chromosome after the SOS response induction. (5) The SOS response regulates 
expression of bacteriocins, enforcing the maintenance of plasmids in the host cell.
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