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Ensuring adequate tissue oxygenation is a cornerstone of 
intensive care medicine. We here present a new integration 
of mechanisms of tissue oxygenation during veno-venous 
(V-V) extracorporal membrane oxygenation (ECMO) into a 
holistic physiologic model.

An integrated physiological model of tissue oxygenation 
describes oxygen delivery (DO2) as process of multiple steps: 
diffusion of the oxygen from the alveolus to the pulmonary 
capillary, convective transport via perfusion with oxygen 
mostly bound to hemoglobin (Hb), diffusion from capillary 
through tissue to the mitochondrium. As all steps occur in 
sequence, a limitation can occur on each of these steps (1-6).

We will first describe the integration of oxygen transport 
during convection and diffusion according to this model. 

The global convective DO2 can be described as:  
DO2 = Q × CaO2 [Q: cardiac output (CO); CaO2: arterial 
oxygen content]. The main determinants of CaO2 are Hb 
concentration and arterial oxygen saturation (SaO2).

The oxygen consumption (VO2) according to the Fick 
principle can be described as: VO2 = Q × (CaO2 − CvO2) 
(CvO2: venous oxygen content).

The DO2 from the capillary to the mitochondrium with 
a certain diffusion capacity D can be described as: VO2 = 
D × (PcapO2 − PmitO2) (PcapO2: oxygen partial pressure 
in the capillaries; PmitO2: oxygen partial pressure at the 
mitochondrium). 

If the partial pressure of oxygen at the mitochondrium 
can be neglected and the partial pressure of oxygen in 
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the terminal capillaries is proportional to venous partial 
pressure of oxygen with a constant factor k, this can be 
described as: VO2 = D × k × PvO2 (PvO2: venous oxygen 
partial pressure).

If the dissolved oxygen is in equilibrium with the oxygen 
bound to Hb following the sigmoid oxygen dissociation 
curve, the connective and diffusive DO2 can be plotted 
on the same graph where VO2 is the ordinate and PvO2 
is the abscissa. This model is consistent with the current 
understanding of the physiology of DO2 (5).

Patients with severe respiratory failure may experience 
a total loss of lung function. In these cases, V-V ECMO 
may provide the entire oxygen supply for the patients. If 
the Hb is considered constant, the CaO2 is determined by 
the maximal ECMO flow, because we consider the ECMO 
oxygenator to be capable of fully oxygenating all blood 
passing through the oxygenator. 

In a subset of patients, a high CO that is significantly 
higher than the maximal achievable effective ECMO flow, 
will lead to a significant addition of deoxygenated venous 
blood, thus lowering the SaO2. There is controversy, if the 
addition of beta-blockers with the intention of lowering 
the CO and thus increasing the SaO2 is beneficial, because 
the total amount of oxygen delivered by ECMO is not  
changed (7). 

To introduce our integrated model of tissue oxygenation 
during V-V ECMO in cases of total lung failure, we analyze 
two situations (Situation A and Situation B). We consider 
these situations to be completely equal regarding ECMO 
flow and all physiologic parameters and to differ only in 

regard to CO and SaO2

We make some simplifying assumptions: 
(I) Situation A: high CO (QA), low CaO2 (CaO2A), 

DO2A = QA × CaO2A; Situation B: low CO (QB), 
higher CaO2 (CaO2B), DO2B = QB × CaO2B 

(II) Under the conditions of a CO that is significantly 
higher than the ECMO flow, a properly functioning 
oxygenator and minimal recirculation we consider 
DO2A = DO2B

(III) VO2 remains constant and equal in both situations 
VO2A = VO2B = QA × (CaO2A − CvO2A) = QB × 
(CaO2B − CvO2B). 

If we put these assumptions together, we get the 
following relationship: QA/QB = CaO2B/CaO2A = (CaO2B 
− CvO2B)/(CaO2A − CvO2A) = CvO2B/CvO2A. 

That implies, that in Situation A with higher Q and 
lower CaO2, the absolute difference between CaO2 and 
CvO2 will be lower than in the low output situation, but the 
absolute value for CvO2 will still be lower in Situation A 
than in Situation B.

With these underlying assumptions we can generate 
a Wagner diagram depicting Situation A and Situation 
B (Figure 1). The intersections of the diffusion line with 
the curves of the convective transport are the values for 
maximal VO2 (VO2max).

As it can be seen on the diagram, we consider the 
convective maximal DO2 to be identical in both situations. 
For any given VO2 (broken line in Figure 1) the PvO2 in 
Situation A will be lower than the PvO2 in Situation B, 
because the oxygen content in any given volume of blood 
will be higher in Situation B. 

If we now introduce the diffusion capacity in our model, 
we see that the VO2max on the diffusion step is higher 
in Situation B, because the concentration gradient of O2 
between the capillary and the mitochondrium is higher.

Since a limitation on the diffusion step has been described 
in past research (8,9), we consider it to be an important 
component of a holistic concept of DO2 into the tissues.

While values for arterial oxygen partial pressure (PaO2) 
around 60 mmHg have been considered safe in past clinical 
trials (HOT-ICU, ICU-ROX), the LOCO2 trial with a 
target of 55–70 mmHg in the conservative oxygen group 
was stopped early because of an increased number in 
mesenterial ischemia (10-12).

Our hypothesis is, that in PaO2 values below the lower 
threshold in the past trials, a diffusion limitation might 
lead to tissue hypoxia in patients with low CaO2 values 
despite an identical convective DO2. Diffusion limitation 

Figure 1 Wagner diagram of convective transport in Situation A 
(blue line) and Situation B (red line). Dotted vertical lines: PvO2 at a 
given VO2 represented by the broken line. Dotted horizontal lines: 
VO2max in Situation A and Situation B. PvO2, venous oxygen partial 
pressure; VO2, oxygen consumption; VO2max, maximal VO2. 
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as the limiting factor of DO2 has previously been described 
(8,13,14). We therefore suggest, that the use of medications 
to decrease the CO in situations of total lung failure and 
ECMO support might decrease the risk of tissue hypoxia 
by accounting for the risk of a limitation on the diffusion 
step. The use of a short acting medication like esmolol is 
preferable in this situation in cases where adverse events are 
observed.

If there is some lung function left, this concept does 
not apply, since the potential influence of changes in CO 
on the ventilation/perfusion mismatch have to be taken 
into account (15). Furthermore, especially in the context 
of a femoro-jugular cannulation, recirculation might 
increase with a decrease in CO (16). In this situation the 
use of beta-blockers to reduce CO may be hazardous. Our 
concept therefore only applies to a situation where minimal 
recirculation can be achieved as with a bi-caval dual lumen 
cannula. In this case recirculation may be negligible (17). 
If the effect of the admixture of deoxygenated blood is also 
taken into account, the PvO2 of the venous blood will also 
be higher in Situation B as we calculated above.

While a previously discussed mathematical model 
suggests, that the convective DO2 is improved in the 
situation of increased CO and reduced SaO2, this does 
not take into account the following steps of tissue  
oxygenation (7). Furthermore, a decrease in CO might 
worsen perfusion on the microvascular level. To our 
knowledge, there is currently no established cut-off for CO 
and CaO2 to decide when lowering CO and thus increasing 
diffusion is beneficial.

There are multiple possible options to solve this 
question, including data mining of hemodynamic and 
blood gas data from patients treated with V-V ECMO, 
mathematical modelling of tissue perfusion and diffusion or 
models using animal tissue for direct testing.

Further data is needed to evaluate whether the effects 
predicted by this model have a clinically meaningful effect.
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