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Abstract

The greater amberjack Seriola dumerili is a large teleost fish with rapid growth and excellent

flesh quality, whose domestication represents an ambitious challenge for aquaculture. The

occurrence of reproductive dysfunctions in greater amberjack reared in captivity was investi-

gated by comparing reproductive development of wild and captive-reared individuals. Wild

and captive-reared breeders were sampled in the Mediterranean Sea during three different

phases of the reproductive cycle: early gametogenesis (EARLY, late April-early May),

advanced gametogenesis (ADVANCED, late May-early June) and spawning (SPAWNING,

late June-July). Fish reproductive state was evaluated using the gonado-somatic index (GSI),

histological analysis of the gonads and determination of sex steroid levels in the plasma, and

correlated with leptin expression in the liver and gonad biochemical composition. The GSI

and sex steroid levels were lower in captive-reared than in wild fish. During the ADVANCED

period, when the wild greater amberjack breeders were already in spawning condition, ova-

ries of captive-reared breeders showed extensive atresia of late vitellogenic oocytes and

spermatogenic activity ceased in the testes of half of the examined males. During the

SPAWNING period, all captive-reared fish had regressed gonads, while wild breeders still dis-

played reproductive activity. Liver leptin expression and gonad proximate composition of wild

and captive greater amberjack were similar. However, the gonads of captive-reared fish

showed different total polar lipid contents, as well as specific lipid classes and fatty acid pro-

files with respect to wild individuals. This study underlines the need for an improvement in

rearing technology for this species, which should include minimum handling during the repro-

ductive season and the formulation of a specific diet to overcome the observed gonadal dec-

rements of phospholipids, DHA (22:6n-3) and ARA (20:4n-6), compared to wild breeders.
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Introduction

European consumer demand for more/new seafood products has been increasing over the last

decade [1]. However, aquaculture plays only a minor role in the supply of high quality seafood

to the European Union, providing only 10% of the total seafood consumption, whereas world-

wide this value is >50% [2]. The limited variety of fresh and processed fish products coming

from European aquaculture is considered an important bottleneck towards the expansion of

this sector in Europe [3]. Domestication of new fish species [4] is considered as an effective

tool to increase European aquaculture production and competitiveness, thus contributing to

food security as well as to the reduction in fishing pressure on corresponding wild fish popula-

tions [5].

The greater amberjack Seriola dumerili (Risso, 1810) is a large coastal epibenthic and pelagic

teleost fish with a wide geographical distribution, which includes the Indo-West Pacific Ocean

[6], the Western Atlantic Ocean [7, 8], the Eastern Atlantic Ocean (from British to Moroccan

coasts) and the Mediterranean Sea [9]. It is a gonochoric species with group-synchronous

ovarian development and a multiple spawning pattern [10, 11], with a reproductive season

between late spring to early summer in the Mediterranean region, and between later spring

and early autumn in the Eastern Atlantic Ocean [12]. Greater amberjack is characterized by

rapid growth, excellent flesh quality and has worldwide market appreciation [13, 14]. Its

domestication represents an ambitious challenge for aquaculture, and has begun almost two

decades ago [15–18]. However, large migratory, top predator fish do no adapt easily to captiv-

ity and when confined in sea cages or tanks they may exhibit important reproductive dysfunc-

tions [11, 18–21]. Some of the reproductive dysfunctions of captive-reared greater amberjack

have been overcome occasionally through the administration of exogenous reproductive hor-

mones, such as human chorionic gonadotropin (hCG) [22–24] or gonadotropin releasing hor-

mone agonists (GnRHa) [22, 23, 25, 26], while the occurrence of spontaneous spawning has

been reported rarely [12]. However, the absence of a significant aquaculture industry for

greater amberjack in Europe is testament to the lack of a reliable technology for broodstock

management and reproduction control in captivity for this species [26].

In captivity, wild-caught greater amberjack often do not develop further than early vitello-

genesis [18, 27] or if they do complete vitellogenesis, they fail to undergo oocyte maturation

and require exogenous hormonal therapies to induce ovulation and spawning [26]. Different

studies have been carried out in the Mediterranean Sea to investigate gametogenesis and

describe the reproductive cycle either in wild [10, 28–30] or captive-reared greater amberjack

[18, 24, 26]. However, so far no comparative study of the reproductive function of wild vs

captive-reared greater amberjack has been conducted, in order to identify the extent and the

points at which possible reproductive impairments occur in captivity. Moreover, although few

studies exist on greater amberjack female gonad biochemical composition [31, 32], no infor-

mation is available on male specimens, even though a close relationship between gonad

composition–and more generally fish nutritional state- and reproductive success has been

demonstrated widely [33–41]. More specifically, dietary fatty acids have proven to be very

important in the reproduction of several fish species, including greater amberjack, since they

determine gonad composition, affecting not only sperm and egg quality [31, 32, 37, 42–44],

but also being involved in the synthesis of eicosanoids that are autocrine mediators in the

reproductive process [38, 45–49]. Furthermore, the peptide hormone leptin plays a role in con-

veying signals of the energy stores to the central nervous system [50–55] and acts as a permis-

sive factor for the onset of energy demanding processes such as reproduction [40, 56].

The objective of the present study was to identify the occurrence of the common reproduc-

tive dysfunctions during gametogenesis in greater amberjack caught as juveniles from the wild
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and reared to sexual maturity in captivity, through the comparative analysis of reproductive

development during different times of the reproductive season. The reproductive state was

assessed through gonad histological analysis, plasma sex steroid level determination, hepatic

gene expression of leptin and gonad biochemical composition, including proximate composi-

tion, lipid classes and fatty acid profiles.

Materials and Methods

Ethical statement

For the present study, wild and captive-reared greater amberjack were sampled. Ethical

approval was not required because this study did not fall within the obligations contained in

the Italian decree n. 26 of 04 March 2014 regarding the permission to carry out research

studies on experimental animals, as the fish came from a registered aquaculture facility and

from commercial catches. The research did not involve any experiments on alive animals.

Captive-reared fish originally came from the fishery at 0+ year of age, and were then reared

at a registered aquaculture facility for 3 years, according to routine farming practices, before

they were recruited for this study, sacrificed and sampled. Authors C.C.M. and Y.F. were

involved in captive-reared fish killing and they declare that all relevant ethical safeguards

were observed in relation to animal experimentation, and each fish was first anaesthetized

with clove oil for 10 minutes and then painlessly sacrificed by decapitation. Wild greater

amberjack were captured by the commercial purse seine fishing vessel “Graziella” autho-

rized to catch pelagic fish by the port authority of Porto Empedocle (Agrigento, Italy). No

specific permission was required because these fish were commercially caught during rou-

tine fishing operations, placed on ice by the fishermen and left to die. Immediately after

death, those fish considered suitable for the present study were purchased and sampled

on board. The greater amberjack is classified as “Least Concern” in the IUCN Red List of

Threatened Species [57].

Experimental animals, biometric data and sampling

A total of 33 (14 males and 19 females) wild and 24 (12 males and 12 females) captive-reared

greater amberjack breeders were sampled at three different phases of the reproductive cycle

that were determined according to the available literature [29, 30]: early gametogenesis

(EARLY, late April-early May), advanced gametogenesis (ADVANCED, late May-early June)

and spawning (SPAWNING, late June-July).

Wild fish were commercially caught around the Pelagie Islands (Sicily, Italy), during the

fishing seasons of 2014 and 2015 and sampled on board immediately after death.

Captive-reared individuals were captured from the wild in 2011 in the area of Astakos

(Ionian Sea, Greece). In September 2014, the fish were transferred to a sea cage of Argosaroni-

kos Fishfarming S.A. (Salamina Island, Greece), where they were reared for two years accord-

ing to standard farming practices. The fish were fed to apparent satiation every other day,

during the first year with fresh fish, while during the year of the sampling the fish were

switched to a commercial extruded broodstock diet (Vitalis-Cal, Skretting SA, Norway) (see

S1 Table for diet proximate and fatty acid composition), as it is customary for aquaculture

breeders of many species.

Before sampling, captive-reared fish were confined in a small cage area using a PVC curtain

and then were tranquilized with about 0.01 ml l-1 clove oil (Roumpoulakis E.P.E., Greece) dis-

solved in ethanol at a 1:10 ratio. Then, they were gently directed into a PVC stretcher, brought

on board of a service vessel, and anesthetized deeply with 0.03 ml l-1 clove oil. Subsequently,

fish were sexed using a gonadal biopsy and a blood sample was obtained from the caudal
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vasculature using a heparinized syringe. Then the fish were euthanized by decapitation, were

placed in crushed ice and transferred to the farm facility for further collection of biometric

data and tissue samples.

For each fish, biometric data (fork length, FL, nearest cm; body mass, BM, nearest kg;

gonad mass, GM, nearest g) were recorded (Tables 1 and 2). Blood, gonads and liver were col-

lected and preserved according to specific protocols described below. The gonado-somatic

index was calculated as GSI = 100 GM BM-1. During each sampling, the Sea Surface Tempera-

ture (SST, in ˚C) was recorded.

Table 1. Biometric data of wild and captive-reared greater amberjack females sampled during the reproductive season in the Mediterranean Sea,

and Sea Surface Temperatures recorded at sampling sites.

Fish origin Sampling Date SST (˚C) FL (cm) BM (kg) GM (g)

Early Gametogenesis (EARLY)

wild 01/05/2015 18.1 103 14 100

103 15 200

106 13 100

112 19 200

116 20 300

captive 24/04/2015 17.5 87 10 85

96 14 125

97 14 155

100 14 160

Advanced Gametogenesis (ADVANCED)

wild 31/05/2014 19.3 114 21 1600

117 22 1650

captive 04/06/2015 20.0 97 13 335

97 13 920

101 12 660

106 17 305

Spawning (SPAWNING)

wild 29/06/2015 23.8 101 14 500

109 16 700

114 19 1000

30/06/2014 23.4 95 12 450

96 12 390

97 12 450

98 12 500

99 11 500

100 12 490

100 12 400

102 13 600

104 14 950

captive 02/07/2015 25.5 92 8 95

95 11 135

96 12 130

97 12 140

BM: Body Mass; FL: Fork Length; GM: Gonad Mass; SST: Sea Surface Temperature

doi:10.1371/journal.pone.0169645.t001
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Histological analysis of greater amberjack ovaries and testes

For the histological analysis of greater amberjack ovaries and testes, 1-cm thick gonad slices

were cut and fixed in Bouin’s solution, dehydrated in ethanol, clarified in xylene and embed-

ded in paraffin wax. Five-μm thick sections were then stained with haematoxylin-eosin, and

Mallory’s trichrome. The assessment of the reproductive state of females was performed,

according to Corriero et al. [19], on the basis of the most advanced oocyte stage, the occur-

rence of post-ovulatory (POFs) and atretic follicles. For the assessment of the male reproduc-

tive state, the type of spermatogenic cysts was recorded, and the amount of spermatozoa in the

lumen of seminiferous lobules was subjectively evaluated [19].

Sex-steroid plasma level measurement

Plasma was separated from the blood by centrifugation (5000 rpm for 5 minutes) and then was

kept at -80˚C until assayed for sex steroid determination. For the quantification of testosterone

Table 2. Biometric data of wild and captive-reared greater amberjack males sampled during the reproductive season in the Mediterranean Sea,

and Sea Surface Temperatures recorded at sampling sites.

Fish origin Sampling Date SST (˚C) FL (cm) BM (kg) GM (g)

Early gametogenesis (EARLY)

wild 01/05/2015 18.1 111 14 300

112 20 450

112 15 300

113 19 400

117 19 550

captive 24/04/2015 17.5 92 12 65

94 12 60

94 13 60

101 15 95

Advanced gametogenesis (ADVANCED)

wild 31/05/2014 19.3 99 14 1150

102 13 650

115 19 2200

124 22 1900

captive 04/06/2015 20.0 90 9 370

97 14 295

98 13 600

103 15 690

Spawning (SPAWNING)

wild 29/06/2015 23.8 100 12 650

102 14 700

104 16 950

30/06/2014 23.4 99 11 577

100 11 400

captive 02/07/2015 25.5 91 10 70

95 11 155

96 13 140

96 12 130

BM: body mass; FL: fork length; GM: gonad mass; SST: Sea Surface Temperature

doi:10.1371/journal.pone.0169645.t002
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(T), 11-Ketotestosterone (11-KT) and 17,20β-dihydroxypren-4-en-3-one (17,20β-P) (a puta-

tive maturation-inducing steroid; MIS) in the plasma, already established and well-described

enzyme-linked immunoassays (ELISA) were used [58–60] with some modifications, and using

reagents from Cayman Chemical Company (USA). For the quantification of 17β-estradiol

(E2), an ELISA kit was used (Cayman Chemical Company). For steroid extraction, 200 μl of

plasma were extracted twice with 2 ml diethyl ether. Extraction was done by vigorous vortex-

ing (Vibramax 110, Heidolph, Germany) for 3 min. After vortexing, samples were frozen for

10 min at -80˚C and the supernatant organic phase was collected in new tubes and evaporated

under a stream of nitrogen (Reacti-vap III, Pierce, Germany). Samples were reconstituted in

reaction buffer for running in the ELISA.

Cloning and sequencing of leptin cDNA and leptin real time-PCR

Small liver fragments were cut and kept in dry ice until they were transported to the labora-

tory, where they were stored at -80˚C. In order to identify and clone the cDNA sequences

encoding for leptin, total RNA from livers was extracted by the guanidiniumthiocyanate–

phenol–chloroform extraction method using Bio-Tri RNA reagent (Bio Lab Ltd., Jerusalem,

Israel). One microgram of DNAse treated total RNA was reverse transcribed with random

primers using the High Capacity cDNA Reverse Transcriptase kit (Applied Biosystems,

Branchburg, NJ, USA) according to manufacturer’s protocol. For initial cloning, PCR amplifi-

cation was conducted using degenerate primers that were designed according to the most con-

served regions across Perciforms (Table 3).

The obtained PCR products were purified with QIAquick PCR Purifcation Kit (QIAGENE,

Hilden, Germany) cloned into pGEM1-T Easy vector (Promega, Madison, WI), and sequenced

with ABIPRISM1 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA) at the DNA Bio-

logical Services, Tel Aviv University, Israel. The nucleotide sequences were translated using the

Just Bio translator program (www.justbio.com) and their identities confirmed using the BLAST

algorithm (Blastp) of the National Center for Biotechnology Information (Bethesda, MD).

Once the greater amberjack homologous sequences were obtained, leptin (Lep) and β-actin

specific primers were designed (Table 3) employing the Primer3 software [61] and used to

establish quantitative real-time PCR (qPCR) for gene expression analysis. Total RNA was

obtained from liver using the RNeasy Mini Kit (Qiagen) as described by the manufacturer.

Reverse transcription of 1000 ng of total RNA was performed using SuperScript III Reverse

Transcriptase (Invitrogen1) and diluted cDNA (1:10) was used in all following qPCR reac-

tions. The qRT-PCR experiments were carried out in triplicate using the QuantStudio™ 7 Flex

Table 3. (a) Primer list used to clone greater amberjack leptin; (b) Comparable sequence from closely related species for primer design; (c) Prim-

ers for greater amberjack real-time PCR.

(a) Target gene Sequence

Seriola Lep F1 GAAATCAAAAGTGAAATGGATGG

Seriola Lep F3 CCAGGTCCCTCCTGGCCTGAC

Seriola Lep R3 TTGACCTGRGWGACYCCRTY

(b) Target gene Species—Accession number

Leptin Atlantic bluefin tuna—HQ288053

(c) Target gene Real time-PCR Primers

leptin FOR CCGTTAAGGGTGTCAGAGA

leptin REV TTCCAGGTCCCTGTTGGTC

β-actin FOR CCCTGTCCTGCTCACAGAGG

β-actin REV CAAGTCCAGACGCAGGATGG

doi:10.1371/journal.pone.0169645.t003
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System (Applied Biosystems1, Thermo Fisher SCIENTIFIC, Milan, Italy) using 1μl of diluted

cDNA as template for each reaction with SYBR Green PCR Master Mix (Bio-Rad). The pres-

ence of a single amplicon was verified using a melting curve run following the PCR. No tem-

plate controls were included as negative controls for each primer pair. The quantification of

the β-actin gene was used as the endogenous control. Amplification parameters were as fol-

lows: hot start at 95˚C for 15 min; 40 amplification cycles (95˚C for 15 sec, 60˚C for 30 sec,

72˚C for 30 sec); dissociation curve step (95˚C for 15 sec, 60˚C for 15 sec, 95˚C for 15 sec).

Fluorescence raw data were exported from the QuantStudio Real Time PCR software (Applied

Biosystems1, Thermo Fisher SCIENTIFIC) and analysed with the DART-PCR Excel work-

book [62]. Actual amplification efficiency values (E) for each amplicon were used to correct

Cq values before analysing these data by the ΔCq method to compare relative expression

results. Gene expression levels were calculated by: relative expression = 2-ΔΔCt [63].

Gonad proximate composition, lipid classes and fatty acid profiles

To evaluate gonad biochemical composition, pieces of ovaries and testes were cut and kept in

dry ice until they were transported to the laboratory, where they were immediately stored at

-80˚C until analysis. Dry matter and protein contents were calculated using the methods of

analysis of the Association of Official Analytical Chemists [64]. Moisture content was deter-

mined in 500-mg samples by thermal drying in an oven at 110˚C, until constant weight. Pro-

tein was determined by sample digestion according to the Kjeldahl method. Total lipid (TL)

was extracted by sample homogenization in chloroform/methanol (2:1, v/v) according to the

method of Folch et al. [65]. The organic solvent was evaporated under a stream of nitrogen

and the lipid content was determined gravimetrically [66] and stored in chloroform/methanol

(2:1), containing 0.01% butylated hydroxytoluene (BHT). Analysis of lipid class (LC) composi-

tion was performed by one-dimensional double development high performance thin layer

chromatography (HPTLC; Merk, Darmstadt, Germany), and methyl acetate/isopropanol/chlo-

roform/methanol/0.25% (w/v) KCl (5: 5: 5: 2: 1.8, by volume) used as developing solvent sys-

tem for the polar lipid classes and isohexane/diethyl ether/acetic acid (22.5: 2.5: 0.25, by

volume), for the neutral lipid separation. Lipid classes were visualized by charring at 160˚C for

15 min after spraying with 3% (w/v) aqueous cupric acetate containing 8% (v/v) phosphoric

acid, and quantified by scanning densitometry using a dual-wavelength flying spot scanner

Shimadzu CS-9001PC (Shimadzu, Duisburg, Germany) [67]. To determine the fatty acid pro-

files, TL extracts were subjected to acid-catalysed transmethylation with 1% sulphuric acid

(v/v) in methanol. The resultant fatty acid methyl esters (FAME) and dimethyl acetals (DMA)

were extracted using isohexane: diethylether (1:1 by volume) and purified by TLC using iso-

hexane/diethyl ether/acetic acid (90:10:1, by volume) as developing system [66]. Fatty acid

methyl esters were separated and quantified using a TRACE-GC Ultra gas chromatograph

(Thermo Electron Corp., Waltham, MA, USA) equipped with an on-column injector, a flame

ionization detector and a fused silica capillary column, Supelcowax TM 10 (30 m x 0.32 mm I.

D. x 0.25 μm; Sigma-Aldrich, Madrid, Spain). Helium was used as carrier gas and temperature

programming was 50–150˚C at 40˚C min-1 slope, then from 150 to 200˚C at 2˚C min-1, to

214˚C at 1˚C min-1 and, finally, to 230˚C at 40˚C min-1. Individual FAME and DMA were

identified by reference to authentic standards, and further confirmation of FAMEs and DMAs

identity was carried out by GC-MS (DSQ II; Thermo Electron Corp.).

Statistical analysis

Differences in GSI, sex steroid concentrations, leptin qRT-PCR and biochemical composition

mean values between the following pair of groups were assessed by a two tailed Student’s t-test:
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wild specimens sampled in consecutive phases of the reproductive cycle; captive-reared speci-

mens sampled in consecutive phases of the reproductive cycle; wild vs captive-reared speci-

mens sampled in the same phase of the reproductive cycle. Normality and homogeneity of

variance were confirmed and percentage data were arcsine transformed prior to analysis.

All the results are presented as means ± SE; the statistical probability significance was estab-

lished at the P� 0.05 level. The statistical analyses were performed using the SPSS 17.0 soft-

ware package (IBM Corp., New York, USA) for Windows.

Results

Female GSI, gonad histological analysis and sex-steroid plasma levels

In both wild and captive-reared individuals, GSI values showed a significant increase from the

EARLY to the ADVANCED phase, and a significant decrease during SPAWNING (Fig 1).

The GSI values were similar between captive and wild females during the EARLY and

ADVANCED phases, while they were significantly higher in wild fish during SPAWNING.

During the EARLY phase in wild females, one individual had perinucleolar oocytes as the

most advanced oocyte stage (Fig 2a), two had oocytes at the cortical alveoli stage (Fig 2b), and

two exhibited early vitellogenic oocytes (Fig 2c). Among the four captive-reared females, one

had ovaries with perinucleolar oocytes and three showed few early vitellogenic oocytes. In the

ADVANCED phase, the two wild females showed oocytes at the late vitellogenic stage and

POFs, a sign of recent spawning (Fig 2d). All four captive-reared females had oocytes at late

vitellogenesis and three of them displayed major α atresia (> 50% of vitellogenic oocytes in α
atresia) (Fig 2e). In the SPAWNING phase, among the 12 wild fish sampled, 10 had late vitello-

genic oocytes together with POFs, and two individuals showed hydrated oocytes (Fig 2f).

Among the four captive-reared females, three showed ovaries with late vitellogenic oocytes

Fig 1. Mean (± SE) gonado-somatic index (GSI) of wild and captive-reared greater amberjack females sampled in three phases of

the reproductive season. White and black asterisks indicate statistically significant differences versus the preceding phase in wild

specimens and in captive-reared specimens, respectively. Different letters indicate significant differences between wild and captive-reared

individuals in the same phase of the reproductive cycle (P < 0.05).

doi:10.1371/journal.pone.0169645.g001
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Fig 2. Micrographs of ovary sections from female greater amberjack sampled in three different phases of the

reproductive season. (a) Wild individual sampled on 1 May showing perinucleolar oocytes as the most advanced

stage in the ovary. (b) Cortical alveoli oocytes in the ovary of a wild specimen captured on 1 May 2015. (c) Early

vitellogenic oocytes in the ovary of a wild individual sampled on 1 May 2015. (d) Late vitellogenic oocytes together with

post-ovulatory follicles from a wild spawning fish caught on 31 May 2014. (e) Extensive atresia of late vitellogenenic

follicles in a captive-reared specimen sampled on 4 June 2015. (f) Hydrated oocyte from a spawning wild fish sampled

on 30 June 2014. Haematoxylin-eosin staining in (a), (c), (d), (e) and Mallory’s trichrome staining in (b). Magnification

bars = 300 μm in (a) and 150 μm in (b)-(f). Arrowhead: atretic late vitellogenic follicle; asterisk: post-ovulatory follicle;

dashed arrow: cortical alveoli stage oocyte; ev: oocyte in early vitellogenesis stage; ho: hydrated oocyte; lv: oocyte in

late vitellogenesis stage.

doi:10.1371/journal.pone.0169645.g002
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undergoing extensive atresia and one showed only perinucleolar oocytes, indicating that all

these animals were in a regressed condition.

In wild females, plasma levels of T, E2 and 17,20β-P increased significantly from the

EARLY to the ADVANCED phase, while in the case of T they decreased during SPAWNING

(Fig 3). In captive-reared females, both T and E2 increased significantly from the EARLY to

the ADVANCED phase and then decreased during SPAWNING, while plasma 17,20β-P did

not decrease significantly at the SPAWNING stage. Significantly higher T and E2 plasma levels

were found in wild compared to captive-reared animals at the ADVANCED and SPAWNING

phases. Plasma 17,20β-P levels were significantly higher in wild compared to captive-reared

fish during the EARLY and ADVANCED phases.

Male GSI, gonad histological analysis and sex-steroid plasma levels

Both in wild and captive-reared males, GSI showed a significant increase from EARLY to

ADVANCED, followed by a decrease during SPAWNING (Fig 4). In all the three considered

phases, GSI was significantly higher in wild than in captive-reared males.

The testes of the five wild males caught during the EARLY period contained germ cells in

all spermatogenic stages, as well as spermatozoa in the seminiferous lobules (Fig 5a). The histo-

logical appearance of the testes of the four captive-reared males sampled in the same phase was

similar to that of wild males. However, the former displayed a lower amount of luminal sper-

matozoa. In the ADVANCED phase, all the four wild males had all stages of spermatogenesis

in the germinal epithelium as well as large amount of luminal spermatozoa (Fig 5b). Among

the four captive-reared males sampled in this phase, two were in active spermatogenesis,

whereas the other two had ceased their spermatogenic activity, having only residual sperm

cysts in the germinal epithelium and abundant spermatozoa in the lumen of seminiferous lob-

ules (Fig 5c).

In the SPAWNING phase, four wild males showed all stages of spermatogenesis together

with large amount of spermatozoa in the lumen of seminiferous lobules and one was partially

spent, showing rare spermatocysts and residual spermatozoa in the lumen of seminiferous lob-

ules. All the four captive-reared males sampled during this phase had ceased their spermato-

genic activity, still showing a moderate amount of spermatozoa in the lumen of seminiferous

lobules (Fig 5d).

In wild males, T and 11-KT plasma levels increased significantly from the EARLY to the

ADVANCED phase and decreased thereafter in case of only 11-KT (Fig 6). Plasma levels of

17,20β-P showed a significant increase from the EARLY to the ADVANCED phase, and the

same trend was observed at the SPAWNING phase, even though a significant difference was

not found (Fig 6). In captive-reared fish, both T and 11-KT plasma levels showed a decreasing

trend from the EARLY to the SPAWNING phase, whereas plasma 17,20β-P levels showed a

significant increase from the ADVANCED to the SPAWNING phase (Fig 6). In general,

plasma levels of all three analysed steroids were higher in wild than in captive-reared fish.

Liver leptin gene expression

The partial cDNA sequence of the greater amberjack leptin (131 base pairs long; S1 Fig) was

found to encompass the typifying alpha-helix domains (i.e., Helix B and 5’ end of Helix C),

and to share a large degree of homology (90%) with cognate sequence derived from the Chi-

nese perch Siniperca chuatsi (S2 Table).

Quantitative real-time PCR (qRT-PCR) analysis of liver leptin mRNA (Fig 7) demon-

strated that transcript levels in both wild and captive-reared fish were minimal during the

ADVANCED phase and maximal at SPAWNING. Significant differences between wild and
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Fig 3. Mean (± SE) plasma (a) Testosterone (T), (b) 17-β Estradiol (E2) and (c) 17,20β-P plasma in wild and captive-

reared greater amberjack females at three phases of the reproductive season. White and black asterisks indicate

statistically significant differences versus the preceding phase in wild specimens and in captive-reared specimens,

respectively. Different letters indicate significant differences between wild and captive-reared individuals in the same phase

of the reproductive cycle (P < 0.05).

doi:10.1371/journal.pone.0169645.g003
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captive-reared specimens were observed only in females during the EARLY phase (Fig 7a),

when higher liver leptin mRNA levels were observed in captive individuals.

Assessment of gonad biochemical composition

Gonad proximate composition. The analysis of ovary proximate composition during the

reproductive cycle of wild and captive-reared fish showed a clear moisture reduction, associ-

ated to a significant protein and lipid increase at the ADVANCED compared to the EARLY

phase, followed by a trend to recuperate the original values at SPAWNING (Table 4). In the

testes, moisture contents slightly decreased from the ADVANCED to the SPAWNING phase

in captive fish, whereas protein levels rose between the EARLY and ADVANCED phases

(Table 4).

Captivity was not associated with major changes in the general proximate composition of

the gonads, with the exception of higher moisture and lower protein contents in the ovaries of

captive-reared fish during SPAWNING, as well as lower humidity and higher protein levels in

testes of captive-reared fish during the ADVANCED and SPAWNING phases (Table 4).

Gonad lipid classes and fatty acid composition. Significant differences in the main lipid

classes (Table 5) and fatty acid compositions (Table 6) were found in wild and captive-reared

gonads of greater amberjack throughout the reproductive cycle.

In wild fish ovaries, the lipid class composition dramatically varied between the EARLY

and ADVANCED phases, where a decline in individual polar lipid classes and a rise in

Fig 4. Mean (± SE) gonado-somatic index (GSI) of wild and captive greater amberjack males sampled in three phases of the

reproductive season. White and black asterisks indicate statistically significant differences versus the preceding phase in wild specimens

and in captive-reared specimens, respectively. Different letters indicate significant differences between wild and captive-reared individuals in

the same phase of the reproductive cycle (P < 0.05).

doi:10.1371/journal.pone.0169645.g004
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triacylglycerol (TAG) proportions was registered. Variations in the ovaries of the captive fish

were more moderate with significant reductions between the EARLY and ADVANCED phases

in phosphatidylserine (PS) and phosphatidylethanolamine (PE) levels, which returned to

higher values thereafter. As it is shown in Table 5, evolution of the lipid class composition in

wild fish testes differed markedly from that of ovaries, highlighting a significant increment

of PS and a reduction of phosphatidylinositol (PI) and TAG between the EARLY and

ADVANCED phases. From the ADVANCED to the SPAWNING phase, only PI varied signifi-

cantly towards recuperation. Gonad levels of TAG were three times higher at the EARLY

phase in testis of captive-reared fish than in wild specimens, leading to a lower relative propor-

tion of phosphatidylcholine (PC), PS and PE. In addition, TAG exhibited a 10-fold reduction

in the testes of captive fish from the EARLY to the ADVANCED phase, whereas PI levels did

not decrease as in wild specimens, but tended to rise.

Fig 5. Micrographs of testes sections from male greater amberjack sampled in three different phases of the reproductive season.

(a) Testis section from a wild individual sampled on 1 May showing the presence of all stages of spermatogenesis in the germinal epithelium

and a limited amount of luminal spermatozoa. (b) Testis section from a wild fish caught on 31 May 2014, showing all stages of

spermatogenesis as well as large amount of luminal spermatozoa. (c) Testis section from a captive-reared fish sampled on 4 June 2015

showing an arrested spermatogenesis state, with residual sperm cysts in the germinal epithelium and abundant spermatozoa in the lumen of

seminiferous lobules. (d) Testis sections from a captive-reared specimen caught on 2 July 2015 showing a moderate amount of

spermatozoa in the lumen of seminiferous lobules. Haematoxylin-eosin staining. Magnification bars = 100 μm in (a) and (b), 200 μm in (c)

and (d). sp: spermatozoa in the lumina of seminiferous lobules.

doi:10.1371/journal.pone.0169645.g005
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Fig 6. Mean (± SE) plasma (a) Testosterone (T), (b) 11-Ketotestosterone (11-KT) and (c) 17,20β-P in

wild and captive-reared greater amberjack males at three phases of the reproductive season. White

and black asterisks indicate statistically significant differences versus the preceding phase in wild specimens

and in captive-reared specimens, respectively. Different letters indicate significant differences between wild

and captive-reared individuals in the same phase of the reproductive cycle (P < 0.05).

doi:10.1371/journal.pone.0169645.g006
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Significant differences in gonad fatty acid composition were also found between wild and

captive specimens, particularly during the EARLY and ADVANCED phases, with both ovaries

and testes of captive fish displaying around 30 and 40% less docosahexaenoic acid (DHA) and

arachidonic acid (ARA), respectively (Table 6), and, as a consequence, a significantly lower

DHA/eicosapentaenoic acid (EPA) and ARA/EPA ratios. Moreover, captive-reared fish

gonads also presented higher contents of octadecadienoic acid (linoleic acid, 18:2n-6) (LA).

Both in wild and captive-reared specimens, testis DHA content increased significantly between

the EARLY and ADVANCED phases, followed by a decrease to initial values at the SPAWN-

ING period only in wild fish (Table 6).

Discussion

In the present work, the reproductive state of greater amberjack was compared between wild

and captive-reared breeders during different phases of their reproductive cycle in the Mediter-

ranean Sea, in an attempt to assess the effects of rearing in captivity on reproductive

Fig 7. Mean (± SE) transcription levels of liver leptin in three phases of the reproductive season of wild and captive-

reared greater amberjack. (a) Females and (b) Males. Different letters above bars indicate statistically different transcription

levels between wild and captive-reared specimens within the same sampling phase (P < 0.05).

doi:10.1371/journal.pone.0169645.g007
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maturation. Fishery data suggest that greater amberjack aggregate in shallow water for repro-

duction from May to July, when they become vulnerable to the purse-seine fishery [68, 69].

Spawning occurs mainly between June and early July, when females with ovaries containing

hydrated oocytes and post-ovulatory follicles have been found [29]. Therefore, the sampling in

Table 4. Mean (± SE) levels of moisture, total lipids and total proteins of gonads from wild and cap-

tive-reared greater amberjack sampled at three different phases of the reproductive cycle.

Early Gametogenesis

(EARLY)

Advanced Gametogenesis

(ADVANCED)

Spawning (SPAWNING)

Wild Captive Wild Captive Wild Captive

Ovaries

Moisture (%) 81.4±0.3 80.7±0.3 68.1±0.3 * 71.5±1.7 * 74.0±0.8 * 78.2±1.4 *, †

TL (%ww) 1.5±0.1 1.5±0.2 6.6±0.8 * 5.5±0.5 * 4.5±0.2 * 3.6±0.6 *

Protein (%ww) 15.7±0.4 15.8±0.2 20.6±0.3 * 19.3±1.2 * 18.0±0.8 15.4±0.7 *,†

Testes

Moisture (%) 83.9±0.1 83.7±0.1 84.7±0.1 83.3±0.2 † 84.9±0.3 81.8±0.6 *, †

TL (%ww) 2.1±0.2 2.3±0.2 2.0±0.4 2.5±0.2 1.8±0.1 2.1±0.2

Protein (%ww) 12.6±0.2 12.5±0.1 12.4±0.2 14.2±0.4 *, † 12.3±0.3 15.1±0.7 †

Asterisks indicate statistically significant differences versus the preceding phase in wild specimens and in

captive-reared specimens distinctly,
† denote significant differences between wild and captive-reared individuals at the same phase of the

reproductive cycle. TL: total lipids; ww: wet weight.

doi:10.1371/journal.pone.0169645.t004

Table 5. Mean values (± SE) of main lipid classes (% of total lipids) of gonads from wild and captive-

reared greater amberjack sampled at three different phases of the reproductive cycle.

Early Gametogenesis

(EARLY)

Advanced Gametogenesis

(ADVANCED)

Spawning (SPAWNING)

Wild Captive Wild Captive Wild Captive

Ovaries

PC 21.6±0.7 18.4±1.1 † 18.5±1.0 17.7±0.9 18.3±0.7 17.3±0.3

PS 4.5±0.5 4.5±0.8 0.8±0.1 * 1.5±0.2 * 1.4±0.1 3.0±0.4 *, †

PI 4.9±0.3 3.8±0.3 1.8±0.1 * 2.9±0.2 2.5±0.1 3.4±0.3 †

PE 12.2±0.4 11.8±1.1 5.2±0.6 * 5.9±0.3 * 6.2±0.2 7.9±0.7 *, †

TAG 21.0±0.7 26.3±4.3 28.2±0.2 * 26.4±0.9 21.5±0.6 21.3±1.3

TPL 47.8±1.2 43.8±3.5 28.9±2.0 * 30.8±0.3 * 31.1±1.1 35.6±1.9 *, †

Testes

PC 27.6±1.3 20.5±0.9 † 25.8±0.5 22.9±1.5 27.8±0.4 23.1±0.4 †

PS 7.8±0.5 4.6±0.4 † 12.3±0.4 * 8.8±0.6 *,† 9.7±0.8 8.8±0.4

PI 5.9±0.2 5.0±0.5 1.7±0.3 * 6.8±0.4 † 5.6±1.4 * 7.1±0.1

PE 20.0±0.4 14.1±1.0 † 22.1±0.3 21.2±1.3 * 21.4±0.3 21.9±0.7

TAG 8.7±0.9 28.9±4.3 † 3.0±0.5 * 2.8±0.8 * 1.8±0.3 4.4±0.8 †

TPL 64.6±1.9 47.4±2.6 † 65.2±0.2 63.8±3.7 * 67.6±1.5 65.7±0.8

Asterisks indicate statistically significant differences versus the preceding phase in wild specimens and in

captive-reared specimens distinctly,
† denote significant differences between wild and captive-reared individuals at the same phase of the

reproductive cycle. PC, phosphatidylcholine; PS, phosphatidylserine; PI, phosphatidylinositol; PE,

phosphatidylethanolamine; TAG, triacylglycerols; TPL, total polar lipids.

doi:10.1371/journal.pone.0169645.t005
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the present study was carried out in three different periods of the reproductive cycle that were

considered a priori to coincide with early gametogenesis (late April-early May), advanced

gametogenesis (late May-early June) and spawning (late June-early July).

All of the wild and captive-reared fish used in the present study were beyond their first sex-

ual maturity, as determined for the Mediterranean greater amberjack by Kožul et al. [70]. The

available data on greater amberjack first sexual maturity in the Mediterranean Sea are scarce

and somehow contradictory, and refer to wild fish sampled in the Pelagie Islands [10], Gulf of

Gabes (Tunisia) [30] and Adriatic Sea [70], and to captive fish reared in outdoor tanks in Sicily

[18]. In the Adriatic Sea, 80% of age class 4 (93–106 cm total length, TL) females were repro-

ductively active and 100% maturity was reached at 5 years of age (107–119 cm TL); similarly,

all males with TL > 107 cm sampled in the Adriatic Sea were reported to be sexually mature

[70]. In the present study, FL was used as fish body length measure and the recorded sizes ran-

ged from 95 to 124 and from 87 to 106 cm for wild and captive-reared specimens, respectively.

According to the TL-FL correlations provided for male and female greater amberjack from the

eastern Mediterranean Sea by Sley et al. [30], all the fish of the present study were> 107 cm

TL except the smallest captive-reared fish that was 106 cm TL.

Gonad development of wild greater amberjack during the sampling period was well

described by the GSI, increasing from early May to late May and decreasing thereafter. The

histological analysis of wild greater amberjack gonads showed that at the beginning of May

ovaries exhibited early vitellogenic oocytes, and testes contained germ cells at all stages of sper-

matogenesis, including luminal spermatozoa. In late May, females exhibited fully vitellogenic

oocytes together with post-ovulatory follicles in their ovaries, and males had testes in full

Table 6. Mean values (± SE) of main fatty acids of gonads from wild and captive-reared greater amber-

jack sampled at three different phases of the reproductive cycle.

Early gametogénesis

(EARLY)

Advanced gametogénesis

(ADVANCED)

Spawning (SPAWNING)

Wild Captive Wild Captive Wild Captive

Ovaries

LA 1.0±0.1 6.5±0.3 † 2.2±0.3 * 10.1±0.3 *, † 1.8±0.1 8.1±1.1 *, †

ARA 5.9±0.4 3.4±0.6 † 3.4±0.2 * 2.1±0.2 *, † 5.1±0.2 * 4.0±0.3 *

EPA 3.9±0.2 5.3±0.2 † 3.4±0.1 5.1±0.7 † 4.2±0.1 4.3±0.3

DHA 27.3±0.8 19.4±1.9 † 23.8±2.0 21.1±0.8 23.0±0.5 23.3±1.4

ARA/EPA 1.6±0.2 0.6±0.1 † 1.0±0.1 0.4±0.1 † 1.2±0.1 1.0±0.1 *

DHA/EPA 7.1±0.5 3.6±0.2 † 6.9±0.3 4.4±0.7 † 5.5±0.2 5.8±0.3

Testes

LA 1.1±0.1 7.1±0.4 † 0.8±0.1 5.0±0.6 *, † 1.0±0.1 5.8±1.0 †

ARA 4.1±0.4 2.3±0.2 † 4.3±0.2 2.7±0.2 † 5.4±0.4 5.0±0.7 *

EPA 3.7±0.2 4.6±0.4 2.9±0.2 4.8±0.5 † 2.8±0.2 3.8±0.4 †

DHA 26.2±1.6 18.1±1.5 † 32.9±1.0 * 27.0±1.8 *, † 26.9±0.9 * 24.6±1.8

ARA/EPA 1.1±0.1 0.5±0.0 † 1.5±0.2 0.6±0.0 † 2.0±0.3 1.5±0.4 *

DHA/EPA 7.1±0.3 3.9±0.1 † 11.3±0.5 * 5.7±0.3 *, † 10.0±0.9 6.7±0.3 †

Asterisks indicate statistically significant differences versus the preceding phase in wild specimens and in

captive-reared specimens distinctly,
† denote significant differences between wild and captive-reared individuals at the same phase of the

reproductive cycle. Individual fatty acids are expressed as percentage of total fatty acids. LA, linoleic acid,

18:2n-6; ARA, arachidonic acid, 20:4n-6; EPA, eicosapentaenoic acid, 20:5n-3; DHA, docosahexaenoic

acid, 22:6n-3.

doi:10.1371/journal.pone.0169645.t006
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spermatogenesis, with all the spermatogenic stages in the germinal epithelium and large

amounts of luminal spermatozoa. In late June, fish were still in reproductive condition, with

late vitellogenic and hydrated oocytes present in the ovaries and with most males still exhibit-

ing active spermatogenesis and plenty of luminal spermatozoa. The evolution of GSI of wild

and captive-reared greater amberjack during the reproductive season was similar; however,

in general GSI values were significantly lower in captive-reared fish. Ovaries and testes of

captive-reared fish sampled during late April (EARLY) showed an overall maturity stage com-

parable to that of wild individuals sampled in the same period (early May). However, the sub-

sequent gonad maturation phase appeared to be seriously impaired in captive fish, since

during the second sampling campaign (ADVANCED) an extensive atresia of late vitellogenic

oocytes affected the ovaries, and half of the sampled males had already ceased their spermato-

genic activity. In late June (SPAWNING), the wild greater amberjack population was still in

spawning condition, whereas in the same period all fish reared in captivity showed regressed

gonads.

The trend of GSI and the histological data on gonad maturation of wild and captive reared

greater amberjack were in close agreement with their sex steroid plasma concentrations. All

the androgens examined in the present study were constantly lower in captive than in wild

fish. In males, similar concentrations of 11-KT, but higher of T during the EARLY and

ADVANCED phases, were observed in a study with wild greater amberjack sampled in Pelagie

Islands, showing a peak in late May-early June [29]. As for many male teleost fish [71–73],

11-KT proved to be the prominent androgen in greater amberjack, always having higher

plasma levels than T. Regarding 17,20β-P, in wild male fish it followed the increase of GSI

from the EARLY to ADVANCED phase, in agreement with its well-known function in

enhancing sperm production and volume [74, 75]. On the other hand, in captive-reared

males in the present study, 17,20β-P plasma levels showed a surprising increase between the

ADVANCED and SPAWNING phases, in concomitance with a GSI decrease and testis regres-

sion. The same was found to happen in tench Tinca tinca, where an inexplicable peak of

17,20β-P found in males with regressed gonads [76]. The existing literature on 17,20β-P in

greater amberjack and other related species has been limited mostly to females [29, 77, 78]; the

only study including males, carried out on the congener yellowtail kingfish Seriola lalandi,
failed to find any difference in the 17,20β-P values between the different reproductive stages

[79]. The generally low 17,20β-P values observed both in the present study and in other studies

on greater amberjack and related species [29, 77, 79] may suggest that this hormone is rapidly

catabolized in the fish gonad and may still exist in the fish blood in different forms (glucuro-

nated, sulfonated or reduced) [80–82] and it is not detected by the techniques used for the free

steroids. Recent studies suggest that this hormone may play a role in stimulating meiosis or

may be released into the water to act as a pheromone [79, 83, 84]. Therefore, in contrast to T

and 11-KT, it cannot be considered as a trustworthy indicator of reproductive stage of devel-

opment in male greater amberjack. Moreover, circulating 17,20β-P levels significantly

increased in response to handling stress in the black bream Acanthopagrus butcheri [85] and in

the greenback flounder Rhombosolea tapirina [86] and a positive correlation between cortisol

and 17,20β-P was found in sexually mature silver seabream Pagrus auratus [87]. The increase

of 17,20β-P plasma levels observed in captive-reared greater amberjack with regressed testes in

the present study, could then be associated to the handling stress due to sampling operations.

In female greater amberjack in the present study, an increase of T, E2 and 17,20β-P from

the EARLY to the ADVANCED phase was observed both in wild and captive-reared fish, fol-

lowed by a significant decrease only of T in the SPAWNING phase, and E2 of captive fish dur-

ing the SPAWNING phase. A similar pattern was found in another study of wild females

sampled in the Mediterranean Sea with the same levels of T and E2 or 5-fold lower levels of
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17,20β-P [29]. In fact, in the present study T seemed to be elevated only in the ADVANCED

phase and dropped at SPAWNING, whereas E2 remained high during SPAWNING in wild

fish, in agreement with the other study on wild greater amberjack, as high plasma E2 levels are

essential for the recruitment of new batches of oocytes in fish with asynchronous ovarian

development [29]. On the contrary, E2 levels dropped during SPAWNING in captive fish in

the present study, as ovaries in these females were regressed. As far as 17, 20β-P is concerned,

it increased during the ADVANCED phase and remained high during SPAWNING in both

wild and captive fish. This hormone is known to be essential for oocyte maturation in different

fish species, especially during the later stage of oocyte maturation, which includes germinal

vesicle breakdown and yolk globule coalescence [88], a fact that has been confirmed also for

greater amberjack and other related species [29, 79, 89]. On the other hand, E2 plasma levels of

captive-reared greater amberjacks kept in sea pens in Japan were less than 1.2 ng ml-1 [90]

comparing to 1.95 ng ml-1 in this study. However, the small size and the young age (3–4 years)

of the sampled Japanese fish should be taken into consideration. The simultaneous elevated T,

E2 and 17,20β-P plasma levels that were observed during the ADVANCED phase in the pres-

ent study are typical of an asynchronous spawner such as the greater amberjack [91–93], while

the lower sex steroid levels of the captive-reared females are typical of the reproductive dys-

functions observed in captivity [94–96].

Altogether, the comparative analysis of GSI, histological observations and sex steroid

plasma levels in the present study indicate a severe adverse effect of confinement in captivity

on greater amberjack reproductive axis, with consequent gametogenesis impairment. Differ-

ences between wild and captive fish, both histological and in plasma sex steroid levels, were

only found in the ADVANCED and the SPAWNING phases and not in the EARLY phase,

except for the 17,20β-P in females, stressing the differences in the achievement of maturation

between wild and captured fish. More particularly, in captivity the EARLY phase seemed to

start correctly, with testes showing all spermatogenetic stages along with luminal spermatozoa

and ovaries containing oocytes entering vitellogenesis. In this phase, steroid hormones of cap-

tive fish were similar to those of wild individuals. The negative effects of confinement became

glaring during the supposed ADVANCED phase, perhaps because the fish sampled at this

and the following sampling, had already been manipulated once, during the sampling for the

EARLY phase, as they were kept together in the same sea cage. During the ADVANCED

phase, when wild greater amberjacks were already in spawning condition, in captive-reared

females sex steroid plasma levels showed only a slight increase, insufficient to further support

vitellogenesis, leading to an extensive oocyte atresia that prevented any further oocyte develop-

ment. In captive-reared males, the low steroid levels observed in the EARLY phase decreased

further, leading to the precocious cessation of spermatogenic activity.

The reason we believe that this dysfunction might have been caused, at least partly, due to

the repeated sampling that the fish underwent in this study, is that in a parallel investigation,

another captive-reared stock, maintained in almost identical conditions, reached final stages of

gametogenesis and produced fertilized eggs upon stimulation with spawning inducing hor-

mones (C.C.M., unpublished data). The latter stock was manipulated only once in mid-June

(between the ADVANCED and SPAWNING samplings) in order to induce spawning, so the

husbandry manipulations of the stock used in the present study could have caused/enhanced

the reproductive dysfunction. This leads us to suggest that Mediterranean greater amberjack

maintained in captivity should not be handled after the onset of gametogenesis, in order to

prevent any stress-induced cessation of reproductive development. An easier adaptability of

greater amberjack from the eastern Atlantic to captive conditions is reported by other studies

[12, 97], who reported natural and hormonally-induced spawning, respectively, of wild caught

individuals reared in tanks. Incidentally, the eastern Atlantic and Mediterranean greater
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amberjack populations are genetically different [98], and it is conceivable that these genetic

differences may influence or be responsible for the variable and unpredictable response of

greater amberjack from the Mediterranean Sea to confinement in captivity.

Reproductive dysfunctions have been documented in a number of captive-reared fish spe-

cies, in both females and males. The most common dysfunctions in females are: absence of

gonadal development [99]; failure of oocytes to undergo oocyte maturation (also referred to as

final oocyte maturation) once vitellogenesis is completed [19, 100, 101]; or absence of spawn-

ing [102]. Production of low amount of expressible semen in males [103], as well as reduction

of germ cell proliferation and increase of apoptosis [20, 104] has been reported in captive-

reared male fish. Atresia of vitellogenic oocyte and failure to undergo oocyte maturation have

been attributed to an insufficient pituitary luteinizing hormone (LH) release, and to the conse-

quent steroid withdrawal, occurring in captive conditions [105, 106]. These dysfunctions have

been associated to a combination of factors, such as captivity-induced stress, lack of appropri-

ate spawning environment and nutritional deficiencies (an exhaustive review on reproductive

dysfunctions, their causes and therapeutic treatments is provided by Zohar and Mylonas [103]

and Mylonas et al. [96]).

Considering that liver nutrient mobilization towards the gonads, specifically protein and

highly unsaturated fatty acids, plays an important role during gametogenesis, embryo ontog-

eny and early larval development in marine fish [107], the possibility that essential nutrient

deficiency might have played a role in the gametogenesis impairment in the present study has

been explored using liver leptin expression and gonad chemical composition as markers. Lep-

tin, the product of the obese gene, is a 16 kDa, 167 amino acid (aa) hormone, consisting of a 21

aa signal peptide and a 146 aa soluble protein [50, 108]. In mammals, leptin is secreted into the

bloodstream both as a free protein and as a protein–bound entity, primarily from adipocytes,

and acts on the brain to regulate food intake and metabolism [50–55]. In addition to its role in

conveying signals of the energy stores to the central nervous system in order to regulate food

intake, leptin was also found to interact with the endocrine system to provide critical informa-

tion about the nutritional status and, therefore, to act as a permissive factor allowing the onset

of energy demanding situations such as reproduction [40, 56]. To date, all studies with teleosts

have identified the liver as the major site for leptin expression, in contrast to the adipocytes in

mammals. In the present study, transcript profiles of liver leptin showed relatively low levels

for wild and captive-reared fish during the EARLY and ADVANCED gametogenesis phases,

and a dramatic elevation during the SPAWNING phase. Similar patterns, at the protein level,

were detected in the freshwater fish burbot Lota lota [109], in which the circulating leptin-

immunoreactive peptide levels were relatively low prior to and during reproduction, and

increased after spawning. It can be hypothesized that the increase in the levels of leptin towards

the end of the spawning cycle is a seasonal event helping the fish to recover from the exertion

of reproduction, while re-absorbing the gonads and reorganizing the body energy storages. In

the present study, no significant differences in leptin expression between wild and captive

greater amberjack was found, with the exception of the higher leptin expression levels of cap-

tive-reared females in the EARLY period. This is in agreement with minor differences found

in gonad proximate composition and seems to indicate that the dietary regime preserved well

the energy reserve/nutrient mobilization towards the gonads during the reproductive cycle.

However, the testes of captive-reared fish showed different total polar lipid contents, as well as

specific lipid classes and fatty acid profiles with respect to wild individuals, clearly reflecting

the increased dietary supply of TAG by the commercial diet that contains also vegetables oils

as lipid sources. On the contrary, the diet of wild fish is based mainly on fish and cephalopods,

which supply both phospholipids and TAG. In particular, testes of captive-reared fish sampled

in the EARLY gametogenesis phase displayed a lower PC, PS and, PE, concomitantly to higher
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TAG, DHA and ARA content compared to the proportions of their wild counterparts. Fish

sperm is particularly rich in PE and PS, both of which influence membrane fluidity and male

reproductive functions. These molecules contain high levels of di-DHA, molecular species that

improves sperm motility and the efficiency of membrane fusion events, such as those taking

place between spermatozoa and eggs. Since sperm fatty acid composition depends upon the

essential fatty acid content of the broodstock diet [110–112], fertilization success could be

affected by lipid profiles. In our study, EPA and LA levels were significantly higher, whereas

ARA and DHA were significantly lower in farmed than in wild specimens. The dietary defi-

ciency of ARA and DHA also decreased tissue ARA/EPA and DHA/EPA physiological bal-

ances. Similar results related to dietary fatty acid inputs have been reported in several tissues of

captive and wild white seabream (Diplodus sargus), black seabream (Spondyliosoma cantharus),
yellowtail (Seriola lalandi) and females of greater amberjack at spawning [31, 32, 113–115].

Studies by Asturiano et al. [36] showed that male European sea bass Dicentrarchus labrax fed

commercial diets enriched in highly unsaturated fatty acids (HUFA) such as DHA and EPA,

exhibited more successful reproductive performance in terms of duration of spermiation, total

milt production, milt spermatozoa density, and fertilization than fish fed with a non-enriched

diet. There is strong evidence that HUFAs, particularly EPA and ARA, via metabolites formed

from the cyclooxygenase (COX) and lipoxygenase (LPOX) pathways are involved in steroido-

genesis and oocyte maturation in vertebrates [38, 116, 117]. In vitro, ARA stimulates testoster-

one production in testes and ovaries of several fish species by conversion to prostaglandin [45,

46, 48, 49, 118, 119]. In the present work, captive-reared greater amberjack testes and ovaries

contained 40% less ARA than wild fish at EARLY gametogenesis causing strong imbalances of

ARA/EPA ratios. Furthermore, expected mobilization of PI as the main source of ARA [107,

120] by the action of phospholipase A2 (PLA2) during steroidogenesis [117] did not occur in

the reared fish from early to advanced gametogenesis, presumably correlating with the abnor-

mal trend of steroid levels in captivity. Other phospholipids, including PC, contain high levels

of DHA, which is the most relevant essential fatty acid in egg quality [107]. The importance of

PC, PE and n-3 HUFA, as well as of DHA/EPA/ARA ratios on gonad development and egg

quality has been highlighted by many authors [31, 32, 33–35, 121–124]. In fact, two thirds of

the lipid fraction in vitellogenin is made of PC [107] that is also the main phospholipid in

mature ovaries and fertilised eggs [125]. Compared to the wild greater amberjack, the total lip-

ids contained in the ovaries of captive-reared fish in the present study also displayed abnor-

mally low ratios of essential fatty acids at the EARLY and ADVANCED phases. According to

these results, the formulation of a diet enriched with phospholipids, DHA and particularly

with ARA seems to be advisable in order to improve the broodstock general nutritional status.

In conclusion, the occurrence of severe gametogenesis impairment was described in wild

caught greater amberjack reared in captivity in the Mediterranean Sea. The observed dysfunc-

tions were possibly related to rearing husbandry (i.e. multiple handling during the process of

gametogenesis), to the lack of natural conditions required for reproductive maturation and/or

to nutritional unbalances caused by the artificial diet. An overall improvement of rearing tech-

nology, particularly as it relates to husbandry operations (e.g. fish handling and transferring)

together with a better formulation of dietary ingredients, are required to overcome the

observed dysfunctions and lay the basis for a sustainable aquaculture of this species.
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