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Abstract
Many compounds tested for a possible neuroprotective effect after traumatic brain injury (TBI) are not readily
soluble and therefore organic solvents need to be used as a vehicle. It is, however, unclear whether these organic
solvents have intrinsic pharmacological effects on secondary brain damage and may therefore interfere with
experimental results. Thus, the aim of the current study was to evaluate the effect of four widely used organic
solvents, dimethylsulfoxide (DMSO), Miglyol 812 (Miglyol�), polyethyleneglycol 40 (PEG 40), and N-2-methyl-
pyrrolidone (NMP) on outcome after TBI in mice. A total of 143 male C57Bl/6 mice were subjected to controlled
cortical impact (CCI). Contusion volume, brain edema formation, and neurological function were assessed 24 h
after TBI. Test substances or saline were injected intraperitoneally (i.p.) 10 min before CCI. DMSO, Miglyol, and PEG
40 had no effect on post-traumatic contusion volume after CCI; NMP, however, significantly reduced contusion
volume and brain edema formation at different concentrations. The use of DMSO, Miglyol, and PEG 40 is unprob-
lematic for studies investigating neuroprotective treatment strategies as they do not influence post-traumatic
brain damage. NMP seems to have an intrinsic neuroprotective effect that should be considered when using
this agent in pharmacological experiments; further, a putative therapeutic effect of NMP needs to be elucidated
in future studies.
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Introduction
Traumatic brain injury (TBI) is a leading cause of death
in children and young adults.1,2 Despite decades of
research, therapy of secondary brain injury is still lim-
ited to a few strictly symptomatic treatment options
aimed at controlling intracranial pressure (ICP) and
cerebral perfusion pressure (CPP), as no interventions
directly interacting with the specific pathophysiological
pathways of the evolution of secondary brain damage
are available.3,4 Evolution of brain damage following
TBI is characterized by two phases: primary damage—
occurring at the moment of impact—is not treatable
and can only be influenced by preventive measures.
In the first few hours to days after trauma a variety

of pathomechanisms lead to an increase of the initial
damage, termed ‘‘secondary brain damage’’; the delayed
nature of this process allows for therapeutic neuropro-
tective intervention.5–7 Many clinical and experimental
trials evaluating a putative neuroprotective effect after
trauma rely on compounds that are lipophilic and
therefore need to be dispersed in solution in amphi-
philic organic solvents before application in vivo.
Results of experimental pharmacological trials in TBI
vary and it has been difficult to translate promising re-
sults into clinical practice. One possible explanation
might be the routine use of organic solvents, as it has
yet to be systematically evaluated whether commonly
used organic solvents themselves influence evolution
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of secondary brain damage after TBI. Therefore, the
aim of the current study was to evaluate the effect of
frequently used organic solvents on outcome after ex-
perimental TBI.

Methods
All animal procedures were reviewed and approved by
the Government of Upper Bavaria (protocol number
55.2-1-54-2531-132-11). The results of the study are
reported according to the ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines.8

Animals
A total of 143 male C57 Bl/6 mice (6 to 8 weeks old,
body weight 20–25 g; Charles River Laboratories,
Kisslegg, Germany) were used. Animals had access to
food and water ad libitum and were kept under a 12-h
day/12-h night cycle. Post-operatively, animals were
housed alone to prevent stress. Health screens and
hygiene management checks were performed in accor-
dance with Federation of European Laboratory Animal
Science Associations guidelines and recommenda-
tions.9 As there are relevant differences between gen-
ders as far as pathophysiology is concerned and this
study is intended as a proof of principle rather than a
study with therapeutic intent, we performed the exper-
iments in young male animals only to ensure compara-
bility of the current results with previous studies using
the same setup, model, and drug.

Randomization and blinding
Animals were randomly assigned to experimental
groups; test substances were assigned to experimental
groups in a blinded and randomized fashion by draw-
ing lots. Surgery, histomorphometry, and neurological
testing were performed by a researcher blinded to the
treatment of the animal.

Invasive monitoring of mean arterial pressure,
intracranial pressure, and cerebral blood flow
For invasive mean arterial pressure (MAP) monitor-
ing an intra-arterial catheter was placed in the right
femoral artery after open dissection of the vessel and
connected to a pressure sensor (BD DTX Plus�,
Becton Dickinson, Franklin Lakes, NJ, USA). Data
were continuously recorded (100 Hz) and averaged
every 60 sec. ICP was monitored by a parenchymal
ICP sensor (Codman ICP Express, Integra Life Scien-
ces, Ratingen, Germany) placed in the left frontal
region via a burr hole. Cerebral blood flow (CBF) was

measured over the middle cerebral artery territory by
laser Doppler flowmetry (Periflux 5000, Perimed,
Sweden) via a probe placed perpendicularly on the tem-
poral skull. Before injection of N-2-methyl-pyrrolidone
(NMP), CBF baseline values were recorded for 15 min;
data are expressed in percent of baseline value.

Controlled cortical impact
Experimental TBI was induced as previously de-
scribed.10–13 In short, after right parietal craniotomy
trauma was induced using a custom-made pneumatic de-
vice (velocity 8 m/sec, tip penetration depth 1 mm, con-
tact time 150 msec). After controlled cortical impact
(CCI) induction, craniotomy was closed using histoa-
crylic glue. To avoid hypothermia, surgery was per-
formed on a feedback-controlled heating pad and after
CCI animals were placed in an incubator at 34�C for 1 h.

Solvents and experimental groups
In a first series, lesion volume was determined 24 h after
CCI after intraperitoneal (i.p.) application of 100 lL
dimethylsufoxide (DMSO) 1%, Miglyol 812 (Miglyol�)
100%, polyethyleneglycol 40 (PEG 40) 100%, and NMP
at a concentration of 0.25%, 0.5%, 1%, or 3%, or phos-
phate buffered saline (PBS) as vehicle 10 min before
trauma (see graphic depiction in Fig. 1A, n = 8 each).
To further characterize NMP effects, NMP was injected
10 min before (Fig. 1B), 10 min (Fig. 1C), 1 h or 3 h after
trauma induction. Control groups (15 min, 24 h) re-
ceived an i.p. injection of 100 lL of PBS. Body weight
was assessed in all animals in all groups 1 h before
CCI and immediately before animal sacrifice (24 h
after TBI). Neurological testing was done starting on
the day before CCI as well as 23.5 h after CCI. Determi-
nation of brain water content (bwc) requires the whole
brain, therefore brain edema was assessed in separate
experimental groups.

For evaluation of the effect of NMP application on
physiological parameters, 100 lL of NMP was injected
at increasing concentration (0.5%, 1%, 3%, 5%, and
10%) every 15 min under continuous monitoring of
MAP, ICP, and CBF after recording a 15-min baseline
period. At the end of the observation period, blood
was sampled from the arterial catheter for blood gas
analysis (Siemens Rapidlab 348, Siemens, Munich,
Germany).

Histomorphometry
Brains were removed and 14 10-lm thick coronal sec-
tions were prepared every 500 lm starting 1000 lm
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behind the olfactory bulb using a cryostat (Cryostar
MH 560, Microm, Walldorf, Germany). Sections were
stained according to Nissl and photographed with a
digital camera system at 12.5-fold magnification. Con-
tusion volume was determined using an image analysis
software as previously described10,13 according to the
following formula:

Vn = A1 · 0:5þA2 · 0:5 . . . þA14 · 0:5

Brain water content
bwc was determined as previously described using the
wet-dry method.13 After cervical dislocation brains
were removed and wet weight was determined for
each hemisphere. After storing the samples at 100�C
for 24 h, dry weight was determined. The bwc was cal-
culated using the following formula:

bwc %ð Þ = wet weight gð Þ � dry weight gð Þð Þ
wet weight gð Þ · 100

Increase in bwc was then calculated using the follow-
ing formula:

Increase in bwc %ð Þ = bwcpostop %ð Þ� bwcpreop %ð Þ

and normalized to the non-traumatized hemisphere.

Outcome
Animals were weighed pre-operatively and 24 h after
trauma induction using a precision scale (Mettler-
Toledo GmbH, Giessen, Germany). Neurological func-
tion was evaluated using the Neurological Severity
Score (NSS), which evaluates motor function, orienta-
tion, awareness, reflexes, coordination, and gait.10,11

Scores range from 0 to 20 with higher scores indicat-
ing more severe neurological impairment. NSS was de-
termined 4–6 h prior to surgery and 24 h after TBI.
Animals scoring 2 or more points pre-operatively
were excluded from randomization. Results are presen-
ted as the difference between pre-trauma and post-
trauma scores.

FIG. 1. Experimental groups. (A) Effect of different solvents on lesion size. (B) Pre- and (C) post-traumatic
application of NMP. CCI, controlled cortical impact; DMSO, dimethylsulfoxide; i.p., intraperitoneal; NMP,
N-2-methyl-pyrrolidone; NSS, Neurological Severity Score; PBS, phosphate buffered saline; PEG 40,
polyethyleneglycol 40.
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Statistical analysis
All calculations were performed using a standard statis-
tical software package (SigmaStat 12.0, Jandel Scien-
tific, Erkrath, Germany). Sample size was calculated
based on the following parameters: alpha error = 0.05,
beta error = 0.2, standard deviation (SD) of 25–30%
of the mean, a minimally detectable difference of
means in the primary outcome parameter (secondary
lesion growth) of at least 50%, and a power of 0.8.
The determined minimum group size was six to eight
animals per group. For study 1 (Fig. 1A), the group
number of the 15-min and 24-h control groups was
increased to 14 to guarantee adequate randomization
as experiments had to be performed in several blocks.
For weight loss and neuroscore assessment in the
pre-treatment group (Fig 1B), data from the brain
edema and the lesion volume groups were pooled for
control, the NMP 0.5%, and the NMP 1% group.

Due to small sample size, we used non-parametrical
tests even when data passed normality testing
(Kolmogorov-Smirnov method) to not overestimate a
possible effect. For multiple group comparison, analy-
sis of variance (ANOVA; Kruskal-Wallis analysis)
was performed, Dunn’s method was used as a post
hoc test for multiple comparison versus the control
(PBS, 24 h) group. Data are presented as mean – SD
as well as individual values. A statistically significant
difference was assumed at p £ 0.05.

Results
All animals survived to the end of the observation pe-
riod; no animal was excluded from analysis. Contusion
volume 15 min after CCI was 15.0 – 2.4 mm3 and sig-
nificantly expanded to 25.5 – 1.2 mm3 24 h after trauma
induction in the vehicle (PBS) control group; ( p = 0.003,
Fig. 2); secondary lesion expansion therefore amounted
to 10.5 mm3 or 41.2% of contusion volume 24 h after
CCI. Lesion volume 24 h after CCI increased signifi-
cantly in the DMSO, PEG 40, and Miglyol groups
compared with the 15-min control ( p = 0.05; p = 0.02;
p = 0.04 respectively, Fig. 2) but did not differ from
the control/vehicle group (24.1 – 2.3 mm3; 24.3 –
2.1 mm3; 23.4 – 3.3 mm3, respectively (Fig. 2). Unex-
pectedly, application of NMP at a concentration of
0.5 and 1% significantly reduced contusion volume
compared with control animals (0.5%: 18.0 – 1.6 mm3,
p = 0.001; 1.0%: 19.2 – 1.1 mm3, p < 0.001; Fig. 2). A fur-
ther increase of the NMP dose (3%) did not have an
effect on lesion size. To further analyze this neuropro-
tective effect, NMP application 10 min before CCI was

assessed in a separate set of experiments. The bwc in-
creased by 2.4 – 0.2% 24 h after CCI in the control
group; application of NMP at a concentration of 0.5%
significantly reduced edema formation (1.8 – 0.1%,
p = 0.01; Fig. 3A). There was a trend toward improve-
ment in respect to weight loss (Fig. 3B, figure contains
data from both the lesion size and the brain edema
groups, therefore n = 16 for control, NMP 0.5, and
1%) and neurological function (Fig. 3C, figure contains
data from both the lesion size and the brain edema
groups, therefore n = 16 for control, NMP 0.5, and
1%). Application of NMP 1 h after CCI reduced lesion
volume by trend (Fig. 4), whereas application 3 h after
trauma had no significant effect. Application of NMP
at concentrations up to 10% had no significant effect on
CBF, MAP, ICP, or heart rate (Fig. 5A–D) or blood gas
analysis (Table 1).

Discussion
Despite decades of research, therapeutic options for
TBI are still very limited. Many pharmacological trials
tested putatively neuroprotective compounds, and
many of the substances evaluated need to be dispersed
in amphiphilic solvents to achieve in vivo applicability;
however, most studies do not specifically evaluate

FIG. 2. Lesion volume 24 h after CCI after
injection of different organic solvents.
Mean – SD, n = 14 for 15-min and control groups;
n = 8 all other groups. *p = 0.01 versus control,
**p < 0.001 versus control. CCI, controlled
cortical impact; DMSO, dimethylsulfoxide;
Miglyol, Miglyol 812; NMP, N-2-methyl-
pyrrolidone; PEG 40, polyethyleneglycol 40;
SD, standard deviation.
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whether the solvents used may have an intrinsic effect
and thus influence experimental outcomes. In the pres-
ent study we therefore evaluated whether frequently
used organic solvents influence secondary brain dam-
age in a widely used model of experimental TBI. App-
lication of DMSO, PEG 40, and Miglyol did not
influence lesion volume in our mouse CCI model,
whereas NMP significantly reduced brain edema and
lesion volume.

DMSO has previously been reported to be neuropro-
tective in different models of experimental TBI14–16 in
various species; it has also shown to reduce lesion size
following cerebral ischemia,17,18 a major component of
the pathophysiology of secondary post-traumatic brain
damage. However, the DMSO concentrations used in

these studies were exceedingly high (33–100%) and
had no clinical or pre-clinical relevance. Further, the ef-
fect was not consistent throughout the studies.19 More
recent studies focusing on behavioral and outcome mea-
sures after TBI did not find an effect of DMSO at 15%,20

a dose higher than necessary for solving most com-
pounds. It is therefore not surprising that the markedly
lower concentrations used in this study did not alter
structural post-traumatic brain damage, making low-
dose DMSO a favorable solvent for TBI studies.

PEG is another widely used vehicle in multiple phar-
macological studies assessing effects on acute neuro-
nal damage. At high molecular weight (PEG 2000
and more) it seems to be protective in models of trau-
matic brain injury21–24 and spinal cord trauma,25–27

FIG. 3. Effect of NMP on secondary brain damage—pre-treatment. (A) Increase in brain water content
24 h after trauma is significantly reduced in animals receiving 0.5% NMP; higher doses lead to a reduction
by trend only. Mean – SD, n = 8 each, *p = 0.01 versus control. (B) Weight loss and (C) performance in the
Neurological Severity Score are not significantly altered by NMP application (mean – SD, n = 16 for control,
NMP 0.5, and NMP 1%, n = 8 for NMP 3%). NMP, N-2-methyl-pyrrolidone; SD, standard deviation.
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putatively by resealing the disrupted neuronal mem-
brane and/or antioxidative properties. Further, PEG’s
molecular weight has an important impact on its bio-
logical activity. Studies using PEG at lower molecular
weight did not detect effects on post-traumatic brain

damage when PEG was used as a solvent.28,29 At a mo-
lecular weight of 40, a concentration well suitable for
dissolving most agents, PEG did not influence struc-
tural brain damage and seems therefore an appropriate
choice for neuroprotection studies.

Miglyol 812 is a mixture of medium-chain triglyc-
erides (decanoyl- and octanoyl-glycerides) that is
commonly used as a solvent in the cosmetic and phar-
maceutical industry. Its application as a vehicle in ex-
perimental studies has been repeatedly reported,30–33

and also in the context of focal cerebral ischemia.34,35

The effect of Miglyol on brain damage was, however,
not specifically assessed as both published studies on ce-
rebral ischemia lack a vehicle control without Miglyol.
In the present study, the solvent was used for the first
time in the setting of experimental TBI. As i.p. injection
did not affect lesion volume, Miglyol makes a suitable
solvent option for experimental TBI studies.

Like Miglyol, NMP is used for a wide range of appli-
cations in the cosmetic and pharmaceutical indus-
try36,37 and is considered safe in adults.38,39 Its effects
on brain damage after an insult has, however, not
been assessed yet. So far, NMP (100%) has only been
used in two studies evaluating different solvents for
agents used to treat cerebral aneurysms. In these

FIG. 4. Post-treatment with NMP (applied 1 h
after CCI) did not have an effect on lesion volume.
Mean – SD, n = 6 for 15-min group; n = 8 all other
groups. CCI, controlled cortical impact; NMP, N-2-
methyl-pyrrolidone; SD, standard deviation.

FIG. 5. NMP injected intraperitoneally at different concentrations did not have an effect on CBF (A), MAP
(B), ICP (C), or heart rate (D) (mean – SD, n = 5). CBF, cerebral blood flow; ICP, intracranial pressure; MAP,
mean arterial pressure; NMP, N-2-methyl-pyrrolidone.
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studies NMP was found to lead to less vasospasm than
other substances tested and had no major side effects
after intra-arterial injection in pigs.40,41 In our study,
low-dose NMP unexpectedly reduced lesion volume
24 h after CCI, making a vehicle control without sol-
vent recommendable for experiments to establish the
solvent’s intrinsic effect. NMP also significantly atten-
uated brain edema formation when applied before
CCI without, however, having a significant effect on
functional outcome 24 h after TBI. This is most proba-
bly due to the early time-point at which neurological
function was assessed. It is possible that positive effects
of lesion volume and brain edema reduction translate
to improvement of functional outcome only at later
time-points after TBI, as previously evidenced in
other studies.11,13 NMP has been shown to have anti-
inflammatory effects: in an in vitro setting it reduced
the concentrations of tumor necrosis factor alpha
(TNF-a), interleukin (IL)-1b, IL-6, and inducible nitric
oxide synthase (NOS), as well as cyclo-oxygenase 2
(COX-2).43,44 It is speculated that this is mediated by
suppressing nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-jB) signaling.42 Inflammation
is a major component of acute and chronic post-
traumatic brain damage.44,45 The mediators previously
shown to be influenced by NMP have all been found to
contribute to post-traumatic brain damage.46–55

Another possible mechanism of action is explained
by the molecular structure of NMP: After TBI, the re-
lease of free radicals contributes to the evolution of sec-
ondary brain damage.5,56,57 Like many of the radical
scavengers successfully tested in the context of (exper-
imental) TBI,58–60 NMP contains an annular structure
that might be essential for scavenging free radicals and
therefore ameliorating secondary brain injury.

Conclusion
DMSO, PEG 40, and Miglyol are suitable solvents for
pharmacological studies in CCI TBI as they did not

show an intrinsic activity that may interfere with re-
sults. NMP, another widely used and potent solvent
that was previously not evaluated in the context of
brain damage, was shown to have an intrinsic neuro-
protective potential. This should be taken into account
when considering its use in studies of TBI, for example,
by adding a vehicle control without solvent. The neu-
roprotective potential makes NMP a promising candi-
date for therapeutic use in TBI. Of note, the present
study assessed an early time-point after TBI that is
very commonly used in experimental TBI studies. As
it is becoming more and more obvious that TBI-
induced brain damage evolves over much longer peri-
ods than previously thought (Mao et al.61), potential
long-term effects of NMP will have to be evaluated.
Hence, additional studies need to be performed to fur-
ther characterize its effects on long-term lesion pro-
gression and its mechanisms of action.
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Abbreviations Used
ANOVA ¼ analysis of variance

bwc ¼ brain water content
CBF ¼ cerebral blood flow
CCI ¼ controlled cortical impact

COX-2 ¼ cyclo-oxygenase 2
CPP ¼ cerebral perfusion pressure

DMSO ¼ dimethylsulfoxide
i.p. ¼ intraperitoneal
ICP ¼ intracranial pressure

IL ¼ interleukin
MAP ¼ mean arterial pressure

Miglyol ¼ Miglyol 812
NF-jB ¼ nuclear factor kappa-light-chain-enhancer of activated B cells

NMP ¼ N-2-methyl-pyrrolidone
NOS ¼ nitric oxide synthase
NSS ¼ Neurological Severity Score
PBS ¼ phosphate buffered saline

PEG 40 ¼ polyethyleneglycol 40
SD ¼ standard deviation
TBI ¼ traumatic brain injury

TNF-a ¼ tumor necrosis factor alpha
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