Heterocycles

Isolation of 1,4-Diarsinine-1,4-diide and 1,4-Diarsinine Derivatives

Dennis Rottschäfer, Timo Glodde, Beate Neumann, Hans-Georg Stammler, Diego M. Andrada, and Rajendra S. Ghadwal*

Dedicated to Professor Holger Braunschweig on the occasion of his 60th birthday

Abstract

Diarsinine-1,4-diide compound $\left[\left(A D C^{P h}\right) A s\right]_{2}$ (5) $\left(A D C^{P h}=\{C(D i p p N)\}_{2} C P h\right.$, Dipp $\left.=2,6-i P r_{2} C_{6} H_{3}\right)$ with a planar $C_{4} A s_{2}$ ring fused between two 1,3-imidazole scaffolds has been isolated as a red crystalline solid. Compound 5, formally comprising an 8π-electron $C_{4} A s_{2}$ ring, is antiaromatic and undergoes $2 e$-oxidation with AgOTf to form the 6π electron aromatic system $\left[\left(A D C^{P h}\right) A s\right]_{2}(O T f)_{2}$ (6).

B

Benzene derivatives containing heavier main-group elements (E) in an unsaturated $\mathrm{C}_{6-n} \mathrm{E}_{n}$ ring are highly appealing synthetic targets because of their intriguing electronic structure, reactivity, and physical properties. ${ }^{[1]}$ The close resemblance between benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ is wellknown, the stability of heavy heteroarenes $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{E}$, however, decreases according to $\mathrm{E}=\mathrm{P}>\mathrm{As}>\mathrm{Sb}>\mathrm{Bi}^{[2]}$ This is because of the weak $\mathrm{C}=\mathrm{E} \pi$-interaction, making these species highly reactive. The first breakthrough was made by Märkl in 1966 with the isolation of $2,4,6-\mathrm{Ph}_{3} \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{P} \cdot{ }^{[3]}$ Over the years numerous stable compounds featuring one or more phosphorus atoms in a six-membered unsaturated ring have been reported. ${ }^{[4]}$ In contrast, analogous stable arsenic (as well as Sb and Bi) species remained extremely rare. ${ }^{[5]}$ In 1971, Ashe reported the parent arsabenzene \mathbf{I} (Figure 1), ${ }^{[4 f]}$ while in 1969, Jutzi ${ }^{[6]}$ and Bickelhaupt ${ }^{[7]}$ independently described the synthesis of 9-arsaanthracene II. In 2001, ${ }^{[8]}$ Ashe and co-workers also reported 1-arsanaphthalenes III. While I was found to be

[^0]a distillable liquid, II and III could not be isolated as monomers because of their high propensity to form DielsAlder dimers. Very recently, Dostál et al. isolated a 1arsanaphthalene monomer IV and demonstrated its dienelike reactivity. ${ }^{[9]}$

Phosphorus analogs of pyrazine (1,4-diazabenzene) remained rather rare species and no stable examples of 1,4diarsinine \mathbf{V} or VI are known to date. While Kalb described the synthesis of the parent 9,10-diarsaanthracene VII already in 1921, ${ }^{[10]}$ it was, however, later shown to be a Diels-Alder dimer. ${ }^{[11]}$ Despite the significant potential of polycyclic aromatic hydrocarbons (PAHs) containing heavy maingroup elements in materials science, ${ }^{[12]}$ no stable example of a 1,4-diarsinine derivative is known to date. Very recently, we have developed a conceptually new approach to access stable cyclic main-group compounds that relies on the use of anionic dicarbenes (ADCs) as key structural motifs. ${ }^{[4 i, 13]}$

Figure 1. Selected examples of arsenic $\lambda^{3} \sigma^{2}$-heterocycles.

Herein we report the synthesis, structure, and reactivity of 1,4-diarsinine-1,4-diide VIII and the corresponding 2e-oxidized species (VIII) ${ }^{2+}$, the 1,4-diarsinine derivative, containing a $\mathrm{C}_{4} \mathrm{As}_{2}$ ring fused between two 1,3-imidazole units.

The desired precursor $\left[\left(\mathrm{ADC}^{\mathrm{Ph}}\right) \mathrm{AsCl}_{2}\right]_{2}(4)\left(\mathrm{ADC}^{\mathrm{Ph}}=\{\mathrm{C}-\right.$ $\left.(\mathrm{DippN})\}_{2} \mathrm{CPh}, \mathrm{Dipp}=2,6-i \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ was prepared by reacting C4,C5-bis-silylated-1,3-imidazolium chloride $\mathbf{3}^{[4]]}$ with AsCl_{3} as a colorless crystalline solid (Scheme 1). ${ }^{[14]}$ Like $(\mathrm{NHC}) \mathrm{AsCl}_{3}{ }^{[15]}$ ($\mathrm{NHC}=\mathrm{N}$-heterocyclic carbene) 4 may be considered as a hypervalent arsenic(+3) compound with four-coordinated arsenic atoms. Treatment of $\mathbf{4}$ with 4 equivalents of KC_{8} affords $\mathbf{5}$ as a red crystalline solid in 96% yield. Each of the arsenic atoms of $\mathbf{5}$ is in a formal oxidation state of
(a)

$\left(1 \mathrm{Pr}^{\mathrm{Ph}}\right) \mathrm{Cl}(\mathbf{1})$

(Li) $\left(\mathrm{ADC}^{\mathrm{Ph}}\right)(\mathbf{2})$

$\left[\left(\mathrm{ADC}^{\mathrm{Ph}}\right)\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{Cl}(3)$

$\left[\left(\mathrm{ADC}^{\mathrm{Ph}}\right) \mathrm{AsCl}_{2}\right]_{2}(4)$

$\left[\left(\mathrm{ADC}^{\mathrm{Ph}}\right) \mathrm{AsCl}_{2}(\mathrm{OTf})_{2}(7)\right.$

Scheme 1. a) Synthesis of 4-7. b) Solid-state molecular structure of 4. Thermal ellipsoids are displayed at the 50% probability level. H atoms and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are omitted. Aryl substituents are depicted as wire-frame models for clarity.
+1 and has two lone pairs of electrons, as in the NHCarsinidene compounds (NHC)AsR ($\mathrm{R}=\mathrm{H}$ or an aryl group). ${ }^{[16]}$ The planar $\mathrm{C}_{4} \mathrm{As}_{2}$ ring of $\mathbf{5}$ with a formal 8π electron count should be, according to Hückel's rule, antiaromatic (see below). ${ }^{[17]}$ Therefore, its 2 e -oxidation to the corresponding 6π-electron species should be a favorable process. Indeed, $\mathbf{5}$ reacts with AgOTf to quantitatively form $\mathbf{6}$ as a yellow crystalline solid (Scheme 1). Further oxidation of 6 is also viable with $\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}$ to yield 7 , which is also accessible on treatment of $\mathbf{4}$ with $\mathrm{Me}_{3} \mathrm{SiOTf}$.

Compounds 4-7 are stable under an inert gas atmosphere. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4-7 (see the Supporting Information) exhibit expected signals for the $\mathrm{ADC}^{\mathrm{Ph}}$ moieties, which are fully consistent with their solid-state molecular structures established by single-crystal X-ray diffraction. 4 (Scheme 1), 5, 6, and 7 (Figure 2) comprise a $\mathrm{C}_{4} \mathrm{As}_{2}$ framework. Each of the arsenic atoms of $\mathbf{4}$ is four-coordinated and has two chloride substituents. The As1-Cl2 (2.592(1) Å) and As2-Cl4 (2.647(1) Å) bonds are longer than the As1-Cl1 (2.355(1) \AA) and As2-Cl3 (2.336(1) \AA) bonds. The latter is within the range of those of (IPr) AsCl_{3} (2.171(1)-2.484(2) \AA). ${ }^{[15]}$ The As -C bond lengths (Table 1) of 4 (1.947(3)$1.957(3) \AA$) are smaller than that of $(\operatorname{IPr}) \mathrm{AsCl}_{3}$ (2.018(3) $\AA),{ }^{[15]}$ which is consistent with the stronger σ donor property of C 4 carbenes. ${ }^{[18]}$ The $\mathrm{C}-\mathrm{C}$ bond lengths
(1.361(4), 1.364(4) \AA) and the $\mathrm{N}-\mathrm{C}^{\prime}-\mathrm{N}$ bond angles (106.4(2), $\left.107.5(2)^{\circ}\right)$ of the $\mathrm{C}_{3} \mathrm{~N}_{2}$ ring of $\mathbf{4}$ are comparable with those of $\mathbf{1}$ (1.353(2) and 106.4(2) $\left.)^{\circ}\right) .{ }^{[19]}$ The six-membered $\mathrm{C}_{4} \mathrm{As}_{2}$ ring of $\mathbf{5}$ and $\mathbf{6}$ (Figure 2) is almost planar. The $\mathrm{C}-\mathrm{C}$ bond lengths of $\mathbf{5}$ (1.383(2)-1.384(2) \AA) and 6 (1.395(7), 1.398(7) $\AA)$ are larger than those of 4 (Table 1). The As-C bond lengths of 5 (1.918(2)-1.923(2) \AA) and $\mathbf{6}(1.856(5)-1.877(5) \AA)$ are slightly smaller than those of 4 . The shortening of $\mathrm{As}^{-} \mathrm{C}$ bonds of $\mathbf{6}$ as compared to those of $\mathbf{5}$ may be attributed to the aromatic character of $\mathbf{6}$. The As- \mathbf{C} bond lengths of $\mathbf{5}$ are smaller than those of 4 , suggesting π-conjugation of the lone pairs of As atoms to the adjacent carbon atoms of the $\mathrm{C}_{4} \mathrm{As}_{2}$ framework (see Figure 4). The As-C bonds of $\mathbf{5}$ and $\mathbf{6}$ are longer than typical As=C double bonds ($1.816-1.827 \AA$) in nonconjugated acyclic arsaalkenes ${ }^{[20]}$ but shorter than the calculated C -As single bond length $(1.96 \AA)^{[21]}$ and those measured for a 1,4 -dihydro-1,4-diarsinine species $\left[(\mathrm{RC})_{2} \mathrm{As}(\mathrm{Me})\right]_{2}$ ($\mathrm{R}=\mathrm{COO} t \mathrm{Bu}, 1.962-1.979 \AA$) containing a non-conjugated $\mathrm{C}_{4} \mathrm{As}_{2}$ ring. ${ }^{[22]}$ The elongation of $\mathrm{C}-\mathrm{C}$ and the shortening of As-C bonds of $\mathbf{5}$ and $\mathbf{6}$ concerning $\mathbf{4}$ suggest delocalization of π-electrons over the $\mathrm{C}_{4} \mathrm{As}_{2}$ ring of the former. ${ }^{[4 i, 13]}$

The calculated nucleus independent chemical shift (NICS) values for the $\mathrm{C}_{4} \mathrm{As}_{2}$ ring of $\mathbf{5}\left(\mathrm{NICS}(1)_{z z}=+17.49\right)$ and 6 (NICS $\left.(1)_{z z}=-15.00\right)$ indicate antiaromatic and aromatic character, respectively. ${ }^{[23]}$ This is also manifested in the

Figure 2. Molecular structures of $\mathbf{5},(6)^{2+}$, and (7) ${ }^{2+}$. Aryl substituents are shown as wire-frame models. Only one of the three molecules per unit cell is shown for $\mathbf{5}, \mathrm{H}$ atoms and solvent molecules are omitted. The OTf anions for $\mathbf{6}$ and $\mathbf{7}$ have been omitted. Thermal ellipsoids for the $\mathrm{C}_{6} \mathrm{~N}_{4} \mathrm{As}_{2}$ core are shown at the 50% probability level.

Table 1: Selected bond lengths (\AA) and angles (${ }^{\circ}$) of 4-7.

| | | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{As}-\mathrm{C}$ | $1.947(3)-$ | $1.918(2)-$ | $1.856(5)-$ | $1.938(9)$, |
| | | $1.957(3)$ | $1.923(2)$ | $1.877(5)$ | $1.942(1)$ |

anisotropy of the induced current density (ACID) ${ }^{[24]}$ and the magnetically induced current density (MICD) ${ }^{[25]}$ analysis of 5 and 6 (Figures S38-S41). According to MICD (Figure 3), 5 has local conjugation over the imidazole rings, while the conjugation in 6 spans over the periphery of all three rings. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal for the $C_{4} \mathrm{As}_{2}$ carbon nuclei of 6 (169.6 ppm) appeared at downfield relative to that of $\mathbf{5}$ (154.7 ppm), which can be rationalized by a ring-current effect from 6π-electrons in the former.

Figure 3. MICD profiles of 5 (left) and (6) ${ }^{2+}$ (right) calculated in a plane placed $0.5 \AA$ above the molecular plane at the BP86-D3BJ/def2TZVPP computational level. Red to dark blue represents weak to strong current density in a range between 0 to 0.001 atomic units.

The DFT-optimized structures of 5 and 6 (Figure S33) at the BP86-D3BJ/def2-SVP level of theory are in good agreement with their solid-state molecular structures (Figure 2). The HOMO-4 and HOMO-3 of $\mathbf{5}$ are the σ-type lone-pair orbitals at the arsenic atoms, while the HOMO-1 and HOMO are the other two lone-pair orbitals of π-symmetry (Figure 4a). The HOMO of 5 becomes the LUMO of 6 (Figure 4 b). The HOMO and HOMO-1 of $\mathbf{6}$ are also the $\pi-$ symmetry orbitals mainly located at the $\mathrm{C}_{4} \mathrm{As}_{2}$ ring. To further shed light on the electronic structures of $\mathbf{5}$ and $\mathbf{6}$, we also performed $\operatorname{CASSCF}(12,12)$ calculations. The active space is comprised of 12 electrons distributed in 12 orbitals originating from the π - and π^{*}-orbitals of arsenic and carbon atoms of the $\mathrm{C}_{4} \mathrm{As}_{2}$ framework along with the σ - and σ^{*}-orbitals of the arsenic atoms (see the Supporting Information). The singlet is the ground state for both 5 and $\mathbf{6}$ with the singlet-triplet energy gap ($\Delta E_{\text {S-T }}$) of 15.2 and $29.0 \mathrm{kcalmol}^{-1}$, respectively. HOMO (5: 0.94e; 6: 1.45e) and LUMO (5: 0.66e; 6: 0.85e) show fractional occupations. The CI vector coefficients indicate a weak diradical character for 5 (11.7%) and 6

Figure 4. Kohn-Sham molecular orbitals (isovalue 0.03) of 5 (a) and $(6)^{2+}$ (b) at BP86-D3BJ/def2-TZVPP level of theory. H atoms were omitted for clarity.
(7.4\%). ${ }^{[26]}$ The quantum theory of atoms in molecules (AIM) analysis points toward strongly polarized As-C bonds for 5 and $\mathbf{6}$, which is in line with positive partial charges at the arsenic atom of $0.33 \mathrm{e}(\mathbf{5})$ and 0.78 e (6). The lower conjugation in 5 than 6 can be assessed by the Wiberg Bond Indices (WBI), which are 1.05 au and 1.13 au , respectively. The UV/ Vis-NIR spectrum of 5 exhibits two main absorptions at $\lambda_{\text {max }}=$ 985 and 890 nm , which based on TD-DFT analysis may be assigned to $\mathrm{H} \rightarrow \mathrm{L}$ and $\mathrm{H} \rightarrow \mathrm{L}+5$ transitions (Table S9), respectively. The UV/Vis spectrum of $\mathbf{6}$ shows two absorptions at $\lambda_{\text {max }}=414$ and 451 nm , which are related to the $\mathrm{H}-1 \rightarrow \mathrm{~L}$ and $\mathrm{H}-5 \rightarrow \mathrm{~L}$ transitions, respectively.

Treatment of $\mathbf{5}$ with $\mathrm{Mo}(\mathrm{CO})_{6}$ under UV-irradiation led to the formation of $\left[\left\{\left(\mathrm{ADC}^{\mathrm{Ph}}\right) \mathrm{As}\right\}_{2}\left\{\mathrm{Mo}(\mathrm{CO})_{4}\right\}\right](\mathbf{8})$ as a brown crystalline solid (Scheme 2). The solid-state molecular structure of $\mathbf{8}$ (Scheme 2) reveals a distorted octahedral geometry at the molybdenum atom. The arsenic atoms of the $\mathrm{C}_{4} \mathrm{As}_{2}$ ring, having a fold angle of $60.3(1)^{\circ}$ between the $\mathrm{C}_{2} \mathrm{As}_{2}$ planes, bind to the Mo atom in a cis-fashion. In addition to the anticipated NMR signals for the $\mathrm{ADC}^{\mathrm{Ph}}$ moieties, the ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8}$ exhibits two resonances at $\delta=224.1$ and 217.1 ppm for the axial and equatorial CO ligands. Similarly, the IR spectrum of $\mathbf{8}$ shows four CO stretching bands as expected for a cis- $(\mathrm{L})_{2} \mathrm{M}(\mathrm{CO})_{4}$ complex, which may be assigned as A_{2}^{1} (medium, $1976 \mathrm{~cm}^{-1}$), B_{1} (shoulder, $1938 \mathrm{~cm}^{-1}$), A_{1}^{1} (very strong, $1850 \mathrm{~cm}^{-1}$), and B_{2} (very strong, $1815 \mathrm{~cm}^{-1}$). ${ }^{[27]}$ The $\mathrm{As}-\mathrm{Mo}$ bonds (2.785(2), 2.802(2) \AA) of $\mathbf{8}$ are longer than those of $\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}{ }^{[28]}$ which may be due to steric reasons. Each of the arsenic atoms of $\mathbf{8}$ has trigonal pyramidal geometry with a sum of the angles of ca. 271°, consistent with the presence of a lone pair of electrons. The reaction of $\mathbf{8}$ with MeOTf yielded the

$\left[\left(\mathrm{ADC}^{\mathrm{Ph}}\right) \mathrm{As}(\mathrm{Me})\right]_{2}(\mathrm{OTf})_{2}(\mathbf{9})$

Scheme 2. Synthesis and structures (inset) of 8 and 9.
methylated product 9 (Scheme 2), with the concomitant loss of the $\mathrm{Mo}(\mathrm{CO})_{4}$ fragment. The ${ }^{1} \mathrm{H}$ NMR spectrum of 9 exhibits a singlet at 0.90 ppm for the $\mathrm{As}-\mathrm{CH}_{3}$ groups along with the resonances for the $\mathrm{ADC}^{\mathrm{Ph}}$ units. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 9 shows no signal in the $170-240 \mathrm{ppm}$ region, indicating the absence of CO groups. The X-ray diffraction analysis of a sample of $\mathbf{9}$ disclosed the presence of two different types of crystals, which were found to be cis and trans stereoisomers of 9 (Figures S31 and S32). Each of the arsenic atoms is three-coordinated and has a distorted trigonal pyramidal geometry. The $\mathrm{As}^{-} \mathrm{C}_{\mathrm{Me}}$ (1.893(8)$1.955(8) \AA$) and As- $\mathrm{C}_{\mathrm{ADC}}(1.939(8)-1.971(8) \AA$) bond lengths compare well with those of $\mathrm{R}_{3} \mathrm{As}(\mathrm{R}=$ alkyl or aryl) derivatives (1.947(5), 1.960(8) $\AA) .{ }^{[29]}$ The $\mathrm{C}=\mathrm{C}$ bond lengths (av. $1.36 \AA$) of the imidazole units are similar to that of 1 (1.353(2) \AA). Thus, 9 may be described as an arsinefunctionalized 1,3-imidazolium dication.

In conclusion, the first 1,4-diarsinine-1,4-diide (5) and 1,4diarsinine (6) derivatives have been reported as crystalline solids. Experimental and computational findings suggest that the planar $\mathrm{C}_{4} \mathrm{As}_{2}$ ring of $\mathbf{5}$ and $\mathbf{6}$, formally containing 8π - and 6π-electrons, respectively, is antiaromatic and aromatic. Preliminary reactivity studies of $\mathbf{5}$ and $\mathbf{6}$ corroborate these descriptions. Further investigations are currently underway to explore the coordination chemistry of $\mathbf{5}$ and $\mathbf{6}$ as well as their applications in materials science.

Deposition numbers 2070342, 2070343, 2070344, 2070345, 2070346, 2070347 and 2070348 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for the generous support and thank Professor Norbert W. Mitzel for his constant encouragement. We thank the Paderborn Center for Parallel Computing (PC2)
for the support by providing computing time. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.
Keywords: aromaticity • arsenic • diarsinine • dicarbene • heterocycle
[1] a) N. Tokitoh, Acc. Chem. Res. 2004, 37, 86-94; b) I. Fernández, G. Frenking, G. Merino, Chem. Soc. Rev. 2015, 44, 6452-6463; c) C. W. Landorf, M. M. Haley, Angew. Chem. Int. Ed. 2006, 45, 3914-3936; Angew. Chem. 2006, 118, 4018-4040; d) D. Chen, Y. Hua, H. Xia, Chem. Rev. 2020, 120, 12994-13086.
[2] a) T. Ishii, K. Suzuki, T. Nakamura, M. Yamashita, J. Am. Chem. Soc. 2016, 138, 12787-12790; b) A. J. Ashe, in Comprehensive Heterocyclic Chemistry III (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, Oxford, 2008, p. 1039-1048.
[3] G. Märkl, Angew. Chem. Int. Ed. Engl. 1966, 5, 846-847; Angew. Chem. 1966, 78, 905-905.
[4] a) R. L. Falconer, C. A. Russell, Coord. Chem. Rev. 2015, 297298, 146-167; b) N. S. Townsend, S. R. Shadbolt, M. Green, C. A. Russell, Angew. Chem. Int. Ed. 2013, 52, 3481-3484; Angew. Chem. 2013, 125, 3565-3568; c) N. A. Piro, C. C. Cummins, Angew. Chem. Int. Ed. 2009, 48, 934-938; Angew. Chem. 2009, 121, 952-956; d) Y. Canac, D. Bourissou, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, Science 1998, 279, 2080-2082; e) O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1985, 24, 351-353; Angew. Chem. 1985, 97, 358 -359; f) A. J. Ashe, J. Am. Chem. Soc. 1971, 93, 3293-3295; g) C. Müller, L. E. E. Broeckx, I. de Krom, J. J. M. Weemers, Eur. J. Inorg. Chem. 2013, 187-202; h) P. L. Floch, Coord. Chem. Rev. 2006, 250, 627-681; i) D. Rottschäfer, B. Neumann, H.-G. Stammler, T. Sergeieva, D. M. Andrada, R. S. Ghadwal, Chem. Eur. J. 2021, 27, 3055-3064; j) A. Koner, G. Pfeifer, Z. Kelemen, G. Schnakenburg, L. Nyulászi, T. Sasamori, R. Streubel, Angew. Chem. Int. Ed. 2017, 56, 9231-9235; Angew. Chem. 2017, 129, 9359-9363.
[5] a) A. J. Ashe III, T. R. Diephouse, M. Y. El-Sheikh, J. Am. Chem. Soc. 1982, 104, 5693-5699; b) A. J. Ashe III, M. D. Gordon, J. Am. Chem. Soc. 1972, 94, 7596-7597.
[6] P. Jutzi, K. Deuchert, Angew. Chem. Int. Ed. Engl. 1969, 8, 991 992; Angew. Chem. 1969, 81, 1051-1052.
[7] H. Vermeer, F. Bickelhaupt, Angew. Chem. Int. Ed. Engl. 1969, 8, 992; Angew. Chem. 1969, 81, 1052.
[8] A. J. Ashe, X. Fang, J. W. Kampf, Organometallics 2001, 20, 2109-2113.
[9] a) V. Kremláček, M. Erben, R. Jambor, A. Růžíčka, J. Turek, E. Rychagova, S. Ketkov, L. Dostál, Chem. Eur. J. 2019, 25, 5668 $5671 ;$ b) M. Kořenková, V. Kremláček, M. Hejda, J. Turek, R. Khudaverdyan, M. Erben, R. Jambor, A. Růžička, L. Dostál, Chem. Eur. J. 2020, 26, 1144-1154.
[10] L. Kalb, Justus Liebigs Ann. Chem. 1921, 423, 39-75.
[11] H. Vermeer, R. J. M. Weustink, F. Bickelhaupt, Tetrahedron 1979, 35, 155-161.
[12] a) F. Vidal, F. Jäkle, Angew. Chem. Int. Ed. 2019, 58, 5846-5870; Angew. Chem. 2019, 131, 5904-5929; b) M. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, Chem. Rev. 2019, 119, 8291-8331.
[13] a) M. K. Sharma, F. Ebeler, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, J. Am. Chem. Soc. 2021, 143, 121 125; b) M. K. Sharma, D. Rottschäfer, T. Glodde, B. Neumann, H. G. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60,

6414-6418; Angew. Chem. 2021, 133, 6485-6489; с) M. K. Sharma, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Chem. Eur. J. 2020, 26, 11113-11118; d) D. Rottschäfer, S. Blomeyer, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Chem. Sci. 2019, 10, 11078-11085.
[14] Compound $\mathbf{3}$ was generated in situ on treatment of $\left(\mathrm{IPr}^{\mathrm{Ph}}\right) \mathrm{Cl}(\mathbf{1})$ with $n \mathrm{BuLi}$ and subsequent silylation of the anionic dicarbene $\mathrm{Li}\left(\mathrm{ADC}^{\mathrm{Ph}}\right)(\mathbf{2})$ with $\mathrm{Me}_{3} \mathrm{SiCl}$.
[15] M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. I. Schaefer, P. v. R. Schleyer, G. H. Robinson, Chem. Eur. J. 2010, 16, $432-$ 435.
[16] a) A. Doddi, M. Weinhart, A. Hinz, D. Bockfeld, J. M. Goicoechea, M. Scheer, M. Tamm, Chem. Commun. 2017, 53, 6069 6072; b) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842.
[17] E. Hückel, Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, Verlag Chemie, Berlin, 1938.
[18] a) A. Merschel, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 2969-2973; Angew. Chem. 2021, 133, 3006-3010; b) D. Rottschäfer, T. Glodde, B. Neumann, H. G. Stammler, R. S. Ghadwal, Chem. Commun. 2020, 56, 2027-2030; c) A. Merschel, D. Rottschäfer, B. Neumann, H.-G. Stammler, R. S. Ghadwal, Organometallics 2020, 39, 1719-1729.
[19] N. K. T. Ho, B. Neumann, H.-G. Stammler, V. H. Menezes da Silva, D. G. Watanabe, A. A. C. Braga, R. S. Ghadwal, Dalton Trans. 2017, 46, 12027-12031.
[20] a) L. Weber, Chem. Ber. 1996, 129, 367 - 379 ; b) M. Driess, H. Pritzkow, M. Sander, Angew. Chem. Int. Ed. Engl. 1993, 32, 283 285; Angew. Chem. 1993, 105, 273-275.
[21] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186-197.
[22] M. Arita, K. Naka, Y. Morisaki, A. Nakahashi, Y. Chujo, Organometallics 2009, 28, 6109-6113.
[23] a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888; b) A. Stanger, J. Org. Chem. 2006, 71, 883-893.
[24] D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758-3772.
[25] D. Sundholm, R. J. F. Berger, H. Fliegl, Phys. Chem. Chem. Phys. 2016, 18, 15934-15942.
[26] V. Bachler, G. Olbrich, F. Neese, K. Wieghardt, Inorg. Chem. 2002, 41, 4179-4193.
[27] J. A. Vlček, F. Baumann, W. Kaim, F.-W. Grevels, F. Hartl, J. Chem. Soc. Dalton Trans. 1998, 215-220.
[28] C. L. Bergstrom, R. L. Luck, Inorg. Chim. Acta 2001, 318, $77-$ 83.
[29] A. Nakahashi, K. Naka, Y. Chujo, Organometallics 2007, 26, 1827-1830.

Manuscript received: April 29, 2021
Revised manuscript received: May 19, 2021
Accepted manuscript online: May 20, 2021
Version of record online: June 14, 2021

[^0]: [*] Dr. D. Rottschäfer, Dr. T. Glodde, B. Neumann, Dr. H.-G. Stammler, Priv.-Doz. Dr. R. S. Ghadwal
 Molecular Inorganic Chemistry and Catalysis
 Inorganic and Structural Chemistry
 Center for Molecular Materials
 Faculty of Chemistry, Universität Bielefeld
 Universitätsstrasse 25, 33615, Bielefeld (Germany)
 E-mail: rghadwal@uni-bielefeld.de
 Homepage: www.ghadwalgroup.de

 ## Dr. D. M. Andrada

 Inorganic and Computational Chemistry Group
 Allgemeine und Anorganische Chemie
 Universität des Saarlandes
 Campus C4.1, 66123 Saarbrücken (Germany) Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202105835.
 © (c) 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

