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Bounded rational response equilibria in
human sensorimotor interactions

Cecilia Lindig-León†, Gerrit Schmid† and Daniel A. Braun

Institute of Neural Information Processing, Faculty of Engineering, Computer Science and Psychology,
Ulm University, Germany

TheNash equilibrium is one of themost central solution concepts to study stra-
tegic interactions between multiple players and has recently also been shown
to capture sensorimotor interactions between players that are haptically
coupled. While previous studies in behavioural economics have shown that
systematic deviations from Nash equilibria in economic decision-making can
be explained by the more general quantal response equilibria, such deviations
have not been reported for the sensorimotor domain. Here we investigate
haptically coupled dyads across three different sensorimotor games corre-
sponding to the classic symmetric and asymmetric Prisoner’s Dilemma,
where the quantal response equilibrium predicts characteristic shifts across
the three games, although the Nash equilibrium stays the same. We find that
subjects exhibit the predicted deviations from the Nash solution. Furthermore,
we show that taking into account subjects’ priors for the games, we arrive at a
more accurate description of bounded rational response equilibria that can be
regarded as a quantal response equilibrium with non-uniform prior. Our
results suggest that bounded rational response equilibria provide a general
tool to explain sensorimotor interactions that include the Nash equilibrium
as a special case in the absence of information processing limitations.
1. Introduction
Sensorimotor interactions in humans include cooperative examples like carrying
a table together across the room or dancing as well as competitive examples like
armwrestling, tug-of-war or playing tennis. There aremany different frameworks
to study sensorimotor interactions, including the sport sciences [1–3], the psycho-
logical sciences [4–18], the neurosciences [19,20] and even engineering when it
comes to replicating successful sensorimotor interactions in human–machine
interactions [21–24]. Quantitative concepts to study strategic interactions often
originate from the decision sciences and include game theory [25–28] and
reinforcement learning models [29,30] that were mainly developed in economics
and computer science, respectively, but have also found application in studying
sensorimotor interactions [24,31–35]. Without a doubt the central solution con-
cept in the decision sciences to understand stable interaction patterns between
different agents is the concept of theNash equilibrium [36]. Roughly, a Nash equi-
librium corresponds to a combination of strategieswhere no agent has anything to
gain by deviating unilaterally from their strategy. Abstractly, a strategy can be
conceived as a probability distribution over actions, so that Nash equilibria are
in general pairs of distributions (mixed equilibria), or in special cases pairs of
actions (pure equilibria), when the distributions concentrate their probability
mass on a single action.

Previously, it was shown that sensorimotor interactions are amenable to the
decision-theoretic framework of Nash equilibria [31]. By designing continuous
sensorimotor versions of classic 2 × 2 matrix games like the infamous Prisoner’s
Dilemma, where players are haptically coupled and experience sensorimotor
forces as pay-offs, it could be shown in several studies that human subjects
naturally converge to Nash equilibria without verbal descriptions of the
game [31–34]. While classic games are typically studied in behavioural

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.2094&domain=pdf&date_stamp=2021-11-03
mailto:cecilia.lindig-leon@uni-ulm.de
https://doi.org/10.6084/m9.figshare.c.5680381
https://doi.org/10.6084/m9.figshare.c.5680381
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20212094

2
economics in cognitive decision-making tasks with explicitly
communicated monetary pay-offs as utilities and clearly
defined and known uncertainties, sensorimotor tasks typi-
cally involve implicit, action-related utilities such as motor
effort or task accuracy and experiential probabilities that
have to be learnt from many repetitions. Moreover, motor
tasks often involve implicit learning, in contrast to explicit
learning. When comparing the results of the sensorimotor
games to the corresponding cognitive games, interesting
differences can arise, as for example in the Prisoner’s
Dilemma where sensorimotor interactions regularly converge
to the predicted Nash solution of defecting, whereas cogni-
tive versions of the Prisoners’ Dilemma regularly lead to
some level of cooperation. Other studies have also found
interesting differences between economic decision tasks and
their equivalent sensorimotor tasks [37]. In particular, it
has repeatedly been suggested that human sensorimotor be-
haviour abides by rational decision-making models [38],
whereas for economic studies deviations from rational behav-
iour have been reported more frequently—although this
idea has also been contested [39], and therefore requires
further investigation.

While the Nash equilibrium is one of the most successful
concepts in the decision sciences, it is also a well-known fact,
in particular in behavioural economics, that human behaviour
does not always perfectly align with predicted Nash equilibria
[40,41]. It is safe to assume that there are multiple reasons for
this failure depending on the exact tasks that are investigated,
but one prominent reason that has been repeatedly proposed
and quantitatively investigated in economic decision-making
tasks is bounded rationality [42]. Players that are bounded
rational are lacking perfect rationality required to maximize
expected utility [43,44] in that they may not know all possible
outcomes or the utility functions of the other players, they
may have incomplete knowledge, model uncertainty or lack
computational resources. One way to model limited infor-
mation processing capabilities is to assume an information
bound on how much players can change an a priori agnostic
strategy (e.g. a uniform distribution over actions) to an
expected utility maximizing strategy [45–48]. In the game-
theoretic literature such information bounds on players’
strategies have been investigated in the context of quantal
response equilibria [49,50], which correspond to Nash equili-
bria in the unbounded limit, but can otherwise deviate
significantly from Nash equilibrium solutions.

In behavioural economics, several studies have confirmed
deviations from Nash equilibria in economic decision-
making tasks that could be explained by quantal response
equilibria [51–53], but so far it is unknown whether similar
deviations can be observed in sensorimotor interactions. To
this end, we designed three continuous sensorimotor versions
of the traditional two-player matrix game of the Prisoner’s
Dilemma [54], corresponding to the classic symmetric form
and two asymmetric variations. Crucially, all three versions
of the game have the same single pure Nash equilibrium, but
have different quantal response equilibria. In the classic sym-
metric form of the Prisoner’s Dilemma it is assumed that
both players can decide to either cooperate or to defect, but
that regardless of what the other player decides, defecting is
always associated with a better pay-off. The dilemma arises
when both players follow this reasoning and end up with a
pay-off that is worse compared to a situation where both
players cooperate, but cooperation is unstable because each
player can improve their pay-off unilaterally by defecting.
Intuitively, in the asymmetric version of the Prisoner’s
Dilemma, we can imagine that one of the prisoners has some
form of weak alibi [55,56], that means that one player has
more or less to lose than the other player when deviating
from the stable Nash solution. Assuming that players have lim-
ited precision when maximizing expected utility due to
bounded rationality, the quantal response equilibria in the
asymmetric games differ systematically with the extra cost,
even though the Nash equilibrium remains the same. This
allows for a simple hypothesis test: does behaviour change
across the three games or does it stay the same?
2. Results
In our sensorimotor version of the Prisoner’s Dilemma, both
players were sitting next to each other and used the handles
of a robotic interface that each player could move freely in
the horizontal plane—see figure 1a and electronic supplemen-
tary material, methods. During each trial, players were
instructed to move their handle to touch the target bar that
was projected onto a mirror above the plane of movement.
The lateral position of both handles specified the individual
magnitude of a resistive force exerted by the robot handles to
oppose players’ forward motion. Thus, we could induce a
haptic coupling where the movement of both players affected
the force as a form of pay-off experienced individually by
each player in a continuous fashion. By imposing the three Pris-
oner’sDilemmapay-off landscapes shown in figure 1b, player 2
was always exposed to the same force landscape, whereas
player 1 experienced more or less costs for deviating from the
Nash solution depending on the condition. Accordingly, the
quantal response equilibrium predicts a shift in player 1’s equi-
librium strategy, but not in player 2’s, even though the Nash
equilibrium is the same for all three games. To allow for learn-
ing of the different force landscapes, a particular haptic
coupling was kept for a set of 40 trials. For our analysis in the
following, we therefore focus on trajectory endpoints over
such sets of 40 trials, where players can co-adapt.

Figure 2a shows a scatter plot of players’ endpoint positions
of the last 30 trials of all trial blocks in all three Prisoner’s
Dilemma games in relation to the Nash equilibrium at the pos-
ition (1, 1) in the top right corner. The observed spread in the
scatter plots suggests that behaviour differs across the three
games. In particular, in the asymmetric high cost condition,
deviations from the Nash equilibrium seem to be less than in
the asymmetric low cost condition, where endpoints spread
more freely in the entire plane. This impression from the scatter
plots is confirmed when looking at the two-dimensional histo-
grams in figure 2b that show a steeper increase in response
frequencies for the asymmetric high cost condition and a shal-
lower increase for the asymmetric low cost condition. This shift
in the distribution across conditions can be quantified when
determining the mean response of player 1 and player 2 from
figure 2a and comparing it across conditions—see electronic
supplementary material, figure S3. In particular, we find that
the shift in player 1’s strategy across conditions is highly signifi-
cant ( p < 0.001, rm ANOVA, F = 24.86, d1 = 2, d2 = 14), while
player 2’s strategy remains the same ( p > 0.1, rm ANOVA,
F = 0.84, d1 = 2, d2 = 14).

To analyse the results in terms of the classic Prisoner’s
Dilemma responses, we categorized the endpoints in figure 2a
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Figure 1. Experimental set-up. (a) Sensorimotor game. Players were haptically coupled by two handles that generated a force on their hand resisting their forward
movement. Importantly, each player’s force depended on both players’ lateral positions. (b) Pay-off matrices for each one of the three games including pay-offs for
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according to their quadrants into Nash responses (defect–
defect), cooperative responses (cooperate–cooperate) and
exploitative responses (defect–cooperate or cooperate–defect).
As can be seen in figure 2c, the Nash solution is predominant
in all cases, although the exploitative response (cooperate–
defect) becomes increasingly common across conditions as
player 1’s costs for deviating from the Nash equilibrium
decreases. This change in strategy can also be seen in individ-
ual subject pairs in electronic supplementary material, figure
S1, where the predominance of the Nash equilibrium response
decreases across conditions.

To quantify this strategy shift in the probability space, we
can determine how each player’s response frequency λ, to
choose the defect action, changes across conditions. As illus-
trated in figure 2d–f, player 1’s shift in response frequency λ is
highly significant (p < 0.001, rm ANOVA, F = 21.67, d1 = 2,
d2 = 14), while player 2’s strategy remains the same (p > 0.1,
rm ANOVA, F = 0.48, d1 = 2, d2 = 14). The response shift can
also be observed at the level of individual pairs, although
with higher variability—see electronic supplementarymaterial,
figure S2. In summary, we can conclude that the observed be-
havioural change across the three games is incompatible with
the Nash equilibrium prediction of no change.

To see whether the observed deviations from the Nash
equilibrium are consistent with the quantal response equili-
brium hypothesis assuming limited information processing
capabilities, we can compare the marginal distributions over
responses of each player to the equilibrium distribution
equations (2) and (3) in the electronic supplementary material
predicted by the quantal response equilibrium when adjusting
the precision parameters to fit the behaviour of subjects.
Figure 3a shows the frequencies over players’ responses in all
games independent of the other player, separate for player 1
and player 2. As the cost structure for player 2 does not
change, the quantal response equilibrium predicts that there
should be no changes in the response distribution of player 2,
which is in accordance with our data. For player 1, the quantal
response equilibrium predicts that in the asymmetric high cost
condition, response frequencies should be elevated near the
Nash equilibrium, but decreased further away from the Nash
equilibrium compared to the classic symmetric Prisoner’s
Dilemma. Similarly, in the asymmetric low cost condition, the
response frequencies around the Nash equilibrium should be
suppressed, and instead elevated further away from the Nash
solution. This prediction is confirmed, too, by the trends in the
data. The only observation that is not predicted by the quantal
response equilibrium is a border effect for player 1, where the
response frequency in the direct neighbourhood of the Nash
equilibrium declines sharply. However, such a border effect
can be taken into account in the quantal response equilibrium
model when considering non-uniform priors for the response
distribution. To fit the players’ empirical priors, we obtained
a histogram over initial positions in the first trials of each
block of 40 trials—figure 3b. It can be seen that player 1 assigns
lower probabilities to the corners of theworkspace and concen-
trates probability mass in the centre, whereas player 2 has a
more uniform prior distribution. Taking into account these
priors, the bounded rational equilibrium fits the data signifi-
cantly better—compare figure 3c. The predicted mean of
these fitted equilibrium distributions is also in good agreement
with the data, as shown in electronic supplementary material,
figure S3. In terms of the categorical response frequencies, the
quantal response equilibriumpredicts an up-shift for the asym-
metric high cost condition and a down-shift for the asymmetric
low cost condition for player 1, again in good agreement with
the data—compare figure 2d.

To investigate further how the equilibrium distributions are
reached over time, figure 4a shows how the categorical response
frequencies change on average over a course of 40 trials. For both
players, the initial probability to select either defect or cooperate
is 0.5. Over the next 10 trials, this probability gets biased towards
the defect action. Crucially, the resulting learning curves for the
three different games for player 2 are identical, whereas for
player 1 learning is sharper for the asymmetric high cost
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condition and flatter for the asymmetric low cost condition.
Accordingly, player 1 is more indifferent between cooperating
and defecting in the asymmetric low cost condition, and more
prone to defect in the asymmetric high cost condition, which
can also be seen in the temporal evolution of the combined
choices—see electronic supplementary material, figure S4.
When simulating these learning curveswith apair of continuous
reinforcement learning agents employing Q-learning as defined
in equation (8) in the electronic supplementarymaterial, this pat-
tern of differentiated learning curves for player 1 across the three
games is reproduced—figure 4b.
When analysing the behaviour of the simulated reinforce-
ment learners in the same way as the human players, we can
see in the scatter plots the same trend in that the asymmetric
high cost condition is more concentrated towards the Nash
equilibrium than the asymmetric low cost condition—
figure 5a. As for the human subjects, the two-dimensional
histograms show a steeper increase in response frequencies
for the asymmetric high cost condition and a shallower
increase for the asymmetric low cost condition—figure 5b.
Finally, when categorizing the responses into (defect–
defect), (cooperate–cooperate) and (defect–cooperate or
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cooperate–defect), it can be seen that the predominant Nash
solution becomes more frequent in the asymmetric high
cost condition, and less frequent in the asymmetric low cost
condition compared to the classic symmetric game—compare
figure 5c. The corresponding shifts for the response frequen-
cies of player 1 reproduce the same pattern as observed in the
human players. This suggests that reinforcement learning
models based on Q-learning cannot only explain convergence
to Nash equilibrium solutions [57], but more generally
convergence to quantal response equilibria.
3. Discussion
In this study, we have investigated the concept of quantal
response equilibria in human multi-agent interactions in a con-
tinuous sensorimotor version of the symmetric and asymmetric
Prisoner’s Dilemma. In particular, we have tested the hypoth-
esis that quantal response equilibria may provide a more
accurate description of stable states of human interaction than
the prevailing Nash solution concept. During the interactions,
subjects were haptically coupled and learned to avoid the
haptic coupling force opposing their forwardmotion, signifying
the pay-off for the interaction. In previous studies, it was found
that such haptic couplings between two different players in the
Prisoner’s Dilemma are compatible with the Nash solution, as
most interaction endpoints laid in the same quadrant of the
workspace than the Nash equilibrium [31]. Similar analyses
have also advocated the adequacy of the Nash solution concept
for describing sensorimotor interactions in more general scen-
arios, including mixed equilibrium games like matching
pennies [57], coordination games withmultiple Nash equilibria
like the battle of sexes, chicken or stag hunt [32] as well as
Bayesian games that require sensorimotor communication [34].
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Importantly, none of the above studies could distinguish
the Nash solution from the quantal response equilibrium, as
the two solution concepts are often very close together and per-
fectly coincide in the absence of computational or precision
limits. Accordingly, we have designed a sensorimotor inter-
action game based on three different 2 × 2-matrix games
corresponding to the classic symmetric form and two asym-
metric forms of the Prisoner’s Dilemma, thus, allowing for
the prediction of a response shift for player 1 in case of the
quantal response equilibrium and no such shift in case of the
Nash equilibrium. Our results are clearly compatible with
the predicted shift and incompatible with the no-shift
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prediction of the Nash equilibrium. As the quantal response
equilibrium can be seen as a generalization of the Nash
equilibrium that contains the Nash solution as a special case
in the limit of perfect rationality [58], our results suggest that
the quantal response equilibrium should be seen as the more
general concept to understand sensorimotor interaction,
albeit it will often coincide with the corresponding Nash
equilibrium solution.

The most common specification of the quantal response
equilibrium model is based on softmax strategies with a
single precision parameter [49]. The interpretation of softmax-
or logit-strategies in terms of bounded rational choice rules
with limited precision in terms of a trade-off between pay-off
and entropy has also put the quantal response equilibrium at
the heart of bounded rational game theory [58–64]. Extending
this trade-off by including prior strategies, bounded rational
choice can be described by Boltzmann-like distributions like
equations (4) and (5) in the electronic supplementary material,
where the individual precision parameter quantifies howmuch
a player is able to deviate from their prior towards a utility
maximizing strategy [46,65]. We found in our study that
considering players’ priors significantly improves the fit pre-
dicted by the quantal response equilibrium, especially near
the boundaries. Importantly, this is not a result from overfitting
by assuming arbitrary priors, but we extracted priors
experimentally from the distributions over initial positions
at the beginning of each block of trials. This also gives
further credence to a growing body of literature that uses uti-
lity-information trade-offs to model bounded rational
decision-making in the sensorimotor context, emphasizing
the role of the prior in such trade-offs [47].

Like the Nash equilibrium, bounded rational response
equilibria are defined as fixed points and do not detail any
mechanism regarding the decision-making and learning pro-
cesses that ultimately converge to these fixed points. In our
study we have used a continuous Q-learning model with
basis functions that was able to reproduce the predicted
shifts and the convergence to the quantal response equilibrium.
The Q-learner played all three games with the same parameter
set. Since the Q-learner is also based on a softmax strategy, it
naturally reproduces the predictions of the quantal response
equilibrium, because the action probabilities are biased by
more or less pay-off in the asymmetric conditions. To study
the learning curves we focused on the change of final positions
across trials, since we found that initial and final positions
within trajectories were generally close. Specifically, we
found that inmore than 77%of the trials for the symmetric Pris-
oner’s Dilemma, and more than 77% and 78% of the trials for
the high and low asymmetric versions, respectively, the
players’ final decision laid within a 1.6 cm neighbourhood
(10% of the workspace) of their initial position in each trial,
and there was no systematic change over the block of trials.
This suggests that adaptation processes during the trial only
had a minor effect and could be neglected.
Our study is part of a broader family of studies that investi-
gate differences between decision-making in sensorimotor
tasks and cognitive tasks [66]. The asymmetric Prisoner’s
Dilemma has been previously investigated in a number of
studies where subjects were told the pay-off matrices and
they had to make deliberate decisions over the course of a set
of repeated games [67–70]. Usually, the aim of the studies was
to investigate the effect of the asymmetry on the propensity
for cooperation. The results of the studies are difficult to com-
pare due to substantial variations in experimental design, as
there are many different ways of introducing asymmetry, for
example, affecting all entries or only some entries in the pay-
off matrix, or where one player has consistently higher payoffs
than the other, or mixed designs, etc. Nevertheless, many of the
studies suggest that asymmetry makes reasoning in the game
more difficult, and report lower rates of cooperation in asym-
metric pay-off conditions [67–70]. In contrast, in our
sensorimotor games the frequency of the cooperative solution
(cooperate–cooperate) is not modulated by the asymmetry—
compare electronic supplementary material, figure S4. Instead,
an increase or decrease in the prevalence of the Nash solution
(defect–defect) is accompanied by a corresponding decrease
or increase in exploitative (cooperate–defect) responses, where
player 1 cooperates more or less depending on the asymmetry
condition. This is not only in line with the quantal response
equilibrium prediction, but also agrees with previous exper-
imental results [31] that have shown that cooperation does
not arise as a stable solution during haptic coupling, but only
in cognitive versions of the Prisoner’s Dilemma involving con-
scious deliberation. Our current study adds to this previous line
of research by highlighting the importance of taking into
account limited information processing capabilities due to
bounded rationality and how to capture these using
information constraints [45–48].
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