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Gastric cancer (GC) is a common digestive tumor which ranks the fourth most common malignancy worldwide. Immunotherapy
is a promising treatment for GC, especially for advanced gastric cancer (AGC). However, in clinical practice, not all patients are
sensitive to immunotherapy. Recent studies showed that tumor mutation burden (TMB) is closely correlated with the response of
immunotherapy. The current study identified a TMB-related genes’ signature to predict the prognosis and immune feature of GC
patients. Firstly, we acquired the TMB data and expression data from The Cancer Genome Atlas (TCGA) and the National Center
for Biotechnology Information (NCBI) GEO databases. Then, we extracted TMB-related genes from the expression data of TCGA
and two GEO cohorts. By using univariate Cox analysis, we identified that the 429 genes were correlated to GC patients’ overall
survival. Subsequently, an immune prognostic signature was constructed by using the least absolute shrinkage and selection
operator analysis (LASSO) and multivariate Cox regression analysis. The signature could be utilized to predict the prognosis of
GC patients. In addition, the signature showed a closed correlation with immune feature of GC patients. In conclusion, our
risk signature could offer hints for the prognosis of GC patients and might provide insights to formulate new immunotherapy
strategies for GC patients.

1. Introduction

Gastric cancer (GC) is one of the most common and aggres-
sive tumors with over one million newly diagnosed cases and
768,000 deaths every year [1]. With the development of
diagnosis and treatment of GC, the prognosis of patients
has been improved. However, the overall survival of GC
patients is still unsatisfactory. In particular, the 5-year over-
all survival rate of advanced gastric cancer is less than 5%
[2]. The main reasons for poor survival of GC patients are
tumor resistance to radiotherapy and chemotherapy and
tumor immune escape. In recent years, immunotherapy
has achieved the greatest improvement [3]. Immunotherapy
such as immune checkpoint inhibitors (ICIs) could improve
the overall survival of various cancers, including GC [4–7].
Clinical trials of Javelin Gastric 100, KEYNOTE-062, and
Checkmate 649 demonstrated that immunotherapy has

potential clinical application value [8–10]. However, in clin-
ical application, the effective rate of the response to immu-
notherapy is only 20%. Therefore, this situation forced us
to find effective biomarkers to predict the prognosis and
immunotherapy response of GC.

Tumor mutation burden (TMB) was defined as the num-
ber of nonsynonymous somatic coding errors per megabase in
cancer cells [11]. Mutations in driver genes might lead to the
occurrence of tumors. However, mutation in tumor-specific
neoantigens exerts a vital role in tumor-specific T cell-
mediated antitumor immunity [12, 13]. Tumor cells will pro-
duce more new antigens with the increasing TMB level, and
some of tumor-specific neoantigens could be recognized by
immune cells, resulting in the death of tumor cells. Thus,
TMB was utilized to predict the prognosis and immunother-
apy response of tumors [14, 15]. TMB was proved to be effec-
tive in predicting the clinical benefit from immune checkpoint
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Figure 1: Continued.
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inhibitors in non-small-cell lung cancer and colorectal cancer
[16, 17]. However, very little is known about the correlation
between TMB-related genes and immune feature of GC.

In this study, we acquired TMB-related genes of GC
from TCGA database. Three GC transcriptome cohorts were
used to obtain and validate the prognostic function of the
TMB-related genes’ signature. The results demonstrated that
the signature of TMB-related genes has predictive function
in all three included GC cohorts. We also found that our sig-
nature is correlated with the immune characteristics of GC.
In particular, the risk signature could be used to predict
the potential immunotherapeutic benefit of GC patients.

2. Materials and Methods

2.1. Data Acquisition and Processing. The transcriptome
sequence data of GC (FPKM) and corresponding clinical
information were acquired from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). The
tumor mutation burden (TMB) data was downloaded from
The Cancer Genome Atlas (TCGA) database (https://portal
.gdc.cancer.gov/). Two GEO chips and their corresponding
clinical information were obtained from the National Center
for Biotechnology Information (NCBI) GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Two chips’ accession
numbers are GSE62254 and GSE84437, respectively.
Patients with survival time more than 30 days were included.
The genes with mutation over in 10 or more samples (3,569
genes) were selected for the construction of the signature.

2.2. Establishment of the Risk Signature. TCGA expression
data was transformed into TPM. We intersected the TCGA
cohort with GSE62254 and GSE84437 to obtain genes
expressed in all three cohorts. Then, we extracted the genes
with mutation over in 10 or more samples from three inter-
sected expression matrix. A total of 2,891 TMB-related genes
were screened for further analysis.

For the construction of the risk signature, we merged
TCGA expression matrix and GSE62254 to acquire training
set. Another GEO data GSE84437 was used as external vali-

dation set (testing set). Univariate Cox analysis was per-
formed to identify genes with prognostic function in the
training set. Then, LASSO regression analysis was conducted
on 429 candidate prognostic TMB-related genes to obtain
optimal candidates. A total of 29 genes were identified. Mul-
tivariate Cox analysis was utilized to construct the risk
signature.

Risk score calculation formula is as follows:

Risk score patientsð Þ = 〠
n

k=1
coefficient gene kð Þ ∗ expression gene kð Þ:

ð1Þ

In this formula, n, k, coefficient, and expression repre-
sent for the number of selected gene, gene’s number, coeffi-
cient value, and gene’s expression value, respectively.
Principal component analysis (PCA) and t-distributed sto-
chastic neighbor embedding (t-SNE) were performed to
visualize the efficiency of the signature in dimensionality
reduction. R packages of “limma,” “sva,” “survival,” “survmi-
ner,” and “glmnet” were used in the above analyses.

2.3. Prognostic Function Exploration and External Validation
of the Signature. All patients in training set and testing set
were divided into two subgroups (high-risk group and low-
risk group) according to the median risk score value.
Kaplan-Meier analysis was performed on the training set
and testing set to test the prognostic function of the risk sig-
nature. A time-dependent receiver operating characteristic
curve was conducted to validate the accuracy of the risk sig-
nature in training set and testing set, respectively. The
expression of genes in the signature was visualized using a
heatmap.

Chi-square test was utilized to determine the correlation
between the risk pattern and clinicopathological characteris-
tics. Results were analyzed and visualized by using R pack-
ages of “limma,” “ggpur,” and “pheatmap.”

2.4. Independent Prognostic Function and Survival Prediction
Function of the Signature. Univariate Cox analysis was
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Figure 1: Establishment of the risk signature. (a, b) LASSO regression analysis was used to screen the prognostic optimal candidate genes.
(c) Multi-Cox analysis was conducted for the construction of the risk signature. (c–g) PCA and t-SNE analyses were used to visualize the
dimensionality reduction annotated by the risk signature.
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utilized to determine the prognostic value of risk score and
patients’ clinicopathological characteristics. Multivariate
Cox analysis was further performed to screen factors with
independent prognostic function. A clinical related receiver
operating characteristic curve was plotted to prove that risk
score is the optimal factor to predict patients’ survival.

A nomogram was constructed to predict patients’ sur-
vival time by using factors with independent prognostic
function. A calibration curve and a time-dependent receiver
operating characteristic curve were used to assess the accu-
racy of the nomogram.

R packages of “survival,” “survivalROC,” “survminer,”
“timeROC,” “rms,” and “regplot” were utilized in the above
analyses.

Pathway enrichment and immune cell infiltration differ-
ence annotated by the signature.

Gene set enrichment analyses (GSEAs) were conducted
to define KEGG enrichment differences between the high-
risk group and the low-risk group. Results were visualized
by using R package of “limma,” “http://org.hs.eg/.db,”
“enrichplot,” and “clusterProfiler.” Immune cell infiltration
statuses of GC patients were assessed by using R packages
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Figure 2: (a) Predictive function of the risk signature in training set. Kaplan-Meier analysis was conducted to determine survival difference
between the high-risk group and the low-risk group. (b, c) Receiver operating characteristic (ROC) curve was plotted to assess the accuracy
of the signature in predicting patients’ survival outcomes. (d, e) Patients were ranked according to risk score value, and the survival status of
the patients was visualized. (f) A heatmap was plotted to visualize the expression pattern difference of the genes in the signature between the
high-risk group and the low-risk group.
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of “limma,” and “MCP counter.” Results were visualized by
using R packages of “limma” and “ggpubr.”

2.5. Immune Pathway Difference and Immunotherapy
Response Prediction. The single-sample gene set enrichment
analysis (ssGSEA) method was utilized to evaluate the differ-
ence of immune-related pathways between the high-risk
group and the low-risk group. R packages of “limma,”
“GSVA,” “GSEABase,” “ggpubr,” and “reshape2” were used
in above analysis.

The expression difference of HLA-related genes and
immune checkpoint genes between two groups of patients
was determined by using “limma,” “ggplot2,” “reshape2,”
and “ggpubr” packages of R. Tumor Immune Dysfunction
and Exclusion (TIDE) score was acquired from http://tide
.dfci.harvard.edu. Pearson correlation test was used to evalu-
ate the correlation relation between risk score and TIDE pre-
diction score. The immunotherapy response difference
between high-risk and low-risk groups of patients was eval-
uated by using “limma” and “ggpubr” package of R.
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Figure 3: (a) Predictive function of the risk signature in testing set. Kaplan-Meier analysis was conducted to determine survival difference
between the high-risk group and the low-risk group. (b, c) Receiver operating characteristic (ROC) curve was plotted to assess the accuracy
of the signature in predicting patients’ survival outcomes. (d, e) Patients were ranked according to risk score value, and the survival status of
the patients was visualized. (f) A heatmap was plotted to visualize the expression pattern difference of the genes in the signature between the
high-risk group and the low-risk group.
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2.6. Statistical Analysis. All data were analyzed by using the
R (version 4.1.0) software. Survival differences were deter-
mined by using the Kaplan-Meier analysis. Correlation
between risk pattern and clinical characteristics was deter-
mined by using chi-square test. Pearson correlation test
was used to evaluate the correlation coefficient.

3. Results

3.1. Establishment of the TMB Gene-Related Signature in GC.
Tumor mutation burden (TMB) is strongly associated with
gastric cancer (GC). To identify TMB-related genes in GC,
we obtained the TMB data of GC and acquired genes with
mutation more than in 10 samples. A total of 3,569 genes
were identified. To further acquire the expression data of
these 3,569 genes, we obtained the expression data from
The Cancer Genome Atlas (TCGA) and the National Center
for Biotechnology Information (NCBI) GEO databases.
Patients with survival time less than 30 days were excluded
(including 305 samples from TCGA, 300 samples from
GSE62254, and 431 samples from GSE84437). After normal-
izing and intersecting the expression data from two data-
bases, 2,891 out of 3,569 TMB-related genes were screened
for further studies.

To obtain the TMB-related genes’ risk signature associ-
ated with the prognosis of all GC patients, we constructed
the risk signature by applying TCGA cohort and
GSE62254 cohort (training set) and validated the perfor-
mance of the risk signature in GSE84437 cohort (testing
set). Univariate Cox analysis was performed to screen prog-
nostic TMB genes. 429 out of 2,891 genes were acquired
(Supplementary table 1). 429 candidate prognostic TMB
genes were subjected to 1,000 times LASSO regression
analysis, and 29 best candidates were obtained
(Figures 1(a) and 1(b) and Supplementary table 2). Then,
we conducted multivariate Cox analysis on these 29 genes
to construct the risk signature. A total of 13 genes
(SPTBN4, SLCO6A1, NES, CDH6, KCNT1, ABCB5, EHBP1,

LRRCC1, KCNG4, APLP2, MEFV, CLGN, and RMB15)
were identified in the risk signature (Figure 1(c) and
Supplementary table 3). According to the median value of
risk score, all patients were divided into the high-risk
group and the low-risk group. Based on the risk pattern of
GC patients, principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) were
used for dimensionality reduction of the genes. We
observed that our risk signature has an elevated efficiency
in distinguishing the high-risk and low-risk patients, both
in training set and testing set (Figures 1(d)–1(g)).

3.2. Predictive Performance of the Signature. In order to test
the prognostic function of the signature in training set, we
first constructed a survival curve and observed that the sur-
vival probability of high-risk patients was lower than that in
low-risk patients. (Figure 2(a)). The predictive accuracy of
the signature was tested using a time-dependent curve of
the ROC. The area under the curve (AUC) values for each
ROC curve were 0.684, 0.749, and 0.762, at one year, three
years, and five years, respectively (Figure 2(b)). The median
cut-off value of the five years’ ROC curve is 0.941
(Figure 2(c)). According to the median risk score of GC
patients, we ranked all patients and analyzed their distribu-
tion (Figure 2(d)). We found that mortality was higher in
the high-risk group than in the low-risk group. With the
increasing of risk score, the number of death patients also
increased (Figure 2(e)). Among 13 genes in the signature,
five genes (SPTNN4, KCNT1, LRRCC1, MEFV, and
RMB15) were downregulated in the high-risk group.
Another seven genes (SLCO6A1, NES, CDH6, ABCB5,
EHBP1, KCNG4, APLP2, and CLGN) were upregulated in
the high-risk group (Figure 2(f)).

To further validate the function of the signature, we also
test the predictive performance of the signature in the testing
group. Kaplan-Meier analysis indicated that patients with
higher risk score have worse survival outcomes than patients
in the low-risk group (Figure 3(a)). AUC values of the time-
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Figure 4: Relationship between risk pattern and clinicopathological characteristics of GC patients. (a) A heatmap was used to show the
correlation between risk pattern and all clinicopathological characteristics of GC patients. (b) Correlation between risk score and tumor
stage of GC patients. (c) Correlation between risk score and metastasis stage of GC patients. (d) Correlation between risk score and
clinic stage of GC patients.
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dependent ROC were 0.614, 0.583, and 0.599, at one year,
three years, and five years, respectively (Figure 3(b)). The
median cut-off value of the five years’ ROC curve is 0.929
(Figure 3(c)). After ranking all patients according to the
median value of risk score (Figure 3(d)), we also found that
the mortality in the high-risk score group is higher than the
low-risk group (Figure 3(e)). Thirteen genes between the
high-risk group and the low-risk group exhibited a similar
expression pattern in the training set (Figure 3(f)). These
results suggested that our signature could be applied to pre-
dict the prognosis of GC patients.

3.3. Clinical Evaluation by Using the Risk Signature. To
detect the relationship between the risk pattern and clinico-
pathological characteristics of GC patients, we conducted
chi-square test and found that risk score was significantly
correlated with tumor stage, metastasis stage, and clinical
stage (Figure 4(a)). Patients with tumor stage III have a
higher risk score (Figure 4(b)). Patients with metastasis have
a higher risk score than that of patients without metastasis
(Figure 4(c)). In addition, we also observed that with an
increasing of clinical stage, patients with higher clinical stage
have higher risk score (Figure 4(d)).

In clinical application of the prognostic model, we often
encountered patients with various clinical characteristics. To
further explore the clinical application value of the signature,
we divided the patients into two groups according to differ-
ent clinical characteristics and analyzed the difference of sur-
vival outcomes between low-risk patients and high-risk
patients in all subgroups. Interestingly, we observed that in
all subgroups, the survival prognosis of high-risk patients
was worse than that of low-risk patients (Supplementary
Figure 1), indicating that our risk signature is effective in
predicting the prognosis of patients with various clinical
characteristics.

3.4. Independent Prognostic and Survival Time Predictive
Value of the Risk Signature. Kaplan-Meier analysis demon-
strated that our risk signature has undeniable value in pre-
dicting the prognosis of GC patients. In order to further
prove that the prognostic function of the risk signature is
not related to the clinical characteristics of the patients, we
performed univariate Cox analysis and multivariate Cox
analysis and found that risk score could be used as an inde-
pendent prognostic indicator (Figures 5(a) and 5(b)), which
further proved the prognostic value of our signature. In
addition, AUC value of ROC curve indicated that risk score
is superior to other clinical characteristics in predicting the
prognosis and survival of patient (Figure 5(c)). To better
explore the prognostic value of the risk signature, we com-
bined risk score and significant clinical characteristics in
multivariate Cox analysis (including M stage, T stage, age,
and N stage) and constructed a nomogram to predict GC
patients’ survival time (Figure 5(d)). The accuracy of the
nomogram was determined by calibration curves and ROC
curves. The calibration curves showed that the overall sur-
vival (OS) time predicted by the nomogram is almost the
same as the observed OS time (Figure 5(e)). Furthermore,
AUC value of ROC curves was 0.752, 0.794, and 0.798, at
one year, three years, and five years, respectively
(Figure 5(f)).

3.5. Association between the Risk Signature and Immune
Feature of GC Patients. Consider that TMB is closely corre-
lated with immune feature especially in the response to
immunotherapy. To determine whether TMB-related genes’
signature could separate patients into two subgroups with
different features, we compared the differences in the enrich-
ment of the pathways between the high-risk group and the
low-risk group by using GSEA. Interestingly, we observed
that immune-related pathways such as antigen processing
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Figure 5: Independent prognostic and survival time predictive value of the risk signature. (a, b) Univariate Cox analysis and multivariate
Cox analysis were utilized to evaluate the independent prognostic value of the signature. (c) Receiver operating characteristic curve was
plotted to prove the superiority of the risk score in predicting patient’s survival than clinical characteristics. (d) A nomogram was
constructed to predict patients’ survival time by using indicators with independent prognostic function. (e, f) A calibration curve and a
ROC curve were plotted to test the accuracy of the nomogram at 1, 3, and 5 years, respectively.
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and presentation, autoimmune thyroid disease, graft versus
host disease, natural killer cell-dediated cytotoxicity, and
allograft rejection were enriched in the low-risk group
(Figures 6(a) and 6(b)), which suggested that the low-risk
group might have better immune function in response to
tumor. Apart from this, we also detected the immune infil-
tration differences between low-risk and high-risk patients
by using R package of “MCP counter.” We found that low-
risk group patients have a more infiltration of CD8+ T cells,
NK cells, T cells, and cytotoxic lymphocytes. However, low-
risk group patients have less infiltration of neutrophils,
fibroblasts, and endothelial cells (Figures 6(c)–6(l)). These
results suggested our risk signature is closed correlated with
the immune feature of GC patients.

3.6. Correlation between the Risk Signature and Potential
Benefit of Immunotherapy. To better understand the
immune feature differences between low-risk patients and
high-risk patients, we further compared the difference of
13 immune-related pathways between the high-risk group
and the low-risk group by using the ssGSEA method. The
result demonstrated that 11 of the 13 pathways have higher
activities in the low-risk group, whereas other two pathways
exerted no difference between the two groups (Figure 7(a)).
In addition, it is reported that patients with higher levels of
TMB could produce more proteins that could be recognized
by the immune system. Immune cells are more likely to rec-
ognize and eliminate those tumor cells with high TMB.
Based on this, we speculated that the low-risk group might
have a better immunotherapy response than the high-risk
group. The expression of immune checkpoint genes and
HLA-related genes was closely associated with immunother-
apy response [18, 19]. Thus, we evaluated the expression of
immune checkpoint genes and HLA-related genes between
two groups. As expected, we observed that most of the
immune checkpoint genes and all 16 HLA-related genes
have a higher expression level in the low-risk group
(Figures 7(b) and 7(c)). In addition, we also acquired the
Tumor Immune Dysfunction and Exclusion (TIDE) score
and compared the difference in TIDE score between two
groups. Results indicated that the TIDE score of patients in
the high-risk group was relatively higher, indicating that
the immunotherapy response of patients in the high-risk
group was poor (Figure 7(d)). There was a significant posi-
tive correlation between risk score and TIED prediction
score (Figure 7(e)). To extend our findings, we acquired a

cohort treated with ICI (IMvigor210 cohort) and validated
the function of our signature in predicting immunotherapy
response. Results also indicated that patients with progres-
sion disease (PD) and stable disease (SD) had higher risk
scores (Figure 7(f)). All these evidences suggested that our
risk signature could be used to predict the potential benefits
of immunotherapy.

4. Discussion

Gastric cancer (GC) is one of the most common malignan-
cies, which is characterized by poor prognosis. According
to the Global Cancer Statistics 2020, GC is the fourth most
common cause of cancer mortality [1]. The main reasons
for poor survival of GC patients are the resistance of tumor
cells to radiotherapy and chemotherapy and tumor cell
immune escape. With the development of the treatment in
GC, emerging treatment strategies, especially immunother-
apy, have been widely used in GC patients. The clinical trials
of Javelin Gastric 100, KEYNOTE-062, and Checkmate 649
have proved that first-line treatment of immunotherapy
could improve the prognosis of some GC patients [8–10].
However, the effective rate of the response to immunother-
apy is only 20%. Consider the poor prognosis and the poten-
tial benefit of immunotherapy. It is urgent to find effective
biomarkers to predict the prognosis and immunotherapy
response of GC patients.

Tumor mutation burden (TMB) is defined as the num-
ber of nonsynonymous somatic coding errors per megabase
in cancer cells [11]. Increasing evidences indicated TMB
could be used to predict patients’ prognosis. It is reported
that higher levels of TMB are associated with better survival
outcomes in numerous tumors but worse prognosis in a few
tumors [20, 21]. The levels of TMB are also correlated with
the prognosis of GC patients. The increasing TMB level indi-
cates a good prognosis of GC patients [22–24]. In addition,
TMB could be used to predict the therapy response of
patients to immunotherapy in multiple cancer types
[25–27]. A recent study revealed that TMB might promote
infiltration of immune cells [28], which indicated that
TMB is associated with immune feature of GC. However,
there are few studies focus on the function of TMB-related
genes in GC. Further researches on the correlation between
TMB-related genes and immune feature of GC will be help-
ful to identify the critical predictive biomarkers.
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To explore the correlation between TMB-related genes
and GC, we first acquired TMB-related genes from TMB
data of The Cancer Genome Atlas (TCGA) database. Then,
the expression matrix of TCGA, GSE62254, and GSE84437
was intersected. A total of 2,891 TMB-related genes were
identified in these three cohorts. We constructed a predictive
signature using TCGA cohort and GSE62254 cohort (train-
ing set). Another cohort GSE84437 was used as an external
validation set to prove the prediction function of the risk sig-
nature. Through various methods, we constructed a risk sig-
nature using 13 TMB-related genes (SPTBN4, SLCO6A1,
NES, CDH6, KCNT1, ABCB5, EHBP1, LRRCC1, KCNG4,
APLP2, MEFV, CLGN, and RMB15). Interestingly, we only
found the expression of two genes was reported to be corre-
lated with GC. CDH6 was reported to be associated with
tumor progression and poor prognosis of GC [29]. ABCB5
was identified as hub gene which correlated with the patho-
genesis and prognosis of GC [30]. However, the expression
of other 11 genes has not been reported to be related with
GC. We speculated the main reason is that the genes in the
signature were screened from TMB-related genes, not from
the differentially expressed genes between normal tissues
and tumor tissues of GC patients. After acquiring the risk
signature, we tested the predictive function of the risk signa-
ture. Results demonstrated that our signature could be used
to predict the prognosis of GC patients in both the training
set and the testing set.

TMB can affect the degree of immune infiltration and
response of immunotherapy in a variety of cancers
[31–33]. In order to further explore the deeply mechanism
mediated by our risk signature, we conducted the GSEA to
determine the differences in the enrichment of the pathways
between the high-risk group and the low-risk group. We
found that immune-related pathways such as antigen pro-

cessing and presentation, autoimmune thyroid disease, graft
versus host disease, natural killer cell-dediated cytotoxicity,
and allograft rejection were enriched in the low-risk group,
which indicated that these two groups have different
immune feature. Thus, we further determined the difference
of immune cell infiltration between two groups. We
observed that low-risk group patients have a more infiltra-
tion of CD8+ T cells, NK cells, T cells, and cytotoxic lym-
phocytes. However, low-risk group patients have a less
infiltration of neutrophils, fibroblasts, and endothelial cells.
High infiltration of CD8+ T cells, NK cells, and cytotoxic
lymphocytes was reported to be associated with better sur-
vival outcomes in patients with cancers [34–37]. High neu-
trophil infiltration of immune cells indicated a higher
malignancy and a worse prognosis of pancreatic ductal ade-
nocarcinoma and hepatocellular carcinoma [38, 39]. Infiltra-
tion of neutrophils could also promote migration and
invasion of gastric cancer cells via EMT pathway [40]. Fibro-
blasts are associated with poor prognosis and could enhance
tumor progression in various tumors including GC [41–43].
Endothelial cells were also reported to be associated with
poor prognosis of GC and could promote glioma cell migra-
tion [43, 44]. These results further supported the application
of our risk model as a biomarker in predicting the prognosis
of GC and suggested that our risk signature is closely corre-
lated with the immune feature of GC patients.

Our above results indicated the risk signature could
divide patients into two subgroups with different immune
feature. To explore whether our signature could also exert
function in predicting immunotherapy response, we com-
pared the expression of HLA-related genes and immune
checkpoint genes between the low-risk patients and the
high-risk patients. Patients with higher expression of HLA-
related genes and immune checkpoints might have a better
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Figure 7: Predicting immunotherapy response by using the risk signature. (a) Differences in the enrichment of immune-related pathways
were determined by using ssGSEA (∗∗P < 0:01 and ∗∗∗P < 0:001). (b) Expression level difference of immune checkpoint genes between the
low-risk group and the high-risk group (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (c) Expression difference of HLA-related genes between
the low-risk group and the high-risk group (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (d) TIDE predicting score was acquired to predict
immunotherapy response of GC patients. (e) Correlation between TIDE predicting score and risk score. (f) External validation set
(IMvigor210) was used to determine the function of the signature in predicting patients’ immunotherapy response.
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response to immune checkpoint blockade [19, 45]. We
found that expression of most HLA-related genes and
immune checkpoints genes was higher in the low-risk group,
indicating a better immunotherapy response. We also
obtained the immunotherapy data from TICA to validate
our results. Results demonstrated that patients in the low-
risk group might have a better immunotherapy response,
which is consistent with our findings. In addition, we
acquired the immunotherapy data of an external cohort
treated with ICI (IMvigor210 cohort) and validated that
our signature could be used to predict immunotherapy
response of tumor patients.

In conclusion, our findings indicated that the TMB-
related genes’ signature has a predictive function in GC
patients. The risk signature could also be used to predict
the immune feature especially for the immunotherapy of
GC patients, which might provide valuable clues for the
development of immunotherapy in GC.
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