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CD4+ Foxp3+ regulatory T cells (Tregs) are an essential component of immune homeosta-
sis. Modulation of Treg function has been proposed as a means of treating autoimmune 
conditions and preventing rejection of organ transplants, although achieving this goal 
will require a detailed understanding of Treg signaling pathways. Signaling within Tregs 
is known to differ considerably from that observed in other T cell subsets. Of note, Tregs 
are the only cell type known to constitutively express CD25, the main ligand-binding 
subunit of the IL-2 receptor. The PI(3)K/Akt/mTOR cascade constitutes a major signaling 
pathway downstream of IL-2 and is closely tied to cellular metabolism. Due to increas-
ing recognition of the links between cellular fuel usage and immune cell function, the 
interplay between IL-2 signaling and Treg metabolism represents an important space 
for exploration and a potential approach for immunomodulation. Here, we discuss how 
IL-2 may affect Treg metabolism via PI(3)K signaling, as well as the effects of altered 
metabolism on Treg lineage stability and suppressor function.
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iNTRODUCTiON

Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and in preventing the 
onset of autoimmune diseases (1). Modulation of Treg suppressor function is being actively explored 
as a promising new approach to treat autoimmunity (2–4), promote transplant tolerance (5, 6), 
and enhance anti-tumor responses (7, 8). Although several subsets of Tregs have been described, 
the best characterized is defined by the expression of CD4, CD25, and the transcription factor 
Foxp3 (9). The majority of circulating Tregs originate from the thymus and are termed “tTregs.” 
Naïve CD4+ T cells may also be induced to express Foxp3 in the periphery, thereby constituting a 
minority “pTreg” population (10) which is required for fetal tolerance (11). Although reports do 
not always specify which of the two populations is examined, any findings concerning “Tregs” most 
likely apply primarily to tTregs since they constitute the majority of Tregs in blood and secondary 
lymphoid organs. The importance of Tregs in maintaining peripheral tolerance is illustrated by the 
fact that mice (12) or humans (13) lacking Foxp3 suffer severe systemic autoimmunity. Similar, 
albeit less severe, autoimmune phenotypes are observed in mice (14) or humans (15) lacking CD25. 
Most Tregs constitutively express CD25 in addition to Foxp3, and it is generally believed that Tregs 
require continuous IL-2 signals through CD25 for their survival, lineage maintenance, and sup-
pressor function (16, 17).
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FigURe 1 | Overview of IL-2, IL-15, and IL-7 receptor components, and effects of knockouts on regulatory T cell (Treg) generation. The IL-2 and IL-15 receptors are 
trimers with common β and γc subunits (CD122 and CD132, respectively) that mediate signaling. High ligand affinity is conferred by their α subunit (CD25 for IL-2, 
CD215 for IL-15) which does not signal. The IL-7 receptor is a dimer of CD127 (α) and CD132 (γc). Disruption of IL-2 signaling is detrimental to Treg development 
and subsequent Treg representation in the periphery, as measured by the percentage of Foxp3+ cells among CD4+ cells in the thymus and spleen, respectively. In 
the above figure, losses in Tregs are represented visually as black bars below knockout mouse genotypes, with relevant references for each knockout provided 
immediately to the right. Deletion of IL-2 or CD25 (IL-2Rα) leads to an approximate 50% reduction in Foxp3+ cells. In the absence of IL-2 signaling, IL-15 or IL-7 
appears to compensate, albeit imperfectly. Concomitant knockout of IL-2 and IL-15, or knockout of CD122 (the shared β subunit of both IL-2 and IL-15 receptors), 
exacerbates defects in Treg production. Removal of signaling through all three cytokines, whether through deletion of the common gamma chain CD132 (γc) or 
through the more targeted CD122/CD127 double knockout, virtually eliminates Treg development. Mice deficient in IL-15, IL-7, or CD127 (IL-7Rα) alone experience 
lymphopenia, but have normal percentages of Foxp3+ cells among CD4+ T cells and do not develop autoimmunity. Thus, IL-15 and IL-7 may partially compensate 
for Treg development in the absence of IL-2 signaling, but neither are required for Treg development when IL-2 signaling is fully functional.
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It is now appreciated that cell-intrinsic metabolic pathways 
directly impact cellular fate and function (18). Broadly speak-
ing, aerobic glycolysis tends to support the function of pro-
inflammatory cells, while fatty acid oxidation (FAO) tends to 
be used by anti-inflammatory cells such as Tregs (19). However, 
increasing evidence shows that Tregs also utilize aerobic gly-
colysis to achieve full suppressor function (20, 21). These 
metabolic programs are controlled in large part by the PI(3)K/
Akt/mTOR signaling axis (22), offering multiple pharmacologic 
avenues to differentially target immune subsets depending on 
their metabolic preferences. Given the importance of CD25 for 
initiating PI(3)K signaling (23), in this review, we will focus on 
how IL-2 may interact with metabolism and the mechanisms 
through which metabolism influences Treg function. We touch 
on the difficulty of directly evaluating the interplay between 
IL-2 signaling, metabolism, and Treg function using existing 
germline knockout models and propose a means by which this 
issue can be addressed.

iL-2 AND Tregs

iL-2 Signaling
The IL-2 receptor is composed of three subunits: CD25, CD122, 
and CD132, which are, respectively, referred to as the α, β, and γc 
(also termed the common gamma chain) subunits (24). CD122 
and CD132 are the sole mediators of downstream signaling and 
may form a heterodimer capable of low-affinity binding to IL-2 
(16) (Figure 1). The alpha subunit CD25 does not signal, but is 
needed for high-affinity binding to IL-2. Most Tregs constitu-
tively express all three subunits, while conventional CD4+ and 

CD8+ T cells constitutively express the CD122/CD132 dimer and 
only express CD25 upon activation. Conventional T cells begin 
producing IL-2 1 h after activation (25) and constitute the pri-
mary source of IL-2 in vivo. IL-2 activates three major signaling 
axes: the STAT5, PI(3)K, and MAPK/ERK pathways. STAT5 is 
particularly important for Treg development, as it is necessary to 
initiate Foxp3 expression (26).

The receptors for two other cytokines, IL-15 and IL-7, share 
subunits with the IL-2 receptor and partially compensate for 
losses of IL-2 or CD25 (27). The IL-15 receptor is a trimer that 
is strikingly similar to the IL-2 receptor, sharing the CD122 and 
CD132 subunits used for downstream signaling. Its alpha subunit 
CD215, like CD25, does not signal but instead confers high ligand 
affinity (28). On the other hand, the IL-7 receptor is a dimer 
composed of CD132 and a unique alpha subunit, CD127, which 
is capable of activating STAT5 (29).

iL-2 is (Partially) Needed for Treg 
Development
Germline knockouts of IL-2 or its receptor components yield 
similar autoimmune phenotypes due to Treg deficiency (14, 30).  
Mice develop hemolytic anemia and colitis accompanied by 
thymic involution, lymph node hyperplasia, and splenomegaly, 
with elevated numbers of activated effector CD4+ and CD8+ 
T cells. Analogous findings have been reported in three clinical 
cases of CD25 loss (15, 31, 32), indicating that human Tregs are 
similarly dependent on CD25 and IL-2 signaling. These pheno-
types are less severe than the scurfy phenotype resulting from 
Foxp3 deletion (33), most likely because the loss of IL-2 signaling 
also impacts effector T cells.
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The fact that IL-2 and CD25 knockout mice maintain 
appreciable numbers of Foxp3+ cells in both thymus and spleen 
(34) indicates that IL-2 is not absolutely required for Treg 
development or subsequent survival, though it may be needed 
to achieve full suppressor function. The primary compensa-
tory factor appears to be IL-15, as mice lacking both IL-2 and 
IL-15 are severely deficient in Foxp3+ cells (as are mice lacking 
either of the shared CD122 or CD132 subunits) (35, 36). In the 
presence of IL-2, however, IL-15 and IL-7 are dispensable for 
Treg development and function: IL-15−/−(37), IL-7−/− (38), and 
CD127−/− (27, 35) mice have normal percentages of Foxp3+ cells 
and do not develop autoimmunity.

Post-Developmental Roles of iL-2 in Tregs
Although IL-2 signaling is an important component of Treg deve-
lopment (39), its roles following development are less thoroughly 
explored. It is generally believed that Tregs require constitutive 
IL-2 signals to survive and maintain Foxp3 expression, much in 
the same way these signals are needed during thymic develop-
ment (40, 41). The role of IL-2 in Treg suppressor function has 
been difficult to address due to its roles in Treg survival during 
development. To date, the most prominent attempt to evaluate 
Treg function has been a Bim−/− IL-2−/− double knockout (42), in 
which targeting of the pro-apoptotic protein Bim was intended 
to decouple the roles of CD25 in Treg survival versus suppressor 
function. Although this study suggested that IL-2 is needed for 
full suppressor function, it should be noted that all germline 
knockout models of IL-2 signaling components are subject to a 
critical confounding factor: knockout mice develop lethal auto-
immunity, which by its very nature is accompanied by immune 
activation and widespread inflammation. For this reason, it has 
been difficult to study how constitutive IL-2 signaling influences 
Treg lineage stability and function post development, much less 
study its effects on Treg metabolism.

Blocking antibody approaches can be dosed to avoid induc-
ing autoimmunity. Although they are insufficient to address the 
issue of Treg function, due to off-target effects on effector T cells, 
these studies do not support IL-2 as a survival factor for Tregs. 
Anti-CD25 clone 7D4, widely used in commercial Treg magnetic 
isolation kits (43), induces loss of CD25 for up to 2 weeks follow-
ing injection, yet Tregs persist and mice fail to develop autoim-
munity (44, 45). It is critical to note that this antibody is distinct 
from anti-CD25 clone PC61, commonly as a tool to deplete 
Tregs in vivo, which is now recognized to act via opsonization 
for phagocytosis rather than through IL-2 deprivation (46–48).

Pi(3)K SigNALiNg iN Tregs

Because the role of IL-2-induced STAT5 signaling in Treg 
development has been reviewed extensively (16), here we focus 
on how lineage stability and suppressor function are influenced 
by metabolism in mature, post-developmental Tregs. PI(3)K 
catalyzes the conversion of PIP2 (PtdIns-4,5-P2) to PIP3 (PtdIns-
3,4,5-P3) to permit activation of kinases with plextrin homology 
domains, most notably Akt. Targets of Akt include the protein 
translation regulator complex mTOR, which promotes cellular 
growth and survival (49). Thus, one major downstream effect 

of PI(3)K signaling is induction of aerobic glycolysis, which is 
increasingly emerging as a key control mechanism of Treg func-
tion (see below). The lipid phosphatase PTEN, which dephos-
phorylates PIP3 back into PIP2, and the protein phosphatase 
PHLPP, which dephosphorylates Akt, are the primary negative 
regulators of PI(3)K activity in T cells (50, 51). Excessive PI(3)K 
activity is detrimental to Tregs since loss of PTEN in mice (52, 
53), loss of PHLPP in mice or in human cell culture (51), and 
induced Akt activation in human cell culture (54) all lead to Treg 
lineage instability and loss of suppressor function. Tregs may 
receive signals from three sources which would normally induce 
strong PI(3)K signaling: the TCR, CD28, and the IL-2 receptor 
(23). To prevent excessive PI(3)K signaling from these sources, 
Tregs express high levels of PTEN (55, 56) and PHLPP (51).

Treg MeTABOLiSM

glycolysis
Following immune cell activation by antigen or inflammatory 
signals, aerobic glycolysis and fatty acid synthesis are rapidly 
induced to support cell proliferation and cytokine secretion (57). 
This is reflected in the metabolic profiles of relevant immune 
subsets: effector T cells such as Th1, Th2, and Th17 cells show 
increased glycolytic rates following activation, as do effector CD8+ 
T cells. Tregs, like memory CD8+ T cells, rely on FAO for their 
basal metabolism but utilize some degree of aerobic glycolysis to 
properly execute their suppressor functions.

Beyond mere association with immune activation, several 
causal links have emerged between inflammatory stimuli, 
glycolysis, and Tregs (Figure 2). In T cells, signals through the 
TCR, CD28, or IL-2 activate the PI(3)K/Akt/mTOR cascade 
(58), which induces expression of the glucose transporter Glut1 
to facilitate increased glycolysis (59). Akt also inhibits Foxo1 and 
Foxo3 transcription factors which are important for Foxp3 gene 
expression (60–62). mTOR engages Hif-1α, which may also be 
independently activated through toll-like receptor signaling, to 
promote the expression of key glycolytic genes (63). Hif-1α may 
also directly bind Foxp3 and target it for proteasomal degrada-
tion (64). Reciprocally, forced Foxp3 expression is sufficient to 
suppress glycolysis and promote FAO in vitro (20). Treg effector 
molecules such as CTLA4 and PD-1 suppress glycolysis in CD4+ 
T cells by activating PTEN to antagonize PI(3)K signaling and 
subsequent glycolysis, with PD-1 also actively promoting FAO 
by increasing expression of CPT1A (65). These data suggest that 
elevated glycolysis is detrimental to Treg lineage stability and 
suppressor function.

However, most studies showing detrimental effects of glycoly-
sis on Tregs were performed in vitro, where T cell activation and 
glycolysis were driven to their maximum extent. Under certain 
conditions, glycolysis actually supports Foxp3 expression, pro-
motes Treg proliferation, and potentiates suppressor function. 
Among in  vitro induced human Tregs, the glycolytic enzyme 
Enolase-1 binds the Foxp3 promoter and its CNS2 regions. This 
represses transcription of a splice isoform containing Exon 2 
(Foxp3-E2), which is needed for optimal Treg suppressor func-
tion. Engaging glycolysis forces Enolase-1 into the cytoplasm, 
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FigURe 2 | Pathways promoting glycolysis and fatty acid oxidation (FAO) in regulatory T cells (Tregs), and known mechanisms affecting Foxp3. Glycolysis is 
primarily activated in Tregs through mTOR and tends to suppress Foxp3 expression and Treg lineage stability. Activation of the PI(3)K/Akt/mTOR signaling axis 
inhibits Foxo transcription factors and promotes activation of Hif-1α, which can directly target Foxp3 for degradation. However, under certain conditions, glycolysis 
also promotes Foxp3 expression. By disengaging Enolase 1 from its nuclear role, glycolysis enables expression of the Foxp3-E2 splice isoform in humans. Glycolysis 
also represses microRNAs such as miR-101 and miR-26a to enable expression of EZH2, which is a cotranscription factor for Foxp3. Tregs generally rely upon FAO 
for their metabolic needs. In the gut, short-chain fatty acids (SCFA) inhibit histone deacetylases (HDACs) to promote Foxp3 expression and conversion of naïve 
CD4+ T cells into pTregs. Under certain conditions, FAO may also impinge upon Treg lineage stability. Sirt1 may repress Foxp3, either through direct deacetylation  
of Foxp3 or by targeting Foxo transcription factors. In CD8+ memory T cells, cytokines such as IL-7 and IL-15 promote uptake of fatty acid precursors and 
increased FAO, respectively. It remains to be seen whether similar processes occur in Tregs as well. Both glycolysis and FAO can also promote Foxp3  
expression through an NFAT-dependent mechanism.
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thereby allowing transcription of Foxp3-E2 (66). Glycolysis also 
favors expression of the histone methyltransferase EZH2 by 
repressing inhibitory microRNAs such as miR-101 and miR-26a 
(67). EZH2 in turn binds Foxp3 to assist suppression of target 
genes (68), although no experiment has yet confirmed glycol-
ysis-dependent EZH2 expression is essential for Treg lineage 
stability. The glycolytic metabolite phosphoenol pyruvate (PEP) 
can also increase Foxp3 expression through an NFAT-dependent 
mechanism. By inhibiting the calcium ATPase SERCA, PEP 
increases intracellular Ca2+ levels to promote nuclear transloca-
tion of NFAT, which facilitates interactions between the Foxp3 
promoter and its CNS2 regions (69, 70).

A recent study suggests a possible resolution of these con-
flicting roles for glycolysis in Tregs. Using a Glut1 transgene to 
increase glucose uptake and glycolysis, the authors found that 
although elevated glycolysis boosts tTreg proliferation, it comes at 
the cost of their ability to execute suppressor functions (20). This 
suggests that for optimal Treg activity, a balance must be struck 
between the cell activating effects of glycolysis with its negative 
effects on the lineage.

Fatty Acid Oxidation
Fatty acid oxidation is generally associated with an anti-inflam-
matory phenotype and maintenance of Treg lineage stability. One 
mechanism is through simple antagonism of glycolysis: Tregs 
express high levels of AMPK, which simultaneously promotes 
FAO while inhibiting mTOR and subsequent glycolysis (71). 
In the gut, short-chain fatty acids are also known to inhibit 
mTOR (72). They have the added benefit of stabilizing pTregs 
by inhibiting histone deacetylases (HDACs) such as HDAC6 
and HDAC9 which would otherwise inhibit Foxp3 expression 
(73, 74). Reactive oxygen species generated as a byproduct of 
oxidative phosphorylation have been shown to promote Foxp3 
stability by increasing activity of the transcription factor NFAT, 
which binds the CNS2 enhancer of Foxp3 (70, 75). In addition, 
Foxp3 may experience post-transcriptional modifications such as 
acetylation, which prevents Foxp3 from being targeted for deg-
radation thereby increasing its half-life (76). Foxp3 acetylation is 
dependent on nuclear availability of acetyl-CoA, whose supply 
is increased upon breakdown of fatty acids. As with glycolysis 
however, under certain conditions FAO may antagonize Treg 
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lineage stability. FAO promotes an increased NAD+/NADH 
ratio, which elevates the activity of the deacetylase SIRT1 (77).  
By deacetylating Foxp3, SIRT1 promotes Foxp3 poly-ubiquitination  
and subsequent proteasomal degradation (78).
pTregs and tTregs diverge considerably in their execution of 
FAO: although pTregs generally rely upon exogenous fatty acids 
for their metabolic needs (79), it is uncertain whether tTregs 
can import exogenous fatty acids in vivo (18). While the coming 
years will likely clarify this issue, available literature suggests 
one peculiar metabolic feature among tTregs. One of the major 
roles for mTOR signaling in tTregs is to drive synthesis of endo-
genous fatty acid stores, primarily along cholesterol biosynthetic 
pathways (80). Whether these endogenously synthesized fatty 
acids are then used for energy is not known, although these 
specific pathways are needed for tTreg proliferation and optimal 
suppressor function. Memory CD8+ T cells constitute the only 
major T cell subset known to synthesize endogenous fatty acids 
for subsequent FAO in  vivo (18, 81) and rely in part on IL-7 
and IL-15 to regulate these processes. IL-7 induces expression 
of the channel protein aquaporin 9, which facilitates glycerol 
import for fatty acid synthesis (82). IL-15 increases FAO by 
stimulating mitochondrial biogenesis and elevating expression 
of CPT1a, a key regulator of FAO (83). Given that Tregs appear 
to rely on IL-7 and/or IL-15 in the absence of IL-2, we speculate 
that tTregs from IL-2 or CD25 knockout mice may experience 
a shift from glycolysis to FAO, possibly with an associated loss 
of suppressor function. Whether similar events might occur in 
pTregs is unknown, although prior literature (11) suggests a loss 
of suppressor function in pTregs would result in increased fetal 
resorption among any IL-2 or CD25 knockout mothers which 
reach breeding age.

Therapeutic interventions
One of the most exciting prospects of immunometabolism is 
developing therapeutic interventions which can selectively target 
T cell subsets. Since activated effector T cells are more reliant on 
glycolysis than Tregs, studies have examined whether inhibit-
ing glycolysis might improve outcomes in mouse models of 
autoimmunity and transplant rejection. Blocking glycolysis with 
2-DG (a competitive inhibitor of hexokinase), or with dichlo-
roacetate (an inhibitor of PDHK isoforms) reduced the severity 
of experimental autoimmune encephalomyelitis with associated 
decreases in the percentage of Th17, but not Treg, cells (63, 84). 
Similar outcomes were reported following inhibition of another 
glycolytic enzyme, acetyl-CoA carboxylase 1 (ACC1), with sora-
phen A or with T  cell specific genetic deletion of ACC1 (79). 
Furthermore, treatment with metformin (an agonist of AMPK, 
which increases fatty acid uptake and oxidation) reduced airway 
inflammation and fibrosis in a murine asthma model (85). In 
the transplant setting, treatment with 2-DG, metformin, and a 
glutamine uptake inhibitor DON prolonged allograft survival 
in heart and skin transplants, in part by suppressing the prolif-
eration of antigen-specific T cells and by increasing the relative 
frequency of Tregs (86).

Conversely, interventions that promote glycolysis enhance 
immune function, presumably by increasing the proliferation 
and function of effector T cells while inhibiting Treg function. 

Pharmacological blockade or genetic loss of PTEN leads to Akt-
dependent inhibition of Foxo3a and subsequent loss of Foxp3 
and tumor regression (87). Furthermore, increasing glycolysis 
through forced expression of the glucose transporter Glut1 in 
Tregs exacerbated pathology in an adoptive transfer model of 
colitis (20). Tregs recovered from this system were also found to 
have lower levels of Foxp3 protein.

CONCLUSiON AND FUTURe DiReCTiONS

The metabolic state of Tregs defies simple categorical explana-
tions with regard to glycolysis and FAO. Although elevated gly-
colysis is generally associated with immune activation and can 
be detrimental to Treg lineage stability and function, controlled 
levels of glycolysis are necessary to sustain the same processes. 
The list of known links between metabolism and Treg function is 
far from complete, and the coming years will likely reveal other 
metabolic enzymes with moonlighting roles in Treg biology. In 
particular, the “futile cycle” approach of tTregs to FAO, and its 
preference for cholesterol synthesis may be a promising area of 
discovery.

Metabolic interventions offer a promising new approach to 
modulating Treg function and may be used to fine-tune thera-
pies targeting other signaling pathways or used as a primary 
therapy in their own right. Of note, while there is clear potential 
for interplay between IL-2 signaling and immunometabolism 
through the PI(3)K/Akt/mTOR signaling cascade, to date no 
studies have specifically evaluated the effects of IL-2 signaling 
on Treg metabolism. In part, this is due to the inadequacies of 
germline knockout models to address this question. As men-
tioned before, such knockouts experience an autoimmune 
environment in which immune cells are already highly active 
and presumably glycolytic. It would be more appropriate to 
use a model in which Tregs can be inducibly made to lose IL-2 
signaling while maintaining immune homeostasis. A tamoxifen-
inducible CD25 knockout, with tamoxifen dosage adjusted to 
leave enough CD25-competent cells to prevent autoimmunity, 
would be well suited for this approach. Such studies would lay 
the framework for combination treatments in which metabolic 
interventions would be used with existing therapies such as 
CD25 blockade.
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