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The tumor microenvironment is an important aspect of cancer biology that contributes to
tumor initiation, tumor progression and responses to therapy.The composition and charac-
teristics of the tumor microenvironment vary widely and are important in determining the
anti-tumor immune response. Successful immunization requires activation of both innate
and adaptive immunity. Generally, immune system is compromised in patients with can-
cer due to immune suppression, loss of tumor antigen expression and dysfunction of
antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regres-
sion remains a significant challenge. Certain cells of the immune system, including dendritic
cells (DCs) and gamma delta (γδ)T cells are capable of driving potent anti-tumor responses.
The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue
tropism and early activation in infections and malignant disease makes γδ T cells as an
emerging candidate for immunotherapy.Various strategies are being developed to enhance
anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adju-
vants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or
through DC activation, which has ability to prime γδ T cells. TLR agonists are being used
clinically either alone or in combination with tumor antigens and has shown initial success
in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T
cells and DCs nurture each other’s activation. This provides a potent base for first line of
defense and manipulation of the adaptive response against pathogens and cancer. The
available data provides a strong rationale for initiating combinatorial therapy for the treat-
ment of diseases and this review will summarize the application of adjuvants (TLRs) for
boosting immune response of γδ T cells to treat cancer and infectious diseases and their
use in combinatorial therapy.

Keywords: immunotherapy, γδT cells, toll like receptors, tumors, dendritic cells

INTRODUCTION
Innate and adaptive immune responses are sentinels of host against
the diverse repertoire of infectious agents (viruses and bacteria)
and cancer. Both components of immune system identify invad-
ing microorganisms or damaged tissues as non-self and activate
immune responses to eliminate them. Efficient immune responses
depend upon how close an interaction is between the innate
and adaptive immune system. γδ T cells and toll like receptors
(TLR) serve as an important link between the innate and adaptive
immune responses (1–3). Extensive studies have suggested that
γδ T cells play important roles in host defense against microbial
infections, tumorigenesis, immunoregulation and development
of autoimmunity. γδ T cells also have several innate cell-like
characters that allow their early and rapid activation following
recognition of cellular stress and infection (4, 5). However to
accomplish these functions, γδ T cells use both the T cell recep-
tor (TCR) and additional activating receptors (notably NKG2D,
NOTCH, and TLR) to respond to stress-induced ligands and
infection. γδ T cells express TLRs and modulate early immune
responses against different pathogens (6). In this review, we sum-
marize and discuss some of the recent advances of the γδ T cell
biology and how direct control of γδ T lymphocyte function

and activation is monitored by TLR receptors and ligands. The
review highlights involvement of TLR signaling in γδ T cell func-
tions and their implications in harnessing γδ T cells for cancer
immunotherapy.

γδ T CELLS, ANATOMICAL DISTRIBUTION AND ANTIGENIC
DIVERSITY
Based on the type of TCR they express, T lymphocytes can be
divided into two major subsets, αβ and γδ T cells. γδ T cell rep-
resents a small subset of T lymphocytes (1–10%) in peripheral
blood. While in anatomical locations like small intestine, γδ T
cells comprise a major bulk of T cells (25–60% in human gut)
(7). γδ T cells are the first T cells to appear in thymus during T
cell ontogeny in every vertebrate (8), which suggests that their pri-
mary contribution could be neonatal protection because at this
point conventional αβ T cell responses are severely functionally
impaired and DCs are immature (9). In neonates, the Vδ2+ cells
derived from human cord blood showed early signs of activation.
These cells secrete IFN-γ and express perforin after short-term
in vitro stimulation (10). In comparison to the neonate derived
αβ T cells of peripheral blood, γδ T cell subset produces copious
amount of IFN-γ and are precociously active (11). Hence, γδ
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T cells are well engaged in newborns to contribute to immune-
protection, immune-regulation and compensate for impaired αβ

T cell compartment.
γδ T cells are unconventional CD3+ T cells and differ from the

conventional αβ T cells in their biology and function (Table 1).
Although a sizeable fraction of γδ T cells in the intraepithelial
lymphocyte compartments of human and mice are CD8αα+ but
the peripheral blood γδ T cells are predominantly double negative
(CD4−CD8−) T cells. The absence of CD4 or CD8 expression on
majority of the circulating γδ T cells is well in line with the fact
that antigen recognition is not MHC restricted (12, 13). Crystal
structure analysis of the γδ TCR revealed that γδ TCR is highly
variable in length resembling immuno-globulins (Ig) more than
the αβ TCR. The antigen recognition property of γδ T cells is
fundamentally different from αβ T cells but similar to antigen–
antibody binding, which is more likely to occur independent of
MHC cross presentation (14). However, recently butyrophilin
BTN3A1, a non-polymorphic ubiquitously expressed molecule
was identified as an antigen presenting molecule of Vγ9Vδ2 T
cells. Soluble BTN3A1 binds (Isopentenyl diphosphate) IPP and
(E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) with
different affinities in 1:1 ratio to stimulate γδ T cells (15).

The important feature of γδ T cells is their tropism to epithelial
tissues. With respect to anatomical localization, γδ T cell popu-
lation can be divided into two groups: lymphoid-homing γδ T
cells that can be primed in the circulation and clonally expand
in a conventional “adaptive” manner; and innate-like cells that
respond rapidly and at a relatively high frequency in many tissue
sites. Migration and anatomical localization of T lymphocytes is
crucial for their antigen specificity and maintaining homeostasis
in the mammalian immune system. Although γδ T cells are well
represented among peripheral blood mononuclear cells (PBMC)
and in afferent and efferent lymph, they are rarely found in lymph
node parenchyma, spleen, Peyer’s patches and thymus. Moreover,
unlike αβ T cells, splenic γδ T cells, if present, are not confined to
the lymphoid areas (the white pulp) but are also found through-
out the red pulp of spleen and marginal zones of cell trafficking
(16). γδ T cells are abundantly present in the epithelia of skin,
genital and intestinal tract (17). In the small intestines of humans,
mice, chickens and cattle, γδ T cells comprise a substantial frac-
tion of intestinal intraepithelial lymphocytes (IELs); in mice γδ+

IELs constitute 50–60% of the IEL pool (18–20). The epidermal
γδ+ IELs of mice and cattle (but not humans) have a marked
dendritic morphology and are hence known as dendritic epi-
dermal T cells (DETCs) (21). DETCs are maintained at steady
state in normal adult murine skin but on activation execute spe-
cialized functions like tissue repair (22). DETCs also maintain
keratinocyte homeostasis, which along with Langerhan cells forms
its neighborhood (23). Under pathological conditions, γδ T cells
quickly expand and infiltrate into lymphoid compartments and
other tissues.

Another striking difference between αβ and γδ T cells is the
range of antigens or ligands that are recognized by the respec-
tive TCRs. Unlike αβ T cells, which recognize protein antigen
processed inside the cell and presented by MHC molecules, γδ

T cells recognize antigens like B cells as revealed by structural and
functional studies (24).γδ T cells can respond to a variety of stim-
uli irrespective of their molecular or genetic nature. In mice, the
non-classical MHC class I molecules T10 and T22 are recognized
by γδ T cells (25–28). Similar to T10 and T20, murine class II
MHC (IA) antigens IE and IA are identified to act as ligands for γδ

T cell clones (29, 30). In addition, herpes glycoprotein GI-reactive
γδ T cell clones protect mice from herpes simplex virus (HSV)
induced lethal encephalitis (31, 32). γδ TCRs can also bind to an
algal molecule, phycoerythrin inducing upregulation of CD44 and
downregulation of CD62L in γδ T cells (33). B6 murine splenic
and hepatic γδ T cells respond to cardiolipin (bacterial cell-wall
phospholipid and endogenous component of mitochondria) pre-
sented by CD1d molecules (34). Insulin derived peptide B:9–23
is also recognized by the γδ T cell clones derived from non-obese
diabetic mice (NOD mice) (35). SKINT1, a mouse immunoglob-
ulin superfamily member, bears structural similarity to human
CD277 (butyrophilin 3A1) and is expressed by medullary thymic
epithelial cells (mTECs) and keratinocytes that is crucial for the
development of Vγ5Vδ1+ DETCs (36).

In humans, majority of γδ T cells express a rearranged T cell
receptor (TCR) composed of Vγ9 andVδ2 domains; thus, this pop-
ulation is referred to as Vγ9Vδ2. The Vγ9Vδ2 T cells recognize self
and microbial phosphorylated metabolites generated in eukaryotic
mevalonate pathway and in the microbial 2-C-methyl-derythritol
4-phosphate (MEP) pathway (37). Initially, it was reported that the
non-peptidic ligands isolated from mycobacterial cell lysates were

Table 1 | Comparison between αβ and γδT cells.

S.No. αβT cells γδT cells

1 Constitutes about 65–70% of total PBMCs Constitutes about 1–10% of total PBMCs

2 Recognize the processed peptide antigen with the help

antigen presenting molecule MHC1 and MHC II

Do not show MHC restriction but may require the antigen presenting

molecule Butyrophilin 3A1 molecule

3 Express either CD8+ or CD4+ Mostly double negative, murine intestinal IELs may be CD8αα+

4 TCR junctional diversity is very diverse TCR junctional diversity is small

5 Do not show tissue tropism Show tissue tropism

6 αβ T Cells response is late γδ T cells respond earlier

7 Regulatory phenotype is attributed to CD4+CD25+ T cells Regulatory phenotype is attributable to various subsets, including murine

Vγ5+ DETCs and human Vγ1+ peripheral cells
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stimulatory for Vγ9Vδ2 T cell clones. Later, IPP, an intermediate
metabolite of the mevalonate pathway, was isolated and identi-
fied as a stimulatory molecule. Characterization of the microbial
antigens recognized by human γδ T cells predicted that these are
non-proteinaceous in nature and have critical phosphate residues
(37, 38). Subsequent studies, conducted with M. tuberculosis, iden-
tified HMBPP, an intermediate metabolite of the MEP pathway,
as a strong agonist of γδ TCR. The measured potencies of IPP
and HMBPP show an enormous difference. The ED50 of IPP is
~20 µM, whereas that of HMBPP is ~70 pM, i.e., more than 105
times lower (38).

Another stimulatory molecule is Staphylococcus aureus entero-
toxin A (SEA) that directly interacts with the TCR Vγ9 chain inde-
pendently of the pairedVδ chain. The mechanism of recognition of
this superantigen is different from that of phosphorylated metabo-
lites and requires the interaction with MHC class II molecules. γδ

T cells kill target cells and release cytokines upon interaction with
SEA but do not proliferate (39).

Recently, the TCR from a γδ T cell clone derived from a
cytomegalovirus (CMV)-infected transplant patient was shown to
directly bind to endothelial protein C receptor (EPCR), which is a
lipid carrier with a similar structure to CD1, showing again that γδ

TCR engagement is cargo independent (40). ATP F1 synthase has
been identified as stimulatory ligand of the TCR Vγ9Vδ2. ATP F1
synthase is an intracellular protein complex involved in ATP gen-
eration. However, optimal responses of Vγ9Vδ2 T cells by tumor
target cell lines expressing F1-ATPase requires apolipoprotein A1.
A monoclonal antibody interacting with apolipoprotein A1 was
shown to inhibit TCR γδ activation as it disrupted the trimolecu-
lar complex of ApoA1, ATP F1 synthase, and γδ TCR required for
optimal response (41).

The second major population of human γδ T cells utilizes the
Vδ1 chain, which pairs with a variety of Vγ chains. This subset of
Vδ1+ T cells is mainly found in tissues and is activated by CD1c
and CD1d-expressing cells. The group 1 CD1 molecules have abil-
ity to present lipid A to human γδ T cells. The human γδ T cells
also recognize the related group 2 CD1 molecule as CD1d/lipid
complex. Phosphatidyl ethanol amine (PE), a phospholipid, acti-
vates γδ T cells in a CD1d manner dependent suggesting its CD1d
restricted recognition (42). In addition, some populations of γδ T
cells in normal human PBMCs also recognize lipid molecules such
as cardiolipin (a marker of damaged mitochondria), sulfatide (a
myelin glycosphingolipid), or α-galactosylceramide (α-GalCer) in
association with CD1d, which are noted ligands of natural killer
T (NKT) cells (34, 43–45). Human γδ T cells also recognize the
stress-induced MHC class I-related MICA/MICB molecules and
the UL16-binding proteins that are upregulated on malignant or
stressed cells (46–48). Heat shock proteins (HSPs) expressed on the
cell membrane play an important role in cancer immunity. Hsp60
expressed on oral tumors act as ligand for Vγ9Vδ2 T cells (49, 50).
Hsp60 and Hsp70 expressing human oral and esophageal tumors
are lysed by Vγ9Vδ2 T cells (49–51). Hsp72 expressing neutrophils
were rapidly killed by γδ T cells through direct cell to cell con-
tact, indicating that hsp72 expression on cell surface pre-disposes
inflamed neutrophils to killing by γδ T cells (52). In Another study,
hsp90 expression on EBV infected B cells rapidly promoted γδ

T cell proliferation (53). This confirms that γδ T cells recognize

qualitatively distinct antigens, which are profoundly regulated by
their anatomical localization.

CO-RECEPTORS AND γδ T CELL ACTIVATION
Most γδ T cells respond to non-peptidic antigens even in the
absence of antigen presenting cells (APCs). However, the pres-
ence of APCs can greatly enhance the γδ T cell response (54). This
suggests that accessory molecules/receptors may be involved in
effector functions of these cells. Some of important co-receptors
used by γδ T cells include NOTCH, NKG2D, and TLR (55).

Our study has identified Notch as an additional signal con-
tributing to antigen specific effector functions of γδ T cells. We
have shown that γδ T cells express Notch1 and Notch2 at both
mRNA and protein level. Inhibition of Notch signaling in anti-
CD3 MAb stimulated γδ T cells resulted in marked decrease in
proliferation, cytotoxic potential, and cytokine production by γδ

T cells confirming the involvement of Notch signaling in regulating
antigen specific responses of γδ T cells (55).

γδ T cells express NKG2D on their cell surface resulting in
their activation. Treatment of PBMC with immobilized NKG2D-
specific mAb or NKG2D ligand MHC class I related protein A
(MICA) resulted in the up-regulation of CD69 and CD25 on
Vγ9Vδ2. Furthermore, NKG2D increased the production of TNF-
alpha and release of cytolytic granules by Vγ9Vδ2 T cells (56).
Later, it was shown that the protein kinase C transduction path-
way as a main regulator of the NKG2D-mediated costimulation of
anti-tumor Vγ9Vδ2 T cell cytolytic response (57).

TLR agonists are also known to trigger the early activation and
the IFN-γ secretion by Vγ9Vδ2T cells (58). TLR ligands indirectly
increase the anti-tumoricidal activity of Vγ9Vδ2T cells (59). In
this review, we will focus on TLR as an additional co-receptor
modulating the function of immune cells with special focus on γδ

T cells.

TOLL LIKE RECEPTOR AND IMMUNE CELLS
The immune system functions in anti-microbial defense by rec-
ognizing groups of molecules unique to microorganisms (60).
These unique microbial molecules are called pathogen-associated
molecular patterns (PAMPs) and are recognized by a family of
cellular receptors called pattern recognition receptors (PRRs)
(61). TLRs along with retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs) and nucleotide-binding oligomerization domain
(NOD)-like receptor (NLRs) are prototype PPRs, which recognize
pathogen-associated molecular patterns (PAMPs) from microor-
ganisms or danger-associated molecular patterns (DAMPs) from
damaged tissues (62). Recognition of PAMPs by TLRs trigger
release of inflammatory cytokines and type 1 interferon’s (IFN)
for host defense (60, 63–65). The adaptive immune system, on
the other hand, is responsible for elimination of pathogens in the
late phase of infection and in the generation of immunological
memory mediated by B and T cells (66).

TLRs derived their name from Drosophila melanogaster Toll
protein based on their homology (67). In mammals, till date 13
members of TLR family has been identified (63, 68–71). TLR1-9
is conserved in humans and mice while TLR10 is non-functional
in mice because of a retroviral insertion while TLR11-13 is lost
from the human genome. The first TLR identified was TLR4
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and recognizes bacterial lipopolysaccharide (LPS) from Gram-
negative bacteria (67, 72, 73). TLRs are classified into several
groups based on the types of PAMPs they recognize. TLR1, 2,
4 and 6 recognize lipids whereas the highly related TLR7, TLR8
and TLR9 recognize nucleic acids. Murine TLR11 recognizes a
protozoan derived profilin-like protein while TLR13 recognizes
Vesicular stomatitis virus (63). TLRs are localized in the distinct
cellular compartments, for example; TLR1, TLR2, TLR4, TLR5,
TLR6, and TLR11 are expressed on the cell surface whereas TLR3,
TLR7, TLR8 TLR9, TLR11, TLR12 and TLR13 are expressed in
intracellular vesicles such as the endosome and ER. The intra-
cellular TLRs are transported to the intracellular vesicles via
UNC93B1, a trans-membrane protein, which is localized in the
ER of the cell (70, 71, 74–77). TLR family receptors have a com-
mon structural architecture. TLRs are type I integral membrane
glycoproteins characterized by multiple extracellular leucine-rich
repeats (LRRs) and a single intracellular Toll/interleukin-1 (IL-1)
receptor (TIR). TLRs mostly form homo-dimers with a few excep-
tions, which form heterodimers to trigger a signal. For example,
TLR2 forms heterodimers with TLR1 or TLR6 enabling differ-
ential recognition of lipopeptides. The TIR domain of TLRs is
required for the interaction and recruitment of various adap-
tor molecules to activate downstream signaling pathway. After
recognizing PAMPs, TLRs activate intracellular signaling path-
ways that lead to the induction of inflammatory cytokine genes
such as TNF-α, IL-6, IL-1β and IL-12 through the recruitment
of adaptors such as MyD88, TRIF, TRAM, TIRAP and SARM1
(78). MyD88 is a universal adaptor used by all TLRs, except TLR3,
to induce inflammatory pathways through activation of MAP
Kinases (ERK, JNK, p38) and transcriptional factor NF-κB (63,
79). TLR3 and TLR4 use TRIF to bring activation of alternative
pathway (TRIF-dependent pathway) through transcription fac-
tors IRF3 and NF-κB to induce type 1 IFN and inflammatory
cytokines (80–82). TRAM selectively participates in the activa-
tion of the TRIF-dependent pathway downstream of TLR4, but
not TLR3 (83, 84). TIRAP functions to recruit MyD88 leading
to activation of MyD88-dependent pathway downstream of TLR2
and TLR4 (85, 86).Sterile-α- and armadillo-motif-containing pro-
tein 1 (SARM1), was shown to inhibit TRIF and is also critical for
TLR-independent innate immunity (87). Thus, signaling pathways
can be broadly classified as either MyD88-dependent pathway or
TRIF-dependent pathway.

Hornung et al. have showed differential expression of TLR1-
10 on human APCs and lymphocytes including T cells and their
functional discrepancy in recognition of specific TLR ligands (88).
CD4+ T cells express almost all TLRs at mRNA levels but may not
express all as functional protein (89, 90). Moreover, they do not
respond to all TLR ligands. Stimulation with TLR5, 7, or 8 ago-
nists combined with TCR activation of CD4+T cells resulted in
increased proliferation and production of IL-2, IL-8, IL-10, IFN-γ
and TNFα (91). There are other reports as well suggesting the func-
tional modulation of subtypes of CD4+ T cells by TLR ligands.
The mouse Th1 but not Th2 cells responded to TLR2 agonist and
resulted in enhanced proliferation and IFN-γ production inde-
pendent of TCR stimulation (92). This work validated that the
TLR can regulate function of CD4+ T cells even in absence of
TCR engagement. CD4+CD25+ regulatory T cells (Tregs) express

majority of TLRs with selectively higher expression of TLR2, 4,
5, 7/8, and 10 compared to CD4+CD25− conventional T cells
(93). Liu et al. showed that CD4+CD25+ regulatory T cells and
CD4+CD25− conventional T cells express TLR2 and proliferated
upon stimulation with its agonist. TLR2 stimulation also led to
transient loss of Treg suppressive potential through suppression of
FOXP3 (94, 95). However, Tregs also express TLR5 but upon stim-
ulation with flagellin (ligand of TLR5), do not proliferate rather
showed increased suppressive capacity and enhanced expression
of FOXP3 (96). These reports suggest that the suppressive func-
tion of Treg can be either enhanced or dampened by the type of
TLR ligand engaged. TLR2 stimulation not only abrogates sup-
pressive functions of CD4+ Tregs but also drives naïve as well
as effector Treg population toward IL17 producing Th17 pheno-
type (97). Th17 cells express TLR2 along with TLR6 compared
to Th1 and Th2 subsets and promote Th17 differentiation upon
Pam3Cys stimulation and accelerates experimental autoimmune
encephalomyelitis (98). Like TLR2, TLR4 also regulate the func-
tions of CD4+ T cells. In a mouse model of arthritis, mice lacking
TLR2 showed enhanced histopathological scores of arthritis by
a shift in T cell balance from Th2 and T regulatory cells toward
pathogenic Th1 cells. TLR4, in contrast, contributes to more severe
disease by modulating the Th17 cell population and IL-17 produc-
tion (99, 100). Recently, Li et al. showed that high-mobility group
box 1 (HMGB1) proteins decrease Treg/Th17 ratio by inhibiting
FOXP3 and enhancing RORγt in CD4+ T cells via TLR4–IL6 axis
in patients with chronic hepatitis B infections (101). This shows
that HMGB1 (TLR4 ligand) act as a modulator of CD4+ T cells
responses in chronic viral inflammation. CD4+ T cells also express
intracellular TLRs such as TLR9 and TLR3. Both these TLRs pro-
mote T cell survival via activation of NF-κB and MAPK signaling
(102). Although the effector functions of CD4+ T cells are regu-
lated by TLRs but the molecular pathway involved in skewing of
CD4+ T cell function is poorly understood.

Like CD4+ T cells, CD8+ T cells also show differential expres-
sion of TLRs with high expression of TLR3 but lower expression
of TRL1,2,5,9,10 compared to CD4+ T cells at mRNA level. It is
important to note that the expression of TLR2, TLR3 and TLR5
increases on CD8 T cells in infected tonsils compared to con-
trols (89) indicating immune activating role of TLRs in infections.
Stimulation of CD8+ T cells through TLR2 agonists enhances
their proliferation and IFN-γ production (103, 104). It also pro-
motes cytolytic activity of CD8+ T cells and enhances anti-tumor
response mediated through MyD88-dependent TLR1/2 pathway
(105). Recently, Mercier et al. showed that TLR2 cooperate with
NOD-containing protein 1 (NOD1) to enhance TCR mediated
activation and can serve as alternative co-stimulatory receptor in
CD8+ T cells (106). CD8+ T cells also express intracellular TLRs
such as TLR3, TLR9 which are more potent in inducing CD8+ T
cell activation in vivo (107).

Natural killer (NK) cell is a vital player in innate immune
system. They recognize infected and transformed cells with down-
regulated major histocompatibility complex (MHC) class 1 mole-
cules. They are the primary producers of IFN-γ and are protective
against infections. Unlike CD4 and CD8 T cells NK cells as well
as CD56+CD3+ NKT cells constitutively express TLR 1–8 with
high expression of TLR2 and 3 at mRNA level. They recognize
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bacterial PAMPs and respond by producing α-defensins (108–
111). Human NK cells can also directly recognize Mycobacterium
bovis via TLR2 and enhance their cytolytic activity against tumor
cells (112). Tumor-associated macrophages induce NK cell IFN-γ
production and cytolytic activity upon TLR engagement (113).
TLRs modulate NK cell function directly or indirectly to promote
antibody dependent cell mediated cytotoxicity and cross presenta-
tion of viral antigens to T lymphocytes (114, 115). This highlights
that the cells of adaptive immune system do express TLRs and their
function can be directly or indirectly modulated by TLR ligands.

ACTIVATION OF γδ T CELLS BY TLR LIGANDS
In 1997, the first human homolog of Drosophila Toll protein was
cloned and characterized. It was also established that γδ T cells
also express hToll mRNA (67). Purified γδ T cells were found to
respond to the E. coli native lipid A in a TCR-independent fashion
and the LPS/lipid A-reactive γδ T cells strongly expressed TLR2
mRNA. TLR2 antisense oligonucleotide inhibited the prolifera-
tion of γδ T cells in response to the native lipid A as well as the
TLR2-deficient mice showed an impaired response of the γδ T
cells following injection of native lipid A. These results suggest
that TLR2 is involved in the activation of canonical Vγ6/Vδ1 T
cells by native lipid A (116). Again, functional presence of TLR2
on Vγ2Vδ2 T cells (also known as Vγ9Vδ2 T cells) was reported
when the dual stimulation of Vγ2Vδ2 T cells with anti-TCR anti-
body and Pam3Cys increased synthesis and secretion of IFN-γ
and elevated the levels of CD107a expression. IFN-γ secretion and
cell surface CD107a levels are markers of increased effector func-
tion in Vγ2Vδ2 T cells (117). Similarly, Bruno et al. reported that
IL-23 and TLR2 co-stimulation induces IL17 expression in γδ T
cells. However, TLR1 and TLR2 expression was found only on
CCR6+ IL-17 producing murine peritoneal γδ T cells but not oth-
ers. Thus, γδ T cells with innate receptor expression coupled with
IL-17 production establishes them as first line of defense that can
orchestrate an inflammatory response to pathogen-derived and
environmental signals long before Th17 can sense the bacterial
invasion (118). Pam3CSK4, TLR2 agonist was able to stimulate
only splenic γδ T cell proliferation but not the dermal γδ T cells
demonstrating that TLR2 signaling shows tissue tropism. (19).
Furthermore, a profound change in the circulating γδ T-cell pop-
ulation was observed in early burn injury (24 h). These γδ T-cells
showed TLR2 and TLR4 expression, priming them for TLR reac-
tivity, However TLR expression was specific to circulatory γδ T
cell subset and was transient, since it was not observed after post-
injury (7 days). Transient nature of the post-burn increase in γδ

T-cell TLR expression is likely to be protective to the host, most
likely via regulation of inflammation and initiation of healing
processes (119).Mitochondrial danger-associated molecular pat-
terns (MTDs) induce TLR2 and TLR4 expression on γδ T cells in
dose dependent manner. MTDs also induced the production of IL-
1β, IL-6, IL-10, RANTES, and vascular endothelial growth factor
by γδ T-cells thereby resulting in initiation of sterile inflammation
leading to tissue/cellular repair (120).

Different studies have reported that γδ T cells express TLR3
(121, 122). TLR3 recognizes viral dsRNA, synthetic analogs of
dsRNA, polyinosinic–polycytidylic acid [poly (I:C)] and small
interfering (si) RNA. The direct stimulation of freshly isolated γδ

T cells via TCR and surrogate TLR3 ligand poly (I:C) dramatically
increased IFN-γ production. Addition of neutralizing anti-TLR3
mAb inhibited the co-stimulatory effect of poly (I:C), presumably
by antagonizing the TLR3 signaling (122). Thus, the integrated
signals of TLR3 and TCR induce a strong antiviral effector func-
tion in γδ T cells supporting the decisive role of γδ T cells in early
defense against viral infection. In other study, it has been reported
that γδ cells of term babies and of adults express TLR3 and TLR7
while the preterm babies have reduced levels. The greater levels
of IFN-γ protein was observed in adult and cord blood cells co-
stimulated with anti-CD3 and poly(I:C) whereas this was not seen
in γδ T cell clones of preterm babies. Thus, reduced level of TLR3
expression by preterm-derived clones had an overt functional con-
sequence on IFN-γ levels (11). Interestingly, a primary role of
TLR3 in humans appears to mediate resistance to HSV-induced
encephalitis (123). Hence, premature babies are particularly sus-
ceptible to HSV infection because of reduced levels of TLR3 on γδ

T cells.
TLR4 was reported to be absent in the γδ T cells but can become

functional in γδ T cells depending on localization, environmental
signals, or γδ TCR usage (19, 118, 124). However, our own data has
shown that TLR4 is expressed on human γδ T cells. Stimulation
of γδ T cells with LPS (TLR4 ligand) increased their prolifera-
tion, IFN-γ release, and cytotoxic potential (125). DETCs lack
cell surface expression of TLR4–MD2. MD-2 physically associates
with TLR4 on the cell surface and is required for LPS signaling.
However, TLR4–MD2 expression was upregulated when DETCs
emigrated from the epidermis during cutaneous inflammation.
The migration signals of DETCs may promote the TLR4–MD2
expression (126). Cairns et al. showed that late post-burn injury
increased expression of TLR-4 on splenic T-cells (127). However,
Martin et al. reported transient TLR-4 expression post-burn in
the circulation or spleen but were specific for the γδ T-cell subset
(119). Several evidences suggest that murine γδ T cells recognize
LPS/LA through TLR2 or TLR4 (128, 129). Importantly activated
γδ T cells, especially Vδ2 T cells, in peripheral blood cells recog-
nize LA, a major component of LPS, via TLR4 resulting in extensive
proliferation and production of IFN-γ and TNF-α in vitro (130).
The data suggest that γδ T cells play an important role in the con-
trol of infection induced by gram negative bacteria. Reynolds et al.
showed that a heterogeneous population of γδ T cells responds to
LPS via TLR4 dependent manner and demonstrate the crucial and
innate role of TLR4 in promoting the activation of γδ T cells, which
contributes to the initiation of autoimmune inflammation (100).
Another study showed the indirect role of TLR4 in HMGB–TLR4–
IL-23–IL17A axis between macrophages and γδ T cells, which
contribute to the accumulation of neutrophils and liver inflamma-
tion. Necrotic hepatocytes release HMGB1, a damage-associated
molecule or TLR4 ligand, which increased IL-23 production of
macrophages in a TLR4 dependent manner. IL-23 aids γδ T cells
in liver in the generation of IL-17A, which then recruits hepatic
neutrophils (131).

Human γδ T cells were found to express appreciable levels
of TLR7. Costimulation with poly I:C upregulated the TLR7
expression in TCR-cross linked freshly isolated γδ T cells (124).
In addition, tumor-infiltrating γδ T cells also express TLR7
(132). In case of mouse dermal γδ T cells, both TLR7 and
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TLR9 signaling promoted IL-17 production, which could be
synergistically enhanced with the addition of IL-23 (19).

The identification of dominant γδ T cells in the total popu-
lation of tumor-infiltrating lymphocytes (TILs) in renal, breast,
and prostate cancer suggested that these cells might have the
potent negative immune regulatory function (132,133). The breast
tumor-derived bulk γδ T cell lines and clones efficiently suppressed
the proliferation and IL-2 secretion of naïve/effector T cells and
inhibited DC maturation and function. Hence, their depletion
or the reversal of their suppressive function could enhance anti-
tumor immune responses against breast cancer. Indeed as in CD4+

regulatory T cells (Tregs), the immunosuppressive activity of γδ T
cells could be reversed by human TLR8 ligands both in vitro and
in vivo. Study revealed that MyD88, TRAF6, IKKα, IKKβ and p38α

molecules in γδ1 cells were required for these cells to respond
to TLR8 ligands (132, 134, 135). Table 2 shows expression and
co-stimulatory effects mediated by TLR activation of γδ T cells

TLRs MODULATE CROSSTALK BETWEEN γδ T AND
DENDRITIC CELLS
The functional fate of effector T cells is governed by antigen
presentation and the cytokine milieu in the local environment.
Dendritic cells (DCs) being professional APCs, recognize the dan-
ger signal, process it, and present it to the T lymphocytes thereby
modulate adaptive immune response. γδ T cells influence the anti-
gen presenting property of DCs. DCs pre-incubated with activated
γδ T cells enhance the production of IFN-γ by alloreactive T
cells in mixed lymphocyte reaction (136). Moreover, γδ T cells
not only upregulated CD86 and MHC I expression on DC but
themselves get activated, leading to up-regulation of CD25, CD69,
and cytokine production (137). These studies showed how γδ T
cell and DCs regulate each other’s function. There are reports,
which have shown how γδ T cells interact with DC or vice versa
via TLR ligands. Leslie et al. reported that stimulation with TLR
ligands in γδ/DC cocultures enhanced the maturation and pro-
duction of IL12p70 by DCs (138). TLR also regulate the γδ T
cells and DC crosstalk in microbial context. TLR2-stimulated DCs
enhanced IFN-γ production by Vδ2 T cells; conversely, phospho-
antigen activated Vδ2 T cells enhanced TLR2-induced DC matu-
ration via IFN-γ, which co-stimulated interleukin-12 (IL-12) p70
secretion by DCs (139). Further, γδ T cells stimulated with TLR7
(CL097) or TLR3 (poly I: C) agonists produce IFN-γ, TNFα and/or
IL-6 thereby inducing DC maturation, which prime effector T
cells against West Nile Virus (WNV) infection (140). This study

confirmed that the antiviral effector immunity may be regulated
by interplay of DCs,γδ T cells and TLRs. Similarly, in human’s γδ T
cells and DCs regulate each other’s immunostimulatory functions.
TLR3 and TLR4 ligands stimulation of human PBMCs induced a
rapid and exclusive IFN-γ production by Vγ9Vδ2 subset depen-
dent on type 1 IFN secreted by monocytic DC. TLR-induced IFN-γ
response of Vγ9Vδ2 T cells led to efficient DC polarization into IL-
12p70-producing cells (58). In another study, it was reported that
Vδ2 cells are indirectly activated by BCG and IL-12p70 secreted by
DCs. IL-12p70 production by DC is modulated by Toll like recep-
tor 2/4 ligands from BCG and IFN-γ secreted by memory CD4 T
cells (141). This study portrayed the complex interplay between
cells of the innate and adaptive immune response in contributing
to immunosurveillance against pathogenic infections.

TLRs COMPLEMENT CYTOTOXIC POTENTIAL OF γδ T CELLS
AGAINST TUMOR CELLS
γδ T cells have capability to lyse different types of tumors and
tumor-derived cell lines (49, 50, 142–145). Circulating as well as
tumor-infiltrating γδ T cells have the ability to produce abun-
dant proinflammatory cytokines like IFN-γ and TNF-α, cytotoxic
mediators and MHC-independent recognition of antigens, ren-
der them as important players in cancer immunotherapy (143,
145). In addition to TCR, γδ T cells use additional stimulatory
co-receptors or ligands including TLRs to execute effector func-
tions and TLR agonists are considered as adjuvants in clinical trial
of cancer immunotherapy (146). Kalyan et al. even quoted that
“TLR signaling may perfectly complement the anti-tumor syn-
ergy of aminobisphosponates and activated γδ T cells and this
combined innate artillery could provide the necessary ammuni-
tion to topple malignancy’s stronghold on the immune system”
(147). Paradoxically, TLR agonists execute dual role of enhanc-
ing immune response (148) as well as increasing invasiveness of
tumor cells (149–152). Hence, the tripartite cooperation of tumor
cell, TLRs, and γδ T cells should be carefully analyzed. In con-
cordance to this, Shojaei et al. reported that Toll like receptor
3 and 7 agonists enhanced the tumor cell lysis by human γδ T
cells. The enhanced capability of γδ T cells to lyse tumor cells was
attributed to increased expression of CD54 and downregulation
of MHC class 1 on tumor cells. Poly(I:C) treatment of pancre-
atic adenocarcinomas resulted in overexpression of CD54 and
concomitant coculture of tumor cells with γδ T cells led to interac-
tion between CD54 and its ligand CD11a/CD18 triggering effector
function in γδ T cells. However, TLR7 surrogate ligand induced

Table 2 | Expression and functions mediated byTLRs on γδT cells.

TLR Functions References

TLR 2 Recognize LPS, enhance proliferation, induce IFNγ and CD107a expression, enhance IL17 secretion,

expression transiently increases after burn injury, mitochondrial danger-associated molecular patterns

(MTDs) induce expression and production of IL-1β, IL-6, IL-10, RANTES, and VEGF

(19, 116–120)

TLR3 Induce IFNγ production in conjunction with TCR stimulation, resistance to HSV induced encephalitis (11, 121–123)

TLR4 Increases proliferation, IFN-γ release, and cytotoxic potential, activation following burn injury (100, 125, 127, 130)

TLR7/9 Upregulate upon poly I:C costimulation, promote IL-17 production (19, 124, 132)

TLR8 Reversal of immunosuppressive activity (132, 134, 135)
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downregulation of MHC class 1 molecule on tumor cells result-
ing in a reduced affinity for inhibitory receptor NKG2A on γδ T
cells (59). Manipulation of TLR signaling by using TLR8 agonists
reversed the suppressive potential of γδ Tregs found elevated in
breast cancer (132). Polysaccharide K (PSK) known for its anti-
tumor and immuno-modulatory function can also activate TLR2
leading to increased secretion of IFN-γ by γδ T cells on stimula-
tion. The cell–cell contact between γδ T cells and DC was required
for optimal activation of γδ T cells. However, PSK along with anti-
TCR could co-activate γδ T cells even in the absence of DC. The
study confirmed that the anti-tumor effect of PSK was through
activation of γδ T cells (153).

Studies from our lab have shown that the TLR signaling in γδ T
cells derived from the oral cancer (OC) patients may be dysfunc-
tional. We reported that γδ T cells from healthy individuals (HI)
and OC patients express higher levels of TLR2, TLR3, TLR4, and
TLR9 than in αβT cells. Higher TLR expression was observed in
HI compared to OC patients. Stimulation with IL2 and TLR ago-
nists (Pam3CSK, Poly I:C, LPS, and CpG ODN) resulted in higher
proliferative response of peripheral blood lymphocytes from HI
compared to OC patients. However, the role of other immune cells
that may influence the TLR ligand stimulation induced activation

status of lymphocytes cannot be ignored (125). Impairment in
TLR expression/signaling can be viewed as a strategy employed by
tumor cells to avoid immune recognition.

TLRs AND γδ T CELLS IN DISEASES
Studies have demonstrated the protective role of γδ T cells in
infection and inflammation (154–157). Inoue et al. showed that
during mycobacterial infection, γδ T cells precedes the αβ T cells,
indicating role of γδ T cells as first line of defense against infec-
tions (158). The conserved molecular patterns associated with
pathogens are directly recognized by γδ T cells leading to rapid
protective response against the danger signal. Unlike αβ TCR, γδ

TCR acts as pattern recognition receptor providing advantage in
anti-infection immunity by directly initiating cytotoxicity against
infected cells or through production of cytokine to involve multi-
ple immune system components to combat infection (159, 160).
Activated γδ T cells through TLR3 and TLR4 ligands rescue the
repressed maturation of virus-infected DCs and mount a potent
antiviral response (58, 140). Malarial infection in MyD88 defi-
cient mice resulted in impairment in CD27−IL-17A-producing
γδ T cell without affecting the IFN-γ producing γδ T cells (161).
This study specifies the role of TLR in promoting proliferation

FIGURE 1 | Improving γδT cell functions byTLRs in combinatorial
therapy. (A) TLR agonists induce effector function of γδ T cells through
IFN-γ, TNF-α, IL-6 secretion, and increased expression of CD107a.
(B) IFN-γ, TNF-α, and IL-6 secreted by γδ T cells and TLR agonists promote
the maturation of dendritic cell. (C) γδ T cells upregulate CD86 and MHC I
expression on DCs and are themselves activated through up-regulation of
CD25, CD69, and cytokine production thereby modulating each other’s
function. (D) Co-stimulation of γδ T cells with TLR agonists and IL-1β

secreted by dendritic cells promote their polarization toward IL17
producing cells. (E) γδ TCR also recognizes the specific molecular patterns

such as IPP, which are induced upon inhibition of mevalonate pathway by
bisphosphonates. Moreover, NKG2D receptor on γδ T cells recognizes
MICA/B or ULBP expressed on tumor cells. This binding enhances release
of perforins and granzymes by the γδ T cells leading to tumor cell lysis.
(F) TLR agonists act as adjuvants and can induce CD54 expression and
downregulation of MHC class 1 on tumor cells. Interaction between CD54
and its ligand CD11a/CD18 trigger effector functions in γδ T cells.
Downregulation of MHC class 1 molecule on tumor cells result in reduced
signaling through the inhibitory receptor NKG2A on γδ T cells, which
enhances the cytotoxic potential of γδ T cell.
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of proinflammatory γδ T cells. Another study by Martin et al.
showed that IL17 producing γδ T cells express TLR1 and TLR2
and expand in response to their ligands and mount an adequate
response against heat-killed M. tuberculosis or C. albicans infec-
tion (118). However, γδ T cell are also known to directly recognize
the pathogen-derived molecules and mediate cytotoxic effector
function either through secretion of perforin and granzyme B or
by secretion of proinflammatory cytokine IL17 (162–164). The
involvement of TLRs in regulating anti-microbial γδ T cell func-
tion should be investigated in depth to exploit it as a cell based
therapy for infectious diseases.

CONCLUDING REMARKS
The characteristic copious IFN-γ or IL17 secretion, MHC-
independent antigen recognition, tissue tropism, and potent cyto-
toxicity make γδ T cells promising targets for immunotherapy.
Similar to αβ T cells, γδ T cells exhibit functional and phenotypic
plasticity, which influences the nature of the downstream adap-
tive immune response. The adoptive transfer of ex vivo expanded
Vγ9Vδ2 T cells or in vivo activation of Vγ9Vδ2 T cells (phospho-
antigens or amino-bisphosphonates) can be utilized as adjuvant
to conventional therapies. Clinical trials of Vγ9Vδ2 T cells as
immunotherapeutic agents have shown encouraging results that
could be attributed to its low toxicity grade. Combinations of
cellular immune-based therapies with chemotherapy and other
anti-tumor agents may be of clinical benefit in the treatment of
malignancies. Combinatorial treatment using, chemotherapeutic
agents or bisphosphonate zoledronate (ZOL) sensitizes tumor-
derived cell lines to rapid γδ T cells killing.Vγ9Vδ2 T cell triggering
may be also enhanced by combining TCR stimulation with engage-
ment of TLRs. Various TLR agonists are currently under investi-
gation in clinical trials for their ability to orchestrate anti-tumor
immunity. In one study, simultaneous use of both Imiquimod
(TLR7 agonist) and CpG–ODN (TLR9 agonist) loaded onto virus
like nanoparticles was found to be effective in triggering effector
and memory CD8+ T cell response (165). Similarly, combination
of γδ T cells and DCs along with nanoparticle loaded TLR ago-
nists can be employed for developing effective immunotherapeutic
strategies. The direct or indirect stimulation of γδ T cells by TLR
agonists could be a strategy to optimize Th1-mediated immune
responses as adjuvant in vaccines against infectious or malignant
diseases.

Administration of an “immunogenic chemotherapy” (such as
oxaliplatin or anthracycline or an X-ray-based regimen) or local
delivery of TLR surrogates in the tumor microenvironment (which
stimulate local DCs and provides a source of IL-1β) may be also
instrumental in polarization of γδ TILs into IL17 producing cells.
Tγδ17 cells play a crucial role in anti-microbial immunity but their
role in tumor immunity remains controversial. Tγδ17 have both
pro and anti-tumor properties. TLR use in combinatorial therapy,
therefore, could be a double edged sword. Careful use of TLR ago-
nists in combinatorial γδ T cell based therapy is needed to strike
the balance between pro and anti-tumor effects (Figure 1).
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