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Next-generation sequencing (NGS) has instigated the research on the role of the

microbiome in health and disease. The compositional nature of such microbiome

datasets makes it however challenging to identify those microbial taxa that are truly

associated with an intervention or health outcome. Quantitative microbiome profiling

overcomes the compositional structure of microbiome sequencing data by integrating

absolute quantification of microbial abundances into the NGS data. Both cell-based

methods (e.g., flow cytometry) and molecular methods (qPCR) have been used to

determine the absolute microbial abundances, but to what extent different quantification

methods generate similar quantitative microbiome profiles has so far not been explored.

Here we compared relative microbiome profiling (without incorporation of microbial

quantification) to three variations of quantitative microbiome profiling: (1) microbial

cell counting using flow cytometry (QMP), (2) counting of microbial cells using flow

cytometry combined with Propidium Monoazide pre-treatment of fecal samples before

metagenomics DNA isolation in order to only profile the microbial composition of intact

cells (QMP-PMA), and (3) molecular based quantification of the microbial load using

qPCR targeting the 16S rRNA gene. Although qPCR and flow cytometry both resulted

in accurate and strongly correlated results when quantifying the bacterial abundance

of a mock community of bacterial cells, the two methods resulted in highly divergent

quantitative microbial profiles when analyzing the microbial composition of fecal samples

from 16 healthy volunteers. These differences could not be attributed to the presence of

free extracellular prokaryotic DNA in the fecal samples as sample pre-treatment with

Propidium Monoazide did not improve the concordance between qPCR-based and

flow cytometry-based QMP. Also lack of precision of qPCR was ruled out as a major

cause of the disconcordant findings, since quantification of the fecal microbial load by
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the highly sensitive digital droplet PCR correlated strongly with qPCR. In conclusion,

quantitative microbiome profiling is an elegant approach to bypass the compositional

nature of microbiome NGS data, however it is important to realize that technical sources

of variability may introduce substantial additional bias depending on the quantification

method being used.
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INTRODUCTION

Next-generation sequencing (NGS) has instigated microbiome
research and resulted in many novel insights on the role of the
microbiome in health and disease. One of the challenges of NGS
however relates to the compositional nature of the generated
data. As compositional data always sum up to a constant (e.g.,
100%), an increase of a specific microbial taxon in response to a
given condition will inevitably lead to a decrease in the relative
abundance of other taxa. This mutual dependence between
microbial taxa when expressed as relative abundances makes it
particularly challenging to identify those microbial taxa that are
truly affected by an intervention or a disease state (Knight et al.,
2018; Jian et al., 2020).

Vandeputte et al. (2017) introduced the concept of
Quantitative Microbiome Profiling (QMP) as a way to quantify
absolute microbial abundances from NGS data to bypass many
of the statistical and interpretative challenges that arise from
the compositional structure of microbiome sequencing data. In
their work, QMP was achieved by determining the total bacterial
load of stool samples by flow-cytometry and subsequently
normalizing the 16S rRNA gene sequencing data for sampling
depth taking the total bacterial cell counts into account. In
contrast, Jian et al. (2020) used quantitative PCR (qPCR) as a
simple and cost-effective alternative to determine the bacterial
load and estimate the absolute taxon abundance from NGS data.

Both cell-counting and qPCR come with their advantages
and limitations which can impact the subsequent estimation
of absolute taxon abundances. Flow-cytometry counts only
intact microbial cells. Therefore, new bias could theoretically
be introduced when samples contain a significant amount of
free extracellular prokaryotic DNA. This free DNA is captured
during sequencing but is excluded during flow-cytometry cell
counting. In case the taxonomic composition of free circulating
DNA differs from the composition of intact microbial cells
(e.g., due to differences in the resistance of microbial cells to
environmental stress), this might result in the introduction of
a new source of bias in downstream analysis. Enumerating
bacteria on the basis of qPCR would introduce biases through
the extraction, purification, and amplification of DNA. Although,
one could argue that this also applies to the NGS data and as such
could be considered an advantage of qPCR-based quantification
(Jian et al., 2020). Advantages of qPCR-based quantification are
the cost-effectiveness, simplicity and accessibility, whereas the
sensitivity might be a limitation as qPCR has been reported
to be only sensitive enough to detect 2-fold changes in gene
concentration or microbial load (Smith and Osborn, 2009).

Although Vandeputte et al. (2017) showed only a moderate
correlation between quantification of microbial load by flow-
cytometry and qPCR, a direct comparison between cell-
based and molecular-based methods to estimate absolute taxon
abundances from NGS data has not yet been conducted.
As such the level of potential bias that could additionally
be introduced when applying quantitative microbial profiling
remains unknown.

Here we explored both cell-based and molecular-based
methods for QMP and examined the potential effect of various
sources of bias by analyzing the fecal microbial profiles of 16
healthy volunteers.

First, we compared the estimation of absolute microbial taxon
abundances by combining 16S rRNA gene amplicon profiling
with, respectively, flow-cytometry and qPCR to determine the
microbial load.

Second, we examined to what extend extracellular DNA
derived from lysed bacteria might introduce differences between
cell-based and molecular-based QMP approaches by eliminating
free DNA and non-viable cells from stool samples using
PropidiumMonoazide (PMAxxTM, Biotium, Fremont, CA, USA)
treatment. Last, we compared the (lack of) sensitivity of qPCR-
based methods for microbial quantification to digital droplet
PCR (Hindson et al., 2013) as a more precise, discriminating, and
reproducible molecular quantification method (Kim et al., 2014;
Gobert et al., 2018).

MATERIALS AND METHODS

Study Population
To assess the impact of different quantitative microbial
profiling methods, we collected fecal samples from 16
healthy volunteers. Along with sample collection, a
limited number of demographic data were retrieved,
including date and time of fecal collection, age, sex, dietary
lifestyle, and antibiotic consumption in the previous 3
months (Table 1).

Participants were instructed to collect a complete defecation
in a FecesCatcher (Tag Hemi VOF, Zeijen, The Netherlands),
transfer a maximum amount of feces in a labeled feces tube
(Sarstedt, Nümbrecht, Germany) and deposit the sample and
accompanying questionnaire in a sealed plastic safety bag
at the research department as soon as possible. All samples
were aliquoted (200mg aliquots) and stored at −80◦C by
the researchers.
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TABLE 1 | Characteristics of the (fecal samples of) healthy subjects included in the present study.

Subject Age Sex Alternative

dietary lifestyle

Antibiotic use in

past 3 months

Bristol stool

score

Average % dry

weight

1 25 Female Vegetarian No 3 26.99

2 24 Male No No 3 18.70

3 28 Female Vegetarian No 6 23.43

4 23 Female No No 4 28.08

5 31 Female No No 4 23.34

8 29 Female No No 6 18.52

9 27 Female No No 3 36.29

10 49 Female No No 3 14.73

12 30 Male No No 4 26.82

13 27 Male No No 4 22.47

15 29 Female No No 4 13.00

16 26 Female No No 6 16.37

20 26 Male No No 3 24.49

22 26 Male No No 3 24.58

23 31 Male No No 4 29.89

26 31 Male No No 4 19.56

Cell Counts and Stool Moisture
For cell counting, 200mg aliquots of the samples were processed
and stained as described by Vandeputte et al. (2017) followed
by flow cytometric analysis using a BD FACSCanto II with
FACS Diva V8.0.1 software (BD Biosciences). A side scatter of
2,000 was set as acquisition threshold. All other instrument and
gating settings were in accordance with the method described by
Vandeputte et al. (2017) and were kept constant for all samples.
To obtain bacterial concentrations, the total number of events
in the cell gate was divided by the sample volume, which was
determined by weighing each tube before and after acquisition.

Stoolmoisture content was determined in duplicate on 200mg
homogenized fecal material as the percentage of mass loss
upon vacuum concentration for 5 h at 60◦C in a Vacufuge plus
(Eppendorf) using the “AQ” setting.

PMAxx Treatment
For the QMP-PMA approach, extracellular DNA and DNA from
dead or membrane-compromised bacterial cells was removed by
pre-treatment of fecal samples with the viability dye PMAxxTM.
PMAxx is a DNA-intercalating agent that forms photo-induced
crosslinks making the bound DNA inaccessible for downstream
molecular applications. PMAxx was added to 10-fold diluted
fecal specimens at a final concentration of 50µM, followed
by 10min. shaded incubation at 4◦C. Photoactivation was
performed by using the PMA-LiteTM LED Photolysis Device
(Biotium) with the exposure time set to 10min. This procedure
was repeated 3 times after which metagenomic DNA was isolated
from the samples.

In order to assess the effectiveness of PMA-treatment,
three fecal samples were spiked with 3.7 × 107 copies/gram
feces of heat-killed Chlamydia trachomatis (CT). Subsequently,
samples were split in two aliquots of which one aliquot
was treated with PMAxx as described above and one aliquot

remained untreated. Upon DNA isolation (see below), the CT
load was quantified by subjecting the treated and untreated
samples to a qPCR assay targeting the single-copy ompA gene,
coding for the major outer membrane protein (MOMP) of C.
trachomatis, on a 7900HT Real-Time PCR System (Applied
Biosystems, Foster City, California) as described previously
(Janssen et al., 2016).

DNA Isolation and qPCR Assessment of
Bacterial Load
DNA was extracted from 200mg of frozen aliquots of
homogenized feces according to the recommended protocol Q
of the International Human Microbiome Standards Consortium
(Costea et al., 2017).

Extracted DNA was quantified using a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific).

Enumeration of total bacterial load by qPCR was achieved
by amplification of the 16S rRNA genes (primer pair 16S-341_F
and 16S-805_R; CCTACGGGNGGCWGCAG and GACTACH
VGGGTATCTAATCC, respectively) using a MyiQ Single-Color
Real-Time PCR Detection System (BioRad) in 25 µl reactions
containing 12.5 µl iQ SYBR Green Supermix (BioRad), 2 µl
template DNA (1:1000 diluted), 300 nM of both primers 16S-
341_F and 16S-805_R. The PCR amplification program consisted
of an initial denaturation set at 95◦C for 3min. followed by 35
three-step cycles at 95◦C for 15 s and at 55◦C for 20 s and 72◦C
for 30 s. In each run, negative template controls (DNA replaced
by nuclease-free water in qPCR), negative isolation controls
(feces replaced by nuclease free water during DNA extraction)
and positive controls (quantified recombinant plasmid construct
containing the target sequence) were included. Melting curves
were checked for each sample to confirm amplification of the
correct product.
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Digital Droplet PCR for Assessment of
Bacterial Load
Next to molecular quantification by qPCR, all samples were also
quantified by ddPCR by amplifying the 16S rRNA gene (primer
pair 515F/806R; Caporaso et al., 2012) using a QX200 Droplet
Digital PCR system (Bio-rad). Reaction mixtures consisting of
11 µl EvaGreen ddPCR Supermix (Bio-Rad), 2.2 µl template
DNA and 300 nM of both primers in 22 µl reaction volumes
were prepared and 20 µl will be transferred to the DG8
droplet generator cartridge. Upon the addition of 70 µl Droplet
Generation Oil in the dedicated wells, the cartridge was placed in
the QX200 droplet generator. After droplets have been generated,
40 µl was transferred to a 96-wells PCR plate and the plate was
sealed using a PX1 PCR plate sealer. The PCR amplification
program consisted of an initial denaturation set at 95◦C for
3min. followed by 30 three-step cycles at 95◦C for 30 s and
at 50◦C for 45 s and 72◦C for 1min and finally followed by
post-cycling steps of 98◦C for 10min (enzyme inactivation) and
an infinite 12◦C hold. The plate was subsequently placed in
a QX200 droplet reader and results were analyzed using the
Quantasoft application.

Comparison of Cell-Based and
Molecular-Based Quantification of a
Standard Microbial Community
We used the Gut Microbiome Whole cell Mix (ATCC R© MSA-
2006TM) containing an even mixture of whole bacterial cells
(12 different species) in order to assess whether cell-based
or molecular-based quantification was more accurate. The
lyophilized pellet was dissolved in 1ml PBS according to the
manufacturer’s instructions and serial 2-fold dilutions, ranging
from 3.3 × 106 to 5.56 × 104, were subsequently made. The
dilutions were used for cell counting as well as for DNA-isolation
followed by qPCR as described above. For qPCR, the number of
copies/ml were converted into cells/ml by taking into account
the copy numbers for each of the bacterial species in the mock
community (average copy number 6.435/genome).

Microbiota Profiling
Fecal microbiota profiling was performed in accordance to the
paper by Vandeputte et al. (2017).

Briefly, the V4 region of the 16S rRNA gene was PCR
amplified from each DNA sample in triplicate using the
515F/806R primer pair described previously (Caporaso et al.,
2012). Pooled amplicons from the triplicate reactions were
purified using AMPure XP purification (Agencourt) according
to the manufacturer’s instructions and eluted in 25 µl 1× low
TE (10mM Tris-HCl, 0.1mM EDTA, pH 8.0). Quantification
of amplicons was subsequently performed by the Quant-iT
PicoGreen dsDNA reagent kit (Invitrogen) using a Victor3
Multilabel Counter (Perkin Elmer, Waltham, USA). Amplicons
were mixed in equimolar concentrations to ensure equal
representation of each sample and sequenced on an Illumina
MiSeq instrument (MiSeq Reagent Kit v3, 2 × 250 cycles, 10%
PhiX) to generate paired-end reads of 250 bases in length in
both directions.

After demultiplexing using MiSeq reporter software using
default settings, fastq sequences were merged, quality and
chimera filtered using FLASH (Magoc and Salzberg, 2011), seqtk
trimq (https://github.com/lh3/seqtk) and usearch (Edgar et al.,
2011), respectively, using the same settings as Vandeputte et al.
(2017).

Finally, between 153,527 and 282,297 reads per untreated
sample and between 152,968 and 268,362 reads per PMAxx-
treated samples remained for downstream analysis.

Relative Microbiome Profiling (RMP)
Samples were downsized to 153,527 reads/sample by randomly
selecting reads. Taxonomic assignment of reads was performed
using RDP classifier 2.12 (Wang et al., 2007).

Cell-Based Quantitative Microbiome Profiling (QMP)
QMP was done in accordance with the method proposed by
Vandeputte et al., downsizing the samples to an even sampling
depth, defined as the ratio between sample size (16S rRNA gene
copy-number-corrected sequencing depth) and microbial load
(average total cell count/gram frozen feces; Table S3).

PMA-Based Quantitative Microbiome Profiling

(QMP-PMA)
Quantitative microbiome profiling after removal of extracellular
DNA and DNA from dead and damaged bacterial cells
was conducted identical to the standard QMP method with
the exception of the additional PMA pre-treatment prior to
metagenomic DNA-isolation.

qPCR-Based Quantitative Microbiome Profiling

(QMP-qPCR)
The bacterial load was determined by qPCR targeting the 16S
rRNA gene. Comparing cycle threshold values of each sample to
a standard quantification curve (using quantified recombinant
plasmid constructs) resulted in the total number of 16S rRNA
gene copies/gram feces (Table S4). In order to use the qPCR-
based determination of bacterial load, total numbers of 16S rRNA
gene copies/gram feces were converted into the total number of
bacterial cells/gram feces. First, the average number of 16S rRNA
gene copies per bacterium was calculated for each sample based
upon the sequencing data (total number of sequencing reads for
a given sample divided by the copy-number corrected number
of reads for that respective sample). Next, the total number of
16S rRNA gene copies/gram feces as determined by qPCR was
divided by the average 16S rRNA gene copy number of that
respective sample. Subsequently, the same approach as for the
standard QMP method was followed.

Statistical Analyses
No sample size calculations were performed. Statistical analyses
were performed in R using the packages vegan (Oksanen et al.,
2013) and DirichletMultinomial (Morgan, 2017). Two sided
statistical tests were used for all comparisons and corrected for
multiple testing using the false discovery rate [FDR according to
Benjamini-Hochberg method (Benjamini and Hochberg, 1995)]
where appropriate.
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Observed genus richness was calculated using the R package
vegan and enterotyping using the DMM approach was performed
in R as described previously (Holmes et al., 2012). As
the DMM-clustering was based on a limited number of
samples, hence having potentially a limited accuracy, we
examined whether the clustering was in concordance with
the classification according to the reference-based enterotype
classification model fitted onMetaHIT samples (enterotypes.org)
(Costea et al., 2018) DMM-based clustering and reference-
based classification was in accordance for all samples, with
the exception of three samples that were classified into the
Firmicutes enterotype according to the classification model. To
calculate microbiome variation between replicates and methods,
the Bray–Curtis dissimilarity based on the genus-abundance
matrix was calculated and visualized by PCoA using the
vegan package.

Pearson’s or, where appropriate, non-parametric Spearman’s
correlations were calculated to determine the association between
continuous variables (genus richness and abundances, bacterial
load, and/or metadata).

Paired Wilcoxon Signed Rank test was used to test for
differences in observed genus richness between profilingmethods
and to test for differences in microbiome variation between
replicates and profiling methods. TheMann–Whitney U-test was
used to test for differences in bacterial loads between enterotypes.

To calculate the ordinal association between genera in the
four different profiling methods, the Kendall rank correlation
coefficient was used to test for concordance of ranking for
the 15 most abundant genera (based upon RMP) between
the methods.

RESULTS AND DISCUSSION

To examine the correlation between cell-counting and molecular
quantification, we first compared the quantification of the
serially diluted Gut Microbiome Whole cell Mix by means
of flow cytometric and qPCR. Cell counting resulted in a
concentration very similar to the expected concentration as
provided by the manufacturer as quantified by a cellometer
(Table S1). Although quantification of serial 2-fold dilutions
of the cell mix by FACS and qPCR correlated very strongly
(Pearson’s r = −0.967, P = 1.7 × 10−8, Table S1), qPCR
resulted in a much higher than expected concentration (1.0
× 108 cells/ml). Since qPCR also detects extracellular DNA,
while cell-counting only quantifies intact microbial cells, we next
removed extracellular DNA by pre-treatment of the suspended
Gut Microbiome cell Mix with the viability dye PMAxxTM prior
to metagenomic DNA isolation. After PMAxxTM pre-treatment,
the number of bacterial cells in the mix as quantified by qPCR
was 3.57 × 106 cells/ml, and thereby almost identical to the
expected concentration. Also, after PMAxxTM pre-treatment, the
correlation between cell counting and qPCR of serially diluted
Gut Microbiome cell Mix remained very strong (Pearson’s
r = −0.966, P = 2.1 × 10−8, Table S1). Altogether these
results indicate that flow cytometry-based cell counting, and
qPCR-based quantification correlated strongly, but absolute

quantification might differ substantially in the presence of large
quantities of extracellular DNA.

Next, we profiled the microbiota of fecal samples of the
16 healthy volunteers in duplicate for each of the four
methods: (i) RelativeMicrobial Profiling (RMP), (ii) Quantitative
Microbial Profiling using flow cytometry-based microbial load
(QMP), (iii) Quantitative Microbial profiling using flow-
cytometry-based microbial load and PMAxxTM pre-treatment
before metagenomics DNA isolation and 16S rRNA gene
amplicon sequencing in order to only profile the microbial
composition of intact cells (QMP-PMA), and (iv) Quantitative
Microbial Profiling using qPCR to determine the microbial load
(QMP-qPCR) (seeMethods section for details, Table 1 for study-
specific data and Figures 1A–D for microbial profiles).

Stool moisture negatively correlated with observed richness
(Spearman’s ρ = −0.685, FDR = 9.0 × 10−3, Table S2)
confirming previous observations between stool consistency
and microbial richness (Tigchelaar et al., 2016; Vandeputte
et al., 2016, 2017) A similar correlation with microbial richness
was not observed when using the Bristol Stool Scale (BSS)
as a measure for stool consistency (Spearman’s ρ = −0.15,
FDR = 5.9 × 10−1). Indeed, BSS scores only weakly and
non-significantly correlated with stool moisture (Spearman’s
ρ = 0.27, FDR = 4.6 × 10−1). This lack of correlation is
likely the result of the potential bias introduced by the self-
reporting of BSS scores by the study participants, advocating
the standardized scoring of stool consistency by research
staff or using more objective markers such as stool moisture
(Vork et al., 2019).

Microbial loads as assessed by flow-cytometry were shown to
vary between 1.2 × 1010 and 5.3 × 1010 cell counts per gram of
fecal material (median 2.3× 1010 cell counts per gram; Table S3)
and a comparison with qPCR enumeration revealed a moderate
correlation (Pearson’s r = −0.50, P = 4.7 × 10−2, Table S3,
Figure S1) similar to what has been described by Vandeputte
et al. (2017).

Using DMM clustering on RMP profiles, we identified two
enterotypes enriched in Bacteroides or Prevotella (Figure S2).
The microbial loads, as determined by flow-cytometry,
significantly differed between the two enterotypes (median
1.91 × 1010 and 2.43 × 1010 cells/gram, respectively, P = 4.4 ×

10−2). A similar difference between enterotypes was, however,
absent when the microbial loads were determined by qPCR (P =

6.0× 10−1, Table S4).
Prior to comparing the QMP- and QMP-PMA data, we

examined the efficacy of PMAxx treatment in removing
extracellular DNA in a fecal matrix. First, spiking of fecal
samples with heat-killedC. trachomatis (CT) showed that PMAxx
treatment effectively eliminated free DNA as indicated by a
substantial reduction of qPCR detection of the CT-target DNA
(i.e., average increase of 11.6 Ct-values (range 10.2–12.7) in qPCR
which is equivalent to a signal reduction of 99.96%). Second,
enumeration of total bacterial load in fecal samples by qPCR
revealed an average decrease in bacterial load of 1.5 × 1010 16S
rRNA gene copies/gram feces [IQR 5.1 × 109-2.7 × 1010, P =

5.2 × 10−4, Figure S3] upon PMAxx treatment corresponding
to an average of 39.0% of metagenomic DNA being extracellular
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or originating from non-viable cells. However, the correlation
betweenmicrobial loads as assessed by flow-cytometry and qPCR
appeared to be slightly weaker after PMAxx-treatment (Pearson’s
r =−0.41, P = 1.1× 10−1, Table S3, Figure S1).

Generating quantitative microbiome profiles revealed that
profiles obtained after PMAxx-treatment remained highly similar
to the standard QMP profiles (Figures 1B,C), although the
observed genus richness slightly decreased upon PMAxx-
treatment (median richness 66.0 and 64.0 for QMP and QMP-
PMA, respectively, FDR= 4.0× 10−3, Table S2). Determination
of bacterial load by qPCR, however, resulted in highly divergent

profiles (Figure 1D) and a strong decrease in the observed genus
richness (median: 52.0, FDR = 1.2 × 10−3) when compared to
QMP and QMP-PMA.

We subsequently analyzed the divergence in microbial
community structure both between replicates of samples
analyzed by the same QMP method (within-method
dissimilarity) as well as between aliquots of the same sample but
profiled by different quantitative methods (between-methods
dissimilarity). The within-method variation, as indicated by the
average Bray Curtis (BC) dissimilarity, was similar for QMP with
and without PMAxx-treatment (Figure 2, Table S5, FDR = 5.62

FIGURE 1 | Microbiome profile comparisons. Genus-level fecal microbial composition of both replicates of all 16 healthy study subjects (n = 32 samples) based upon

(A) relative microbiome profiling (RMP), (B) quantitative microbiome profiling (QMP, cells per gram feces), (C) QMP after PMAxx-treatment of fecal samples

(QMP-PMA, cells per gram feces), and (D) QMP using qPCR for quantification of bacterial load (QMP-qPCR, cells per gram feces).
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FIGURE 2 | Within method dissimilarity of sample replicates and between methods dissimilarity of samples. Fecal microbial community structure variation based upon

Bray–Curtis (BC) dissimilarity between samples and sample replicates. (A) Principal coordinates analysis of the study cohort based upon BC dissimilarity. Each

segment connects the two replicates of the same sample as profiled by QMP (blue), QMP-PMA (green), and QMP-qPCR (red), (B) Box-plot of BC distance

between sample replicates for all quantitative profiling methods (within-method variability) and BC distance in microbial community structure from the same sample

profiled with different quantitative methods (between-method variability). The significance was checked pairwise using the Wilcoxon test and then adjusted for multiple

comparisons using the FDR correction. The significance coding is indicated as ***p < 0.005, **p < 0.01, *p < 0.05 and N.S. for p ≥ 0.05. For clarity only significance

of the comparisons between within QMP-method dissimilarity and all other within- and between-method dissimilarities are indicated (all FDR-corrected p-values are

presented in Table S5).
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× 10−1), whereas the within-method variation was slightly
higher for QMP-qPCR when compared to the standard QMP
method (FDR = 9.66 × 10−4). Although the between QMP and
QMP-PMA method dissimilarity was significantly larger than
the within QMP-method dissimilarity (FDR = 1.44 × 10−3),
the dissimilarity in microbial community structure between
both methods was still modest [median (IQR) BC dissimilarity:
0.082 (0.062–0.108)] and far lower than the dissimilarity between
QMP-qPCR and QMP [median (IQR): 0.260 (0.199–0.364), FDR
= 1.83 × 10−4]. From these results it cannot yet be deduced
whether the slightly yet significantly dissimilar QMP-PMA
and QMP microbial profiles are due to the elimination of
free extracellular DNA (bias in QMP) or merely due to the
introduction of additional technical variation during sample
handling (noise).

We therefore subsequently examined to what extent the
sample rank order for each genus was conserved between the four
profiling methods, similar to Vandeputte et al., When comparing
RMP to QMP, sample rank order concordance within the 15most
abundant genera varied widely with the highest concordance
observed for Fusicatenibacter and the lowest concordance for
Blautia (Kendall’s rank correlation test, τ , range = 0.47–0.95,
Table S6). This confirmed the previous observation that absolute
abundance profiles differ significantly from those generated by
relative approaches.

When comparing the average sample rank concordance
among the 15 most abundant genera between each of the four
profiling methods, QMP and QMP-PMA showed the highest
overall concordance (average τ among the 15 most abundant
genera = 0.82, Table S6, Figure S4). The overall concordance
between RMP and either QMP or QMP-PMA did not differ
significantly (average τ among 15 most abundant genera = 0.75
and 0.69, respectively, FDR = 3.8 × 10−1, Table S6, Figure S4),
indicating that PMAxx-treatment did not appear to result in a
higher overall concordance with RMP. For each of the 15 genera
the lowest sample rank order concordance was observed between
QMP-qPCR and the other three methods, confirming that qPCR-
based absolute abundance profiles are highly divergent from both
the other quantitative as well as the relative profiling methods.

Furthermore, we could clearly identify the strong trade-
off between Bacteroides and Prevotella as commonly reported
(Lozupone et al., 2012) in RMP-based analysis (Spearman’s
ρ = −0.70, FDR = 3.2 × 10−5) and confirmed that
the association between these two genera became weaker
in a quantitative context, although the association remained
statistically significant in the QMP and QMP-PMA profiles
(QMP: Spearman’s ρ = −0.64, FDR = 1.7 × 10−4; QMP-
PMA: Spearman’s ρ = −0.55, FDR = 1.4 × 10−3; QMP-qPCR:
Spearman’s ρ =−0.17, FDR= 0.353; Table S7).

To explore the possibility that the deviant profiles generated
by QMP-qPCR are the result of the lack of precision and
sensitivity of qPCR-based quantification, we finally quantified
the microbial load in all fecal samples by means of Droplet
Digital PCR (ddPCR). As with qPCR, this more recently
introduced technology uses Taq polymerase in a standard PCR
reaction to amplify the target DNA. The ddPCR technology
however partitions the PCR reaction into thousands of droplets

(individual reaction vessels) prior to amplification and acquires
the data at the reaction end point. This enables more precise
and reproducible data and direct quantification without the
need of standard curves (Kim et al., 2014; Gobert et al., 2018).
Quantification of microbial load based upon ddPCR however
correlated strongly with qPCR-based quantification both for
untreated (Pearson’s r = 0.72, P = 2.0 × 10−3) and PMAxx-
treated fecal samples (Pearson’s r = 0.90, P = 2.0 × 10−6,
Table S8). More importantly, correlations between ddPCR and
FACS for untreated (Pearson’s r = 0.50, P = 4.9 × 10−3) and
PMAxx-treated fecal samples (Pearson’s r= 0.39, P= 1.4× 10−1,
Table S8) were not stronger than correlations between qPCR
and FACS (Table S3). Indeed, when quantifying serial 2-fold
dilutions of 3 samples and mock mix (within the concentration
range of∼102-105 copies/uL), we showed that qPCR and ddPCR
results correlated strongly (Pearson’s r = 0.988, P = 5.6 × 10−46

Table S9, Figure S5).
Altogether these results indicate that the deviant QMP-qPCR

based profiles when compared to the other profiling methods
cannot be explained by a lack of precision or sensitivity of qPCR.

In conclusion, our results show that quantitative
microbial profiles are substantially affected by the method
of microbial quantification.

Flow-cytometry counting excludes damaged cells and free
extracellular DNA, while this part of the microbiome is being
captured during sequencing. A significant part of bacterial death
and lysis might occur during sample collection and handling in
the laboratory, these bacteria should therefore not be dismissed
during quantification. By using PMAxx treatment, we indeed
demonstrate that on average around 40% of metagenomic
DNA in fecal samples can be attributed to extracellular DNA
and damaged bacterial cells. However, eliminating this part of
metagenomic DNA prior to sequencing still resulted in highly
similar quantitative microbiome profiles suggesting that bacterial
cell death was evenly distributed across taxa. This indicates that
extracellular DNA does not seem to introduce a new source of
bias when combining 16S NGS with flow-cytometry cell counts.
It should, however, be noted that a previous study did report
markedly distinct fecal microbial profiles of extremely preterm
infants upon PMA-treatment (Young et al., 2018). The rapid
processing and storage of fecal samples in the present study
might have contributed to the limited differences, underscoring
the importance of careful sample handling.

The results of our analysis further demonstrate that
quantification of bacterial load by qPCR results in highly
divergent profiles, indicating that qPCR-based quantification
might not be an adequate approach for quantitative microbiome
profiling. Flow-cytometry quantification indicated that the
difference in bacterial load varied <3 times between the vast
majority of samples (14/16). Several studies have indicated
that qPCR is only useful for determining dissimilarity between
two samples if the true difference is at least 2–3-fold (Smith
and Osborn, 2009; Hospodsky et al., 2010), suggesting that
qPCR-based enumeration is too imprecise to be an adequate
alternative for flow-cytometry in quantitative microbiome
profiling. However, we showed that using the highly precise and
sensitive ddPCR for microbial quantification did not result in
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improved correlation with flow cytometry-based cell counting.
The strong correlation between ddPCR and qPCR moreover
makes PCR bias an unlikely cause of the divergent profiles
as different primer pairs were used for the two molecular
quantification methods. Indeed, in silico analyses showed that the
primer pairs used for qPCR quantification are highly specific for
the domains of archaea and bacteria. Less that 0.1% of eukaryotic
sequences are detected while over 95% of all bacterial sequences
are being detected. Although only 65% of all archaeal sequences
match our primer pair, this is mainly due to mismatches to many
environmental archaea whereas themethanogenic archeal species
commonly observed in the human intestinal tract are all covered
by our primer pair.

When using Gut Microbiome Whole Cell Mix, we did show
strong correlations between flow-cytometry and qPCR-based
quantification. Moreover, ddPCR and qPCR quantification of
16S rRNA gene copies in fecal samples also correlated strongly
despite the use of different primer pairs and amplification
protocols. Together these results indicate that primer bias or
other technical aspects related to qPCR-based quantification
are an unlikely cause for the dramatic deviant QMP-qPCR
profiles. It is much more likely that the bias is introduced
during the process of extracting DNA from the complex fecal
matrix. In contrast to cell counting, molecular quantification
is a multi-step process on a small aliquot of the original fecal
sample, which might result in increased intra-sample variation
when performed on multiple aliquots. Indeed, the standard
deviation between (some) replicates was substantially larger
when using qPCR as compared to flow cytometry. This is in line
with a recently published method to decompose spatiotemporal
variance onmicrobial communities, which confirmed substantial
heterogeneity between spatial sampling locations of fecal samples
(Ji et al., 2019). Also, incomplete lysis and DNA fragmentation
can bias results during DNA extraction, however the protocol
used in the present study has been comprehensively optimized
to maximize DNA quality and quantity and benchmarked to
limit bias in community diversity and Gram-positive to Gram
negative ratio (Costea et al., 2017). Moreover, the DNA extraction
might also become saturated which even further hampers direct
correlation between DNA yield and microbial load in the original
sample. These limitations may also impact the use of alternative
methods for quantitative profiling such as spiking in reference
DNA as an internal standard to extrapolate the amount of
starting nucleic material (Tkacz et al., 2018; Morton et al., 2019).

A previous study did report near perfect correlations between
QMP-qPCR and absolute abundances as determined by various
taxon-specific qPCRs (Jian et al., 2020). However, as both
methods were applied on the same DNA sample this further
suggests that the bias is not due to the qPCR-based approach
itself but rather the lack of correlation between yield upon DNA
extraction and the microbial load in the original fecal sample.

Flow-cytometry, being executed on the original sample,
performed better in terms of intra-sample variations and showed
stronger correlations with RMP and stool consistency. This
suggests that flow-cytometry would be a more preferable method
to quantify bacterial load in feces, however also flow-cytometry
comes with several limitations. One such limitation is cell
aggregation which can result in underestimation of cell counts

(Gunasekera et al., 2000; Ou et al., 2017). Moreover, this method
is more laborious, expensive and requires technical expertise
(e.g., quality control and monitoring size-related resolution,
setting-up reproducible scatter detection, measuring in accurate
concentration range), which makes it less suitable as a standard
method that can be applied by all labs on a high-throughput
basis. This calls for more high-throughput and user-friendly
cell-counting methods.

Alternatively, computational solutions are now becoming
available to make stable inferences of changes in abundances
in compositional data such as the application of “reference
frames” (Morton et al., 2019). Such computational solutions
should however always be accompanied by careful controlling for
important confounding factors, in particular stool consistency.

In conclusion, quantitative microbiome profiling is an elegant
approach to bypass the compositional nature ofmicrobiomeNGS
data, however it is important to realize that technical sources of
variability may introduce substantial additional bias depending
on the quantification method being used.
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