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Abstract

Groups of animals coordinate remarkable, coherent, movement patterns during periods of

collective motion. Such movement patterns include the toroidal mills seen in fish shoals,

highly aligned parallel motion like that of flocks of migrating birds, and the swarming of

insects. Since the 1970’s a wide range of collective motion models have been studied that

prescribe rules of interaction between individuals, and that are capable of generating emer-

gent patterns that are visually similar to those seen in real animal group. This does not nec-

essarily mean that real animals apply exactly the same interactions as those prescribed in

models. In more recent work, researchers have sought to infer the rules of interaction of

real animals directly from tracking data, by using a number of techniques, including averag-

ing methods. In one of the simplest formulations, the averaging methods determine the

mean changes in the components of the velocity of an individual over time as a function of

the relative coordinates of group mates. The averaging methods can also be used to esti-

mate other closely related quantities including the mean relative direction of motion of

group mates as a function of their relative coordinates. Since these methods for extracting

interaction rules and related quantities from trajectory data are relatively new, the accuracy

of these methods has had limited inspection. In this paper, we examine the ability of an

averaging method to reveal prescribed rules of interaction from data generated by two indi-

vidual based models for collective motion. Our work suggests that an averaging method

can capture the qualitative features of underlying interactions from trajectory data alone,

including repulsion and attraction effects evident in changes in speed and direction of

motion, and the presence of a blind zone. However, our work also illustrates that the output

from a simple averaging method can be affected by emergent group level patterns of

movement, and the sizes of the regions over which repulsion and attraction effects are

apparent can be distorted depending on how individuals combine interactions with multiple

group mates.
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1 Introduction

There are many perceived advantages for animals to stay and move in groups, including:

reduced individual probability of becoming a victim of predation in the event of an attack on

the group (via a dilution effect [1] and a confusion effect [2, 3]); the enhanced ability of many

eyes to monitor the environment for potential threats at group level [4]; and enhanced deci-

sion-making ability during foraging [5], and finding and establishing a new home [6, 7].

Movements of animal groups occur for many reasons, including seasonal migration, abun-

dance of forage and movement from one home site to another [8]. Animal groups undergoing

collective motion often form striking group level patterns of movement, including the complex

swirls of starling murmurations, toroidal milling patterns produced by shoals of fish, the cha-

otic but nevertheless guided motion of honey bee swarms, and directed parallel motion seen in

groups of many species [9, 10].

It has been hypothesised that the group level patterns of collective motion emerge due to

simple interactions between group members [11]. This fundamental insight into the possible

nature of the mechanisms that drive the patterns of collective motion, and interest in these pat-

terns across multiple scientific disciplines, including biology, physics, mathematics and com-

puter science, has led to the development of a number of models of such motion [12–26].

Many of these models prescribe how individuals adjust their velocity based on the relative

positions and velocities of their group mates according to some combination of the following

broad “rules of interaction”:

1. Repulsion: individuals adjust their velocity to avoid collision with near neighbours.

2. Orientation: individuals adjust their velocity to match that of neighbours that are nearby

(but not close enough to crash into).

3. Attraction: to avoid group fragmentation, individuals adjust their velocity to move towards

other group members that are somewhat removed from the individual’s current relative

position in the group.

With such broad rules in action, collective motion models are capable of generating emer-

gent patterns that are visually similar to those seen in real animal groups, including coordi-

nated parallel motion, milling and swarming [13, 22].

The success of collective motion models in generating realistic looking motion has led to

these models being the dominant method for understanding collective movement. However,

the fact that prescribed within-model interactions of the sort listed above generate realistic

global motions does not necessarily mean that real animals apply such interactions. A

sequence of papers starting in 2008 has sought to infer the nature of rules of interaction in

moving animal groups directly from trajectory data, starting with a large study of natural flocks

of starlings [27, 28], and then moving to other species, such as surf scoters, [29], and fish [30,

31]. Here the trajectory data is a time series of coordinates in two or three dimensions for each

individual, gathered by either automated visual tracking methods (examples include Ctrax

[32] and idTracker [33]) applied to video or sequences of still images, or via Global Positioning

System (GPS) technology (as was used by Nagy et al. [34]).

A variety of methods have now been employed to extract interaction rules, including

averaging methods (sometimes referred to as force-matching methods) [30, 31, 35, 36], anal-

yses of burst and coast dynamics [37, 38], and function fitting via machine learning algo-

rithms [39]. In one of the simplest formulations, averaging methods determine the mean

changes in the direction of motion and speed of an individual as a function of the relative

coordinates of group mates. While these methods for extracting interaction rules and related
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quantities from trajectory data are relatively new and becoming popular, the accuracy of

these methods needs more scrutiny. An exception is in the recent work of Heras et al. [39],

where a deep attention network is used to fit functions that describe the rules of interaction

of zebra fish. Heras et al. [39] validate their artificial neural network methods for recon-

structing rules of collective motion using simulated data from models similar to those of [13,

16], and variants on these models where individuals interact over topological, rather than

metric, length scales. In more recent work, [38] discussed a number of potential short-com-

ings of the averaging (force-matching) approach, but did not interrogate the method using

simulated data.

In this paper, we examine how well an averaging method captures rules of interaction from

trajectory data generated via simulations with prescribed model based rules. Here, we seek to

use data of similar duration, and representative of similar numbers of individuals, to that

derived from experimental studies where averaging methods have been used as part of the

analysis. The approach used to examine the averaging method here is quite general, and could

have been applied using data generated by any individual based model for collective motion

where the positions of individuals are tracked explicitly, irrespective of the species modelled.

The approach could also be modified to validate the use of an averaging method to infer inter-

actions in three dimensions, using data generated by any number of models that operate in

three dimensions (see for example [13, 23, 24, 40]). For this work, however, we performed sim-

ulations in two spatial dimensions using two well established models for collective motion: the

zonal self-propelled individual simulation model developed in [13], and the ordinary differen-

tial equation (ODE) model studied by [21, 22, 26]. We first describe the averaging methods

used in this study, which are derived from those described in [31, 36], in Section 2. These

methods fit functions that describe the average response of an individual in terms of changes

in speed and direction of motion over time as a function of the relative coordinates of group

mates, and the speed of the individual. In Section 3 we outline our simulations, along with

associated parameter values and the emergent group level behaviours that we observed. As

part of our analysis, we examine the effects of the number of individuals, the overall duration

of simulations, and the use of only the first or last half of data sets on the accuracy of the aver-

aging method. Results and a discussion follow in sections 4 and 5 respectively. The two indi-

vidual based models used for this study are detailed in S2 Section of the S1 File for this paper.

It is possible to obtain some fundamental analytic results for these models that give an explicit

form for pairwise interactions in terms of changes in speed and direction of motion. We illus-

trate these results in S3 Section of the S1 File, to be used as a point of comparison to the inter-

actions inferred from simulated data, however, we note that a priori we do not expect exact

extraction of the pairwise interactions by the averaging methods that we use due to the way

data is aggregated across multiple individuals.

2 Averaging method for estimating interaction rules from trajectory

data

We applied the methods described in [36] to determine the mean change in angle of motion

over time, and the mean change in speed over time, of individuals as a function of the coordi-

nates of group mates relative to both the location and direction of motion of each individual.

In addition, for analysis of data generated by the ODE model in particular, we examined both

mean changes in speed and direction of motion of individuals as a function of the relative

coordinates of group mates and the speed of the focal individual. As the focus of this study is

the accuracy of the methods described in [36] we detail the necessary calculations in the fol-

lowing subsections.
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2.1 Fundamental measures of movement

We estimated the components of the velocities of each individual from simulated data using

the standard forward-difference approximations:

uiðtÞ ¼
xiðt þ DtÞ � xiðtÞ

Dt
and viðtÞ ¼

yiðt þ DtÞ � yiðtÞ
Dt

ð2:1Þ

where (xi(t), yi(t)) is the position of individual i at time t, and Δt is the duration between conse-

cutive simulation time steps. The components of the unit vector in the direction of an individ-

ual’s velocity, Vi = ui(t)i + vi(t)j, for each individual i, for each time t, are defined as

ûiðtÞ ¼
uiðtÞ
jjViðtÞjj

and v̂iðtÞ ¼
viðtÞ
jjViðtÞjj

ð2:2Þ

where the norm ||Vi(t)|| is defined as

jjViðtÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uiðtÞ
2
þ viðtÞ

2

q

: ð2:3Þ

We used the components of velocity to find the magnitude of the change in direction of

motion of each individual i from time t to time t + Δt via:

ciðtÞ ¼ cos� 1ðûiðtÞûiðt þ DtÞ þ v̂iðtÞv̂iðt þ DtÞÞ: ð2:4Þ

We also determined the sense of rotation of the individual explicitly, that is whether the indi-

vidual turned clockwise or anticlockwise at each time step. To do this we examined the sign of

the vertical component of the cross product of the unit velocity vectors of each individual i at

times t and t + Δt. Individual i turned anticlockwise (clockwise) as it moved from time t to

time t + Δt if the sign of the following equation is positive (negative):

liðtÞ ¼ sgn ðûiðtÞv̂iðt þ DtÞ � ûiðt þ DtÞv̂iðtÞÞ: ð2:5Þ

where sgn is the sign function.

Taking into account whether the individual i turns clockwise or anticlockwise, the signed

change in direction of motion over time in degrees is given by:

Dyi
Dt
ðtÞ ¼

180

p

( liðtÞciðtÞ=Dt if liðtÞ 6¼ 0;

ciðtÞ=Dt if liðtÞ ¼ 0:

ð2:6Þ

We estimated the speed of individual i at time t directly from the components of velocity via:

siðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uiðtÞ
2
þ viðtÞ

2

q

: ð2:7Þ

We then approximated the change in speed over time of individual i using

Dsi
Dt
ðtÞ ¼

siðt þ DtÞ � siðtÞ
Dt

: ð2:8Þ

2.2 Relative coordinates of group mates

We then examined the average change in speed over time, Δs/Δt, and the average change in

direction of motion over time, Δθ/Δt, as a function of the relative (x, y) coordinates of group

mates alone, as well as the (x, y) coordinates of group mates and the speed of the focal
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individual. First we detemined the distance between a focal individual i (every individual was

treated as a focal individual in turn) and every other individual j in the group, for all times t,
using the distance formula:

di;jðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxjðtÞ � xiðtÞÞ
2
þ ðyjðtÞ � yiðtÞÞ

2
q

: ð2:9Þ

Then we calculated the angle between the unit velocity vector of the focal individual i and the

straight line segment from individual i to individual j. The unit vector pointing along the line

segment from individual i to individual j has components:

x̂ijðtÞ ¼
xjðtÞ � xiðtÞ

di;jðtÞ
and ŷijðtÞ ¼

yjðtÞ � yiðtÞ
di;jðtÞ

: ð2:10Þ

The unsigned angle between the direction of motion of individual i and the unit vector point-

ing from individual i to individual j is:

�ijðtÞ ¼ cos� 1 ðûiðtÞx̂ijðtÞ þ v̂iðtÞŷijðtÞÞ: ð2:11Þ

We then employed a similar technique to that summarised by Eq (2.5) to determine if indi-

vidual j lay to the left or right of individual i. Relative to the direction of motion of individual i,
individual j lies to the left (right) of individual i if the sign of the following equation is positive

(negative):

zi;jðtÞ ¼ sgn ðûiðtÞŷijðtÞ � v̂iðtÞx̂ijðtÞÞ: ð2:12Þ

Taking into account whether individual j is on the left or right of individual i and combining

Eqs (2.11) and (2.12) we find the signed angle between the direction of motion of individual i
and the unit position vector of individual j relative to focal individual i:

Wi;jðtÞ ¼
zi;jðtÞ�i;jðtÞ if zi;jðtÞ 6¼ 0;

�i;jðtÞ if zi;jðtÞ ¼ 0:

8
<

:
ð2:13Þ

Hence, Eqs (2.9) and (2.13) give the polar coordinates of the position of an individual j relative

to individual i’s position and direction of motion, (di,j(t), ϑi,j(t)). We then converted these

polar coordinates to rectangular coordinates using:

xij;relativeðtÞ ¼ di;jðtÞ cos ðWi;jðtÞÞ;

yij;relativeðtÞ ¼ di;jðtÞ sin ðWi;jðtÞÞ:
ð2:14Þ

In the above (xij,relative(t), yij,relative(t)) relative coordinate system, the focal individual i is located

at the origin, (0, 0), with its velocity vector aligned with the positive x-axis. We divided a square

local domain centred on the focal individual into a set of overlapping square bin regions

(details in S1.1 Section of the S1 File). For each focal individual i, partner j, and discrete time t,
we then stored the changes in speed,

Dsi
Dt ðtÞ, and direction of motion,

Dyi
Dt ðtÞ, in all bins that con-

tain (xij,relative(t), yij,relative(t)), or where necessary for our calculations, in bins that also took

into account the speed of the focal individual (S1.2 Section of the S1 File). Once all the data for

a measure of interest was binned according to the appropriate independent variables ((x, y) or

(x, y, s)), we then determined the mean value in each bin. Once this process was complete, we

rendered the resulting fitted function using MATLAB’s surf function.
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3 Numerical investigation

3.1 Overview of models

We applied the models developed by [13] and [22] to simulate the trajectories of individuals

involved in collective movement in two dimensions. The ultimate goal of this simulation work

was to examine the ability of the method detailed in section 2 to reconstruct the model pre-

scribed interactions directly from the trajectories. Both models, and all methods of analysis,

were encoded in MATLAB.

Previous related work on the analysis of midge swarms (Cladotanytarsus atridorsum)

included steps to correct for effects of group level patterns of movement in examining correla-

tions between the midges [41]. The emergent states of both the models that we used can be

dependent on initial conditions, with multiple stable group-level patterns of movement possi-

ble for the same set of within-model parameters, as well as there being a dependence on

parameters of which states are possible, [13]. We therefore decided to examine how emergent

state might affect the results inferred by the method of Section 2.

We applied the self-propelled particle zonal model of [13] in one if its simplest forms,

where N simulated individuals travelled at constant speed, s, and modified their direction of

motion to avoid collisions with neighbours at close range (within their Zone of Repulsion

(ZOR), with radius rr), oriented their velocity with neighbours at intermediate distances

(within their Zone of Orientation (ZOO), with outer radius ro and width Δro), and moved

towards neighbours at greater distances (within their Zone of Attraction (ZOA), with outer

radius ra and width Δra) (see Fig 1). The model acts on a discrete time scale with equally spaced

time steps, Δt, admits a blind region behind the individuals of angular extent ωblind, constrains

the turning ability of individuals via a maximum turning rate, θ, and allows for some random

variation in the chosen directions of individuals, controlled via the parameter η. Simulations

were performed over an unbounded domain in two-dimensions. Full mathematical details of

the model are provided in S2 Section of the S1 File.

The ODE model developed in [22] has built-in mechanisms for increases and decreases in

individual speed. The model traces the movement of N individuals whose changes in position

and velocity are described by:

dxi
dt
¼ vi; ði ¼ 1; . . . ;NÞ

dvi
dt
¼ ða � bjvij

2
Þvi �

1

N

X

j6¼i

rUðjxi � xjjÞ; ði ¼ 1; . . . ;NÞ:

8
>>>>><

>>>>>:

ð3:1Þ

where xi and vi are the position and velocity of the i-th individual respectively. α and β are non-

negative parameters, αmodels the self-propulsion of individual i and β is the friction parame-

ter for individual i. U in the above system of ODEs is the Morse potential [22], defined by

Uðjxi � xjjÞ ¼ � CAe
� jxi � xj j

lA þ CRe
� jxi � xj j

lR ; ð3:2Þ

where jxi � xjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ
2
þ ðyj � yiÞ

2
q

. CA and CR are the amplitudes of the attraction and

repulsion effects, and lA and lR relate to the ranges of attraction and repulsion respectively.

It is possible to derive some basic analytical results that describe pairwise interactions in

both the models used in this study in a form that is directly comparable to outputs from the

averaging methods described in Section 2. The results include formulae that describe the

change in direction of motion of a focal individual as a function of the relative coordinates of a
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single group mate for the self-propelled particle model (ignoring effects of noise), the change

in speed of an individual as a function for the relative coordinates of a single group mate for

the ODE model, and the change in direction of motion of an individual as a function of its

own speed and the relative coordinates of it group mate, again for the ODE model. The analyt-

ical pairwise interactions for both models are detailed in S3 Section of the S1 File, and are used

as a point of comparison against the analysis of the simulated data using the averaging

method.

3.2 Simulations and analysis of data from zonal model

We performed simulations using the model of [13] for varying sizes of repulsion, orientation,

and attraction zones, and differing implementations of individual blind zones. The bulk of our

simulations focussed on groups of N = 25 individuals, but we also examined potential group

size effects on our trajectory analysis over a more limited set of simulations with N = 10 and

N = 40 individuals. We also varied the duration over which simulations were performed, first

performing short duration simulations of 1000 time steps, and then followed up these calcula-

tions with equivalent simulations of 10000 time steps in duration. The latter, 10000 time step

Fig 1. In the zonal model developed in [13], a focal individual (located at the center of the diagram, moving to the

right in the direction indicated by the red arrow) is assumed to adjust its direction of motion to: Move away from

group members in the dark gray zone (the Zone of Repulsion (ZOR)) to avoid collision, align its direction of

motion with those in the light gray zone (the Zone of Orientation (ZOO)), and move towards individuals within

the white circle (the Zone of Attraction (ZOA)) to remain in contact with the group. The individual will not adjust

its motion in response to neighbours located in its blind zone (indicated by the black wedge). ωblind is the blind angle.

The radius of the circle bounding the ZOR is rr, the radius of the circle bounding the ZOO is ro and the radius of the

circle bounding the ZOA is ra. These circles are concentric.

https://doi.org/10.1371/journal.pone.0243631.g001
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duration simulations have a similar length (in terms of time steps) to the data used in some

empirical studies, such as [36], which had 9000 time steps of data per experimental trial for

groups of 8 individuals. We also note that in the original study of [13], most simulations had

reached a stable emergent pattern of movement within 5000 time steps (albeit for groups of

100 individuals). The simulations were performed for all possible combinations of zone sizes

shown in Table 1 below, such that rr< ro< ra and rr + Δro + Δra = 14 for each differing imple-

mentation of blind zone. Ten simulations were performed for each combination of zone sizes

and associated emergent states; we chose this number of replicates because it is comparable to

the number of experimental replicates performed per treatment in experimental studies that

have used the averaging method [36]. Table 1 also lists other important parameter values used

in our simulations.

Table 2 shows the different zone sizes used and the emergent collective behaviour pro-

duced by the individuals with differing forms of blind zone for the short duration simulations

of 1000 time steps. The emergent states were classified by visual inspection for the short dura-

tion simulations. We labelled emergent collective states that included swarming and milling

behaviour as states or patterns exhibiting cohesion. S1 Table in the S1 File lists the data sub-

sets and their emergent collective behaviour for simulations performed for 10000 time steps.

We performed a more algorithmic classification of emergent states for the 10000 time step

calculations based on order parameters that measured and summarised the instantaneous

agreement in direction of motion of individuals (the polarisation, pgroup), and the agreement

in the sense of rotation of group members about the group centre (the angular momentum,

mgroup), [13, 42], over the second half of each simulation. In addition we analysed the frag-

mentation of groups using the algorithm described in [43, 44]. (See S4 Section of the S1 File

for further details on the calculation of the order parameters and the analysis of group frag-

mentation). We followed the broad classification scheme adopted in [42], such that groups

(that did not fragment) with pgroup> 0.65 and mgroup< 0.35 were classified as exhibiting par-

allel aligned movement, and swarming (pgroup< 0.35, mgroup< 0.35) and milling (pgroup<
0.35, mgroup> 0.65) groups were classified together as exhibiting cohesion (without parallel

movement).

For all simulations, we saved the position data (xi(t), yi(t)) for each individual at each time

step. We then analysed this trajectory data using the methods described in Section 2, in partic-

ular to examine changes in direction of motion as a function of relative partner coordinates for

each of the data subsets in Table 2 and S1 Table in S1 File. We only conducted analysis of frag-

menting groups when these represented the dominant or only form of emergent behaviour for

Table 1. Summary of parameters used in zonal model simulations.

Couzin Model Parameters

Parameter Unit Symbol Values Used

Number of individuals None N 10, 25, 40

Zone of repulsion units rr 0.5, 1, 1.5, 2

Zone of orientation units Δro 0.01, 1, 1.5, 2, 4.5, 5, 5.5

Zone of attraction units Δra 8, 11, 12.99

Blind angle Degrees ωblind 0, 90

Maximum turning rate Degrees per second θ 40

Individual speed Units per second s 3

Time step increment Seconds Δt 0.1

The standard deviation in noise rads η 0.1

https://doi.org/10.1371/journal.pone.0243631.t001

PLOS ONE Examination of an averaging method for estimating repulsion and attraction interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0243631 December 9, 2020 8 / 28

https://doi.org/10.1371/journal.pone.0243631.t001
https://doi.org/10.1371/journal.pone.0243631


a given set of parameter values (as listed in S1 Table of the S1 File). In addition, for the 10000

time step simulations, we repeated the analysis, but applied to only the first or second half of

each set of data to examine the potential effects of transitions from initial to emergent states.

3.3 Estimating the radius of the ZOR directly from graphical output

We fitted a circle through three distinct points on what appears to be the region of greatest

repulsion interactions and determined its radius using the method described in [36] for fitting

circles. The region of largest apparent repulsion effects might be identifiable from the graphs

of the mean change in direction of motion over time as the area closest to the focal individual

(at (0, 0)) covered by both a blue region on the left of the focal individual and a red region on

the right of the focal individual. The apparant blind zone manifests in the graphs of the mean

change in direction of motion over time as an approximately triangular shape behind the focal

individual in the region of strongest turning mediated repulsion effects. We estimated the

extent of such apparent blind angles using the graph-based approach detailed in S9.1 Section

of the S1 File. Fig 2 illustrates the points used to estimate the circle bounding an apparent

region of repulsion, along with points used to estimate the extent of the blind angle trailing an

individual for a specific case.

Table 2. Summary of zone size, size of blind region and respective emergent collective behaviour for simulations

with 1000 time steps.

rr Δro Δra Form of blind zone as given Emergent Pattern

0.5 0.51 12.99 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

0.5 2.5 11 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

0.5 5.5 8 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion/ parallel aligned

1 0.01 12.99 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

1 2 11 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

1 5 8 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion/ parallel aligned

1.5 1.5 11 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

1.5 4.5 8 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion/ parallel aligned

2 1 11 In ZOO, ZOA and ZOR ωblind = 90˚ cohesion

0.5 0.51 12.99 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion

0.5 2.5 11 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion/ parallel aligned

0.5 5.5 8 In ZOO, ZOA and ZOR ωblind = 0˚ parallel aligned

1 0.01 12.99 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion

1 2 11 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion

1 5 8 In ZOO, ZOA and ZOR ωblind = 0˚ parallel aligned

1.5 1.5 11 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion

1.5 4.5 8 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion/ parallel aligned

2 1 11 In ZOO, ZOA and ZOR ωblind = 0˚ cohesion

0.5 0.51 12.99 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

0.5 2.5 11 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

0.5 5.5 8 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion/ parallel aligned

1 0.01 12.99 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

1 2 11 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

1 5 8 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion/ parallel aligned

1.5 1.5 11 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

1.5 4.5 8 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion/ parallel aligned

2 1 11 In ZOO, ZOA ωblind = 90˚, in ZOR ωblind = 0˚ cohesion

https://doi.org/10.1371/journal.pone.0243631.t002
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3.4 Simulations and analysis of data from the ODE model

We determined numerical solutions to the system 3.1 using a standard fourth-order Runge-

Kutta scheme for time integration. As with the zonal model of [13], we obtained data from a

number of simulations for different combinations of within-model parameters. Table 3 shows

Fig 2. Changes in direction as a function of the relative coordinates of partners in groups with emergent cohesion behaviour

where ωblind = 90˚, rr = 2, Δro = 1 and Δra = 11. Small black circle represents the points used to fit the circle estimating the ZOR.

The white asterisks represent the points that were used to estimate the size of the blind angle. (Derived from simulations with

N = 25 individuals over 1000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g002

Table 3. Modelling parameters and emergent collective motion patterns for the ODE model with N = 10 individuals.

item α β CA CR lA lR number of simulations Emergent Behaviour

a 0.15 0.05 100 50 100 20 10 double mill

b 0.04 0.005 100 150 100 3 80, 80, 40 anticlockwise mill, clockwise mill, swarm

c 1 1 100 50 50 5 80, 40 parallel aligned, swarm

d 1 0.5 100 50 200 30 80 swarm

For item (a) a double mill is an annular structure where group members simultaneously traversed the annulus in clockwise and anticlockwise directions. For item (b),

emergent states were dependent on initial conditions, and it was possible to generate an anticlockwise mill, clockwise mill and swarm. For item (b) 80 simulations were

performed for each sense of milling pattern and 40 simulations were performed for swarms. For item (c), initial condition dependent emergent states were parallel

aligned motion and swarm-like behaviour; we performed simulations until we had data for 80 parallel aligned groups, and 40 swarm-like groups.

https://doi.org/10.1371/journal.pone.0243631.t003
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the different within-model parameters that were used in the simulations and the associated

emergent behaviour. The emergent states were identified via visual inspection. Simulations

were performed with ten individuals (N = 10) for 10000 time steps with time step Δt = 0.1 for

the bulk of our calculations, however we examined group size effects for both parallel aligned

and swarming groups with the parameters listed under item (c) of Table 3, including calcula-

tions for N = 5, N = 15 and N = 25 individuals. Individuals were initially uniformly randomly

distributed within a square region of side length 100 units, with a uniformly distributed ran-

dom direction of motion on (0, 2π), and initial speed set to
ffiffiffiffiffiffiffiffi
a=b

p
, for all simulations. As was

the case with the zonal model, all simulations were performed over an unbounded domain.

Previous work with the ODE model suggests that emergent behaviour stabilises by around

2000 simulation time steps, [45], albeit for larger groups with N = 200, and for calculations run

with time steps of 0.05 units. The same study also notes that the model of [22] typically behaves

independent of initial conditions, [45], but for our work we found multiple group-level pat-

terns of movement emerging for the same set of model parameters (as noted in Table 3).

Where possible we sought to generate data from at least 10 realisations (and up to 80) repre-

sentative of a particular emergent state for given parameter values (Table 3).

We used the methods described in Section 2 to examine changes in direction over time of

an individual as a function of relative partner positions at different speed intervals, and

changes in speed over time of an individual as a function of partner positions for different

speed intervals, for each of the emergent states under each of the items listed in Table 3.

4 Results

4.1 Changes in direction of motion in the zonal model

Results of our analysis of the zonal model, as listed in Table 2 and S1 Table in S1 File are

shown in Figs 3 and 4, and S6 to S21 Figs in the S1 File. In addition, Fig 5 illustrates the effects

of analysing longer time series (the effects of limiting analysis to the first or second half of each

set of trajectories appears in S23 to S25 Figs in the S1 File), and Fig 6 illustrates group size

effects for short duration simulations (with longer duration simulations represented by S22

Fig in S1 File). In all these plots the focal individual is located at the origin, moving to the right

parallel to the x-axis. Across our analysis, at short range the blue region close to the left of the

focal individual indicates that the focal individual turns clockwise, away from partners in this

region. Similarly, the red region close to the right of the focal individual indicates that the focal

individual turns anticlockwise, away from the partners located closer to the right. The ten-

dency of the focal individual to turn away from closer partners is consistent with the repulsion

rule prescribed by the zonal model (equation (S2.1), S2 Section in S1 File). The circle formed

by enclosing the red region close to the right and the blue region close to the left of the focal

individual in the Figs 3 and 4 (and S6 to S21 Figs in S1 File) is a visual estimate of the ZOR, as

identified by the averaging method described in Section 2.

The red region further to the left of the focal individual indicates that the focal individual

turns anticlockwise, towards partners in this region. The blue region further to the right of the

focal individual indicates that the focal individual turns clockwise, towards partners within

that region. The overall tendency to turn towards partners outside the apparent zone of repul-

sion, which is closer to the focal individual, is consistent with turning mediated attraction to

partners in the ZOA, as prescribed in the zonal model [13].

When applying the averaging method to multiple individuals, the exact sizes of the ZOR

and the ZOA do not appear to be captured; this is most apparent when making direct compari-

sons between prescribed pairwise interactions (panel A in each of Figs 3 and 4, and S6 to S21

Figs in S1 File), and the output from the averaging method. The averaging method does

PLOS ONE Examination of an averaging method for estimating repulsion and attraction interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0243631 December 9, 2020 11 / 28

https://doi.org/10.1371/journal.pone.0243631


however capture differences in detail across simulations where there was no blind zone, or

implementation of the blind zone differed (applying across all zones, or only throughout the

ZOO and ZOA), most evidently in a wedge-like region immediately behind the focal individ-

ual that is present when there is a blind-zone across all three interaction zones. The wedge-like

region is absent when there is no blind zone (contrast plots within Fig 4 to see this in clearest

detail).

Fig 3. Panel A: analytical pairwise interactions for given parameter values, as described in S3.1 Section, where turning

of the individuals is governed by equations (S3.5) and (S3.10). Panels B, C, D, E, F and G illustrate changes in direction

of motion of individuals as a function of the relative positions of partners obtained via analysis of simulations with rr =

1.5, Δro = 4.5 and Δra = 8 using the averaging method. Positive changes in angle of motion indicate a turn to the left by

the focal individual, whereas negative changes in angle of motion indicate a turn to the right. (Derived from

simulations with N = 25 individuals over 1000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g003
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In the figures associated with the parallel aligned motion of individuals there is an approxi-

mately annular green patch in between the regions of repulsion- and attraction-like behaviour;

an equivalent annular region is less apparent (or non-existent) for the groups exhibiting cohe-

sion, but not parallel motion. The size of the annular region seems to correlate with the pre-

scribed size of the ZOO, but the methods used in this paper don’t explicitly seek or examine

alignment interactions of the sort prescribed in the zonal model [13]. In addition, for simula-

tions run over the longer 10000 time step duration in particular, individuals tended to enact

repulsion-like turns away from partners within their blind-zone, but at distances that extended

between the outer radius of the zone of orientation and beyond (see S14, S15, S18 and S20 Figs

in S1 File). It is not entirely clear what causes this apparent behaviour, but what could be hap-

pening is that the turns away from partners are due to the presence of near neighbours in indi-

viduals’ repulsion zones, with the aggregation of data across all group mates also associating

these turns with neighbours that are much further away, and not in the repulsion zone.

In qualitative terms, apart from some additional features in plots generated from the analy-

sis of data derived from 10000 time step simulations, especially the additional apparent

Fig 4. Panel A: analytical pairwise interactions for given parameter values, as described in S3.1 Section, where turning of the individuals is

governed by equations (S3.5) and (S3.10). Panels B, C and D illustrate changes in direction of motion of individuals as a function of the relative

positions of partners obtained via analysis of simulations with rr = 2, Δro = 1 and Δra = 11 using the averaging method. (Derived from simulations

with N = 25 individuals over 1000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g004
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repulsive effects to trailing neighbours in parallel groups mentioned above, the results of analy-

ses of 1000 and 10000 time step simulations are largely similar graphs (Fig 5). Based on the

work in [13] and our own experience, emergent behaviour tends to stabilise for most simula-

tions of the zonal model by about 5000 time steps. Hence the first 5000 time steps of our longer

duration simulations will include a combination of transient behaviour from the initial distri-

bution of individuals to an emergent state, and perhaps also a susbtantial amount of data in

the emergent state. The latter 5000 time steps should represent the behaviour in the emergent

state. The qualitative features of the interactions suggested by analysis of the first or last 5000

time steps of the longer duration simulations are very similar, revealing similarly sized regions

over which repulsion-like interactions apply at short range, and attraction-like turning behav-

iour at greater distances from individuals (S23 to S25 Figs in S1 File). A clear difference from

the analyses of the first and second halves of the data is that many bins remain unfilled once

the group enters, and stays in, a potentially stable pattern of collective movement (S23 to S25

Figs in S1 File, right columns).

Fig 5. A comparison of analyses of simulations run for 1000 time steps (left column) and 10000 time steps (right column) for groups that

exhibited cohesion without parallel motion (top row) or formed into aligned groups (bottom row) when rr = 1.5, Δro = 4.5, Δra = 8. (Derived

from simulations with N = 25 individuals).

https://doi.org/10.1371/journal.pone.0243631.g005
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Increasing group size did not substantially affect the apparent size of the repulsion zone

detected by the averaging method (Fig 6 and S22 Fig in S1 File), but the region over which

attraction-like behaviour was evident seemed to increase as the number of individuals also

increased (Fig 6 and S22 Fig in S1 File).

4.2 Estimation of the sizes of blind angles and repulsion zones by visual

inspection

Fig 2 & S26 to S31 Figs in S1 File contain the graphs of turning speed as a function of the rela-

tive coordinates of other individuals that were used to estimate the size of the blind angle and

the radius of the ZOR. The estimated values of the radius of the ZOR and the blind angle are

presented in Table 4. The graphs in S26, S27A & S27B, and S28 Figs in S1 File were plotted

over a smaller domain and with finer bins compared to the plots in Fig 2, S28B to S31 Figs in

S1 File to help resolve the ZOR in our plots when the prescribed radius of the ZOR was 0.5.

The estimated value of the radius of the ZOR and the size of the blind angle obtained from the

Fig 6. Changes in direction of motion of individuals as a function of the relative positions of partners obtained via analysis of simulations

with rr = 2, Δro = 1, Δra = 11 for groups of N = 10 (panels A and B), N = 25 (panel C), or N = 40 (D) individuals. Simulations were run for short

durations of 1000 time steps.

https://doi.org/10.1371/journal.pone.0243631.g006
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S26, S27A & S27B, and S28A Figs in S1 File, when the radius of the ZOR was rr = 0.5 have been

omitted from Table 4 because turning based repulsion effects are not clearly (or approxi-

mately) constrained to a circular region.

Table 4 shows estimates of the blind angle and the radius of the ZOR from our graphs. The

blind angles that we inferred from our graphs, via computer aided inspection, reasonably

approximated the prescribed model blind angle of 90 degrees trailing each individual

(Table 4). In addition, our graphically estimated radii for the zone of repulsion were reasonable

approximations to the prescribed model radii (Table 4 and Fig 7).

4.3 Changes in direction of motion in the ODE model

Results of our analysis for changes in direction of individuals as a function of relative posi-

tions of partners for the ODE model, as listed in Table 3, are shown in Figs 8 and 9 (and S32

to S36 Figs in S1 File). In these plots individuals turn away from partners that are in close

range and turn towards partners that are at greater distances, which is similar to the repulsion

and attraction behaviour of individuals in the zonal model as elaborated in 4.1 Section, and

consistent with model prescribed pairwise turning interactions. However, the sizes of the

regions over which repulsion-like turning interactions were deduced from simulated data

were consistently smaller than those derived from exact pairwise interactions (compare the

left and right columns of Figs 8 and 9 (and S32 to S36 in S1 File)), and decreased as group

size increased (S42 to S46 Figs in S1 File). In addition, our simulations for the smallest groups

(with N = 5), did not provide enough data to fill bins in the region closest to the focal individ-

ual (white central region in the right column of S42 Fig in S1 File); such a lack of data repre-

senting repulsion interactions may be consistent with a drawback of the averaging approach

suggested by [38].

Based on examination of Figs 8 and 9, and S32 to S36 Figs in S1 File, it appears that emer-

gent group level patterns of movement have an effect on the turning behaviour inferred by the

averaging method. For groups that form anticlockwise rotating mills, the averaging method

suggests that individuals tend to turn anticlockwise in response to the relative positions of

neighbours located just outside the apparent repulsion zone, irrespective of if these neighbours

are positioned to the left or the right of the focal individual (redder regions in the second col-

umn of S33 Fig in S1 File). The tendency for anticlockwise turns by the individuals is a reflec-

tion of the overall anticlockwise rotation of the group, but does not accurately represent the

form of pairwise interactions immediately outside the repulsion zone. Analogous results can

Table 4. Summary of estimated blind angles and radii of possible zones of repulsion for respective simulated data with different zone widths for the ZOR, ZOO and

ZOA and differing emergent behaviours.

Results for estimating blind angle and radius of zone of repulsion

Item rr Δro Δra Emergent Pattern Estimated Blind Angle Estimated Radius of ZOR

a 1 0.01 12.99 cohesion 83.27 1.13

b 1 2 11 cohesion 81.87 1.19

c 1 5 8 parallel alligned 77.74 0.79

d 1 5 8 cohesion 86.82 1.21

e 1.5 1.5 11 cohesion 89.29 1.73

f 1.5 4.5 8 cohesion 88.03 1.74

g 1.5 4.5 8 parallel aligned 88.38 1.32

h 2 1 11 cohesion 89.64 2.18

The individuals all had a blind angle of ωblind = 90˚.

https://doi.org/10.1371/journal.pone.0243631.t004
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be seen for groups that formed clockwise rotating mills, with the averaging method suggesting

that individuals tended to rotate clockwise in response to near neighbours outside the repul-

sion zone irrespective of if these neighbours were to the left or right of the focal individual

(blue regions just outside the repulsion zones in the right column of S34 Fig in S1 File). For

groups that exhibited parallel aligned motion the averaging method suggested that when

neighbours occupied a relatively large annular region outside the repulsion zone, then the

focal individual did not tend to turn very much in response to the positions of these neigh-

bours (green annular regions outside repulsion zones, right column, Fig 9). We observed simi-

lar behaviour in analysis of the zonal model when groups moved in parallel (for example see

Fig 3, S7, S8 and S11 Figs), and noted the size of the annular region seemed to correlate with

the size of the prescribed orientation zone. However, given that there are no explicit orienta-

tion interactions in the ODE model, it seems that the annular region may be indicative of the

emergent group structure, rather than the underlying interactions that give rise to this

structure.

Fig 7. Comparsion of prescribed radii of the ZOR in simulations and the estimated radii of the same zones from the plots in Fig 2 & S28B-

S31 Figs in S1 File. (Derived from simulations with N = 25 individuals over 1000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g007
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Fig 8. Left column: analytical pairwise turning interactions as prescribed by the ODE model (equation (S3.19)) for

groups that form swarms (item (b) from Table 3). Right column: results obtained via the averaging method. Here the

independent variables are relative partner positions (within each graph) and the speed of the focal individual (which

varies across the five panels above). In each of the graphs the focal individual is located at the origin and moving right

along the positive x-axis. Positive changes in angle/direction correspond to anti-clockwise/left turns, whereas negative

changes in angle/direction correspond to clockwise/right turns. White regions indicate that no partner individuals

were recorded with the corresponding relative (x, y) coordinates for the given range of speed for focal individuals.

(Derived from simulations with N = 10 individuals over 10000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g008
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Fig 9. Left column: analytical pairwise turning interactions as prescribed by the ODE model (equation (S3.19)) for

groups that move in parallel (item (c) from Table 3). Right column: results obtained via the averaging method.

(Derived from simulations with N = 10 individuals over 10000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g009
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4.4 Changes in speed in the ODE model

Results of our analysis for changes in speed of individuals as a function of relative positions of

partners for the ODE model, as listed in Table 3 are shown in the Figs 10 and 11, and S37 to

S41 Figs in S1 File. The averaging method consistently revealed the tendency for individuals to

reduce their speed when their partners occupied the region immediately in front of them (blue

regions immediately to the front of the focal individual in the right columns of Figs 10 and 11,

and S37 to S41 Figs in S1 File) and increase their speed when partners occupied the region

immediately to their rear (red regions immediately behind the focal individual). Hence the

averaging method is capable of resolving the qualitative form of speed mediated collision

avoidance at close range that is prescribed by the ODE model. Similarly, the averaging method

also consistently revealed the tendency for individuals to increase their speed when partners

were further to their front (redder regions from intermediate to greater distances to the front

of the focal individual in the right columns of Figs 10 and 11, and S37 to S41 Figs in S1 File),

and decrease their speed when partners were further to the rear (bluer regions to the rear of

focal individuals). Thus the averaging method is capable of resolving the qualitative form of

longer-range attraction to partners, moderated by changes in speed, at least for the cases stud-

ied here. However, analogous to the results for the analysis of changes in direction, the averag-

ing method consistently identified a smaller region over which repulsion-like effects applied as

compared to exact pairwise interactions (left columns of Figs 10 and 11, and S37 to S41 Figs in

S1 File), and the size of the apparent repulsion region diminshed as group size increased (S47

to S51 Figs in S1 File). In addition, the magnitudes of both increases and decreases in speed

determined by the averaging method tended to be smaller than those expected from pairwise

interactions.

5 Discussion and conclusion

Our graphs illustrating changes in direction of an individual as a function of the relative posi-

tions of groupmates were sufficiently accurate that they gave a reasonable indication of the

radius of the prescribed zone of repulsion for a given set of simulated data. These graphs also

captured the qualitative form of model-prescribed turning-based collision avoidance, illustrat-

ing that individuals turn away from near neighbours in a manner consistent with model inter-

actions. In addition to providing a reasonable representation of the zone of repulsion, and the

sense of turning responses to individuals in this region, when an individual’s blind zone

extended across the zones of repulsion, orientation, and attraction (with corresponding blind

angle ωblind = 90˚), then the blind zone was evident in the averaging method deduced zone of

repulsion. This was most clearly seen when comparing analyses of simulations with or without

blind zones; the region over which repulsion based turning behaviour manifested in our

graphs was approximately circular when there was no blind zone (Figs 3B & 3C and 4B, S6B,

S7B & S7C, S8B, S9B, S10B, S11B and S12B Figs in S1 File), whereas a sector of this circle

immediately behind the focal individual was absent when individuals had a blind zone (Figs

3D & 3E and 4C, S6C Fig in S1 File (more apparent in S26 Fig in S1 File), S7D Fig in S1 File

(more apparent in S27A Fig in S1 File), S8C & S8D Fig in S1 File (more apparent in S27B and

S28A Figs in S1 File respectively), S9C, S10C, S11C & S11D, and S12C Figs in S1 File). There

was sufficient detail in the wedge shaped region that simple graph based analysis of this region

then led to a reasonable estimate of the angular extent of the blind zone. If the blind zone was

only prescribed across individuals’ zones of orientation and attraction then our analysis did

not clearly capture the blind zone’s form or presence. In related work, Heras et al. [39] found

that an artificial neural network approach to fitting the functions that describe how an
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Fig 10. Left column: analytical pairwise changes in speed as prescribed by the ODE model (equation (S3.18)) for

groups that form swarms (item (b) from Table 3). Right column: results obtained via the averaging method. Note that

unlike changes in direction, changes in speed do not vary as a function of the speed of the focal individual, and thus

there is no variation in the plots in the left column, and we expect little variation between the plots in the right column.

In each of the plots, the focal individual is located at the origin and moving right along the positive x-axis. The focal

individual increases its speed when its partners occupy redder regions in the graphs, and decreases its speed when its
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individual adjusts its velocity in response to the relative positions and behaviours of group

mates could also reveal the details of a blind zone.

Although the analysis that we used did not explicitly target orientation interactions of the

sort prescribed in the zonal model, where individuals were to turn to match directions of

motion of their groupmates within a particular range of distances, there may have been indica-

tors of the zone of orientation. In particular, when the emergent pattern of collective motion

was parallel aligned, the zone of repulsion was surrounded by a larger almost annular region,

predominantly green in colour (indicating average turning rates closer to zero for focal indi-

viduals), that was of similar radius to the radius of orientation (Fig 3C, 3E & 3G, S7C, S8B,

S8D & S8F and S11B, S11D & S11F Figs in S1 File). However, subsequent inspection of our

analysis of simulations of the ODE model revealed similar annular regions around the appar-

ent repulsion zone, most prominently when groups moved in parallel, even though the ODE

model does not prescribe any adjustments to the velocity of individuals based on the velocity

of their partners. Hence the annular green regions in our analysis of the zonal model may in

fact have been due to emergent group-level polarised patterns of movement, rather than indi-

cators of explicit orientation zones.

If the emergent group level movement was one of cohesion (either milling or swarming),

then an equivalent circular region was not present in our graphs. The absence of this circular

region could have been because outside the repulsion zone, individuals adjust their motion

based on an average of preferred directions of motion based on orientation and alignment. If

the orientation zone has a relatively small width, as is the case for most swarms, then the attrac-

tion effect could tend to dominate, especially if the orientation zone is small enough to remain

empty at relatively high frequency, and thus the sort of circular region that is correlated with

the zone of orientation when group motion is polarised could be obscured (mills require a bal-

ance between orientation and attraction zone sizes, and might also fit this reasoning). A ten-

dency to turn towards neighbours at some distance outside the zone of repulsion was evident

in all our analyses of simulation data from the zonal model. However, the annular region over

which pairwise attraction interactions applied was obscured, and attraction based turning

tended to be detected across larger scales by the averaging method than those indicated by the

prescribed radii of attraction zones.

In general, averaging based analysis of data from the ODE model consistently revealed the

qualitative form of repulsion- and attraction-like behaviour of individuals in response to the

relative locations of their partners (in both changes in direction and speed). However, the aver-

aging method also consistently suggested that the size of the region over which repulsion-like

interactions applied was smaller than in the exact case of pairwise interactions, and tended to

suggest smaller magnitudes of changes in direction and speed than in the exact pairwise case.

A possible reason for the reduction in the size of the zone of repulsion could be because the

prescribed interactions of individuals, both repulsive and attractive, are added irrespective of

the location of partners (Eq (3.1)), meaning that attraction-like behaviour towards individuals

at greater distances can be added to, and cancel out, repulsion away from nearer neighbours.

The effect could then be the apparently diminished size of the repulsion zone as compared to

the exact form of pairwise interactions, due to interactions with multiple partners. S42 to S51

in the S1 File illustrate that the apparent size of the repulsion zone does in fact decrease consis-

tently as group size increases. In contrast, the zonal model treats repulsion based interactions

partners occupy bluer regions. White regions indicate that no partner individuals were recorded with the

corresponding relative (x, y) coordinates for the given range of speed for focal individuals. (N = 10, 10000 time step

simulations).

https://doi.org/10.1371/journal.pone.0243631.g010

PLOS ONE Examination of an averaging method for estimating repulsion and attraction interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0243631 December 9, 2020 22 / 28

https://doi.org/10.1371/journal.pone.0243631.g010
https://doi.org/10.1371/journal.pone.0243631


Fig 11. Left column: analytical pairwise changes in speed as prescribed by the ODE model (equation (S3.18)) for

groups that undergo parallel motion (item (c) from Table 3). Right column: results obtained via the averaging method.

(Derived from simulations with N = 10 individuals over 10000 time steps).

https://doi.org/10.1371/journal.pone.0243631.g011
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preferentially, and repulsion effects exclude any interactions with partners outside the repul-

sion zone, with the result seemingly that there is good correlation between the prescribed size

of the zone of repulsion and that suggested by our averaging analysis. Fig 6 and S22 Fig in S1

File suggest little, or no, change in the size of the zone of repulsion as group size increases.

There seems to be limited literature that examines the effects of group size on interactions

inferred by averaging methods, with the exceptions of two of the earlier studies that applied

these methods [30, 31]. Katz et al. [30] examined interactions in groups of two and three

golden shiners. One of the key findings of the work of [30] was that interactions in response to

two other group members were not the average of pairwise interactions between focal individ-

ual and each partner in turn. Such a result suggests that the sort of aggregation of data across

multiple individuals that we applied for this study might not perfectly reflect the nature of pair-

wise interactions, and that was in fact the case for our work.

Herbert-Read et al. [31] examined interactions in groups of two, four, and eight eastern

mosquitofish, applying earlier variants of the methods used in our study, which included

aggregation of data across multiple focal individuals. The qualitative nature of the interactions

inferred did not vary as group size increased, with consistent evidence that mosquitofish mod-

erated their speed to avoid collisions at short range, and to maintain contact with the group at

greater distances ([31], Fig 2B and S5 Fig in S1 File (top row)). Individual mosquitofish also

consistently turned towards neighbours ([31], Fig 2F and S5 Fig in S1 File (bottom row)),

although more recent analysis at finer spatial resolution suggests a tendency for eastern mos-

quitofish to turn away from near neighbours to their front [46]. The qualitative nature of inter-

actions with just first, second, or third nearest neighbours in groups of four in ([31], S4 Fig in

S1 File) were not different to those determined by aggregation of data. However, there were

some differences in detail in the interactions identified across groups of different sizes in [31],

including diminution in the magnitudes of changes in speed and direction of motion as group

size increased, and incremental increases in the size of the apparent zone of repulsion ([31], S5

Fig in S1 File).

Given that both the prior studies of [30, 31], and our study here indicate that group size

has an effect on the quantitative elements of interactions inferred via an averaging method

when the fitted function has only two independent variables, x and y, it seems that it will be

of value to investigate group size effects on such analysis in more detail in future studies. The

approach used by Heras et al. [39] to infer interactions from groups of more than two

included separation of elements of their analysis into modules. The modules included exami-

nations of pairwise interactions, and functions that described the relative weights applied by

a focal individual in combining pairwise interactions across multiple partners. An improved

methodology for combining pairwise interactions, like that examined by Heras et al. [39],

within the framework of an averaging method may also help to better deal with, and illumi-

nate, what we think are the effects of group size.

Also apparent from this study is that group level patterns of movement can have an effect

on interactions inferred via the averaging methods that we used. This is most evident in plots

illustrating changes in direction as a function of the relative coordinates of group mates where

there was a consistent sense of rotation by the group, as was the case with clockwise and anti-

clockwise rotating mills (see S33 and S34 Figs in S1 File). In an analysis of group level measures

of order [41] took into account, and subtracted, the translation of the group’s centre of mass,

the rotation of the group about the centre, and the group’s dilatation (a measure of a group’s

tendency to expand or contract in synchrony) before calculating group order parameters.

Such corrections offer an immediate avenue to try to improve the averaging methods used

here, and will be an element of our future research.
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In addition, the analysis of parallel groups that emerged from simulations of the zonal model

suggested that individuals were turning away from neighbours located in their blind zone, but

beyond the radius of the zone of repulsion. We suspect this abberation is due to individuals

applying repulsion based turns away from neighbours in their zone of repulsion, but having

this turning-away behaviour also recorded as a response to trailing neighbours at greater dis-

tances. In terms of more accurately capturing the prescribed interactions of the zonal model, a

potential method for correcting this type of error would be to only bin data associated with

neighbours in the zone of repulsion, when there are neighbours in this region. However, such a

correction requires prior knowledge of the mechanics of the model, and probably would not be

appropriate for the analysis of real data where the goal is to infer interactions that are unknown,

other than an assumption that individuals adjust their velocity as a function of the relative coor-

dinates of their neighbours. An alternative approach could be to try to adapt some of the

approach used by [38] to treat the observed turning response of each individual as a sum of

repulsion, orientation, and attraction interactions to the averaging method framework.

Based on the analysis presented here, averaging methods are capable of correctly identifying

the qualitative form of changes in individuals’ components of velocity as a function of the rela-

tive coordinates of group mates in two dimensions, even with relatively limited data, as dem-

onstrated by our analysis of data from short duration simulations. Depending on how

individuals interact with multiple partners, averaging methods can also produce reasonable

estimates of the size and shape of regions over which particular forms of interaction occur,

such as the size of the prescribed zone of repulsion, even when data is aggregated based on the

relative coordinates of multiple partners at the same time. Averaging methods can also be used

to identify if individuals have a simple blind zone, or not. However, it appears that both group

size, and emergent patterns of group movement, can have negative effects on the quantitative

accuracy of an averaging method, and there is a need to improve averaging methods to take

into account such factors.
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