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Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and

cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to

innervate many brain regions implicated in the functions. During the development of

the brain, as serotonin axons project and innervate brain regions, there is evidence that

5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation

and by influencing synaptic organization within corticolimbic structures. These actions

are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of

expression. More recently, the role of the 5-HT system in synaptic re-organization during

adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow

and reinnervate brain regions following insults such as brain injury, chronic stress, or

altered development that result in disconnection of the 5-HT system and often cause

depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants

that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears

to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to

the behavioral and cognitive improvements induced in these models. In this review, we

survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and

assess the evidence that 5-HT-mediated brain rewiring is impacting recovery frommental

illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT

agonists, more rapid and effective treatments for injury-inducedmental illness or cognitive

impairment may be achieved.
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INTRODUCTION

Major Depressive Disorder (MDD) is characterized by a persistent low mood as a core symptom.
The prevalence of depression is about 1 in 5 of the general population, affecting nearly 300
million people worldwide (1), and its prevalence has increased during the COVID-19 pandemic
(2). The most recent global data place MDD as the third greatest source of disability, after
low back pain and headache disorders (3). The currently available antidepressant drugs (ADs)
have several disadvantages, including delayed efficacy (4–8 weeks) (4), numerous adverse effects
that reduce tolerability (0.64- to 0.83-fold) and modest efficacy (1.15- to 1.55-fold) compared
to placebo (5, 6) that limit therapeutic effectiveness to ∼30% remission (7). Among approved
ADs, selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment, and almost
all target 5-HT and other monoamine systems (8). However, it is not fully understood why,
despite brain levels of serotonin increasing with hours after SSRI administration, behavioral
improvement takes weeks to be observed. This delay might reflect neuro-adaptive changes in
pre-and post-synaptic cells, including long-term changes in gene expression, protein translation,
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or ultimately in neuroplasticity (9, 10). As it is diagnosed by
a diversity of symptoms in the absence of biomarkers, major
depression remains heterogeneous. A better understanding of the
mechanism/s underlying the development of depression and its
phenotypes will be critical to develop a more efficient, rational
clinical approach to targeted treatment (10, 11).

Unraveling the pathophysiology of depression is a complex
challenge. Not only are syndromes heterogeneous and the
etiology diverse, but important symptoms such as guilt and
suicidality cannot be reproduced in animal models. Nevertheless,
other symptoms like anxiety, anhedonia, or behavioral despair
have been modeled in animals (12–15), and these, together
with clinical data, are providing insight into the neurobiology
of mood disorders (16, 17) and antidepressant action (18).
Recent studies combining behavioral, molecular, and functional
imaging in transgenic mice have revealed that alterations in the
functional connectivity of specific subpopulations of neurons
forming a neural circuit result in depression-like behaviors (19–
23). Understanding the underlying causes of these functional
changes might offer a crucial new direction for the development
of novel treatments for MDD in humans.

SEROTONIN AXON HYPOTHESIS IN

DEPRESSION

In pre-clinical and clinical studies, deficits in serotonergic
transmission including reductions in serotonin (5-
hydroxytryptamine, 5-HT) neurons and their projections
and increases in 5-HT autoinhibition have been associated
with MDD and also with impaired responses to antidepressants
(24–36). 5-HT is a monoamine neurotransmitter found mainly
in blood platelets and the central nervous system (CNS) in
animals and humans. It is widely implicated in mood, emotion,
and happiness (37). The monoamine-serotonin hypothesis for
depression was proposed in the 1960s suggesting that brain
deficiency of monoamines, including 5-HT, triggers the onset
of depression (38–40). It continues to guide research into
the causes and treatments for depression, anxiety, and other
mental illnesses.

The 5-HT System
The 5-HT neurons originating in the raphe midbrain innervate
several regions of the brain (41–43). In 5-HT neurons, the
enzyme tryptophan hydroxylase type 2 (TPH2) converts the
amino acid tryptophan to 5-hydroxytryptophan (5-HTP) to
catalyze the rate-limiting step in 5-HT biosynthesis (44–46).
Subsequently, the L-aromatic amino acid decarboxylase (AADC)
enzyme generates 5-HT. Alterations in 5-HT neurotransmission
have been implicated in the pathophysiology of depression
and its treatment. Based on clinical evidence that depressive
symptoms improve following specific blockade of the 5-
HT transporter (5-HTT) (47), early research focused on
the uptake site at the terminal targets (48). The forebrain
projecting raphe nuclei include the dorsal (DRN) and median
(MRN) raphe and contain a diversity of 5-HT and non-5-HT
neurons, identified using viral-genetic, immunohistochemistry
and electrophysiology methods (49–51). For example, a small

population of 5-HT immune-positive cells are not co-labeled
with 5-HT1A receptors (52, 53) while some non-5-HT cells (such
as GABA neurons) are co-labeled (52). Some 5-HT neurons co-
express vesicular glutamate transporter-3 conferring glutamate
neurotransmission and are implicated in anxiety behavior (54).
Importantly, different projections of these neurons to target
regions may confer stress susceptibility, depression or anxiety
behaviors (36, 55, 56). Thus, the distinct properties of select 5-
HT neuronal populations may confer behavioral phenotype and
response to stress or injury.

In addition to developmental innervation, a unique capacity
of the 5-HT system to regenerate or alter its innervation of
brain regions has been observed after neurotoxin, traumatic or
ischemic brain damage in rodents (57–64). Changes in 5-HT
innervation have also been observed in non-lesion conditions
such as repeated stress rodent models of depression (65, 66) and
Parkinsonism in rodents (67) and primates (68). In post-mortem
brain tissue from human depressed subjects, a reduction in 5-HT
innervation has also been seen (32), although the functional role
of these changes remains unclear.

The extensive ascending and descending 5-HT network
projects throughout the brain and spinal cord making synaptic
or non-synaptic contacts that release 5-HT (69–71). Actions of 5-
HT are mediated by at least 14 different receptor subtypes (72). It
is believed that 5-HT axons prenatally initiate axon outgrowth
concomitant with the onset of 5-HT synthesis (73, 74). 5-HT
axons form and grow in a targeted manner through guided
pathfinding and arborization over several weeks. The 5-HT rich
brain areas include cortical and sub-cortical regions. In addition,
sensitive HPLC measurements of 5-HT and metabolites have
shown that the metabolic activity of 5-HT fibers extending from
DRN and MRN is parallels the tissue content of 5-HT (75).
Therefore, it is expected that the alterations in 5-HT axons are
associated with concomitant changes in 5-HT levels in the same
brain region.

Development of 5-HT Projections
A large body of studies has characterized the molecular
determinants involved in the developmental mechanisms
targeting raphe 5-HT projections to the forebrain, proposing
that alterations in these processes may predispose to mood
disorders (74). Many of the transcription factors in the 5-
HT gene regulatory network required for differentiation and
maintenance of 5-HT neuronal subgroups have been extensively
characterized, including Lmx1B, Pet-1/FEV, and others (76, 77).
These factors may also be involved in axonal outgrowth as shown
for Lmx1B (78); conditional deletion of Lmx1B in 5-HT neurons
resulted in the loss of axonal projections to the forebrain and
spinal cord in mice. Cytoskeleton-associated proteins growth-
associated protein 43 (GAP-43) and a microtubule-associated
protein, stable tubule only polypeptide (STOP) are also required
for the growth and elongation of the 5-HT axons (76). In
normal mice, GAP-43 is prenatally expressed on growing 5-HT
axons; but in GAP-43 knockout mice, there is a loss of 5-HT
immunoreactive innervation of the cortex and hippocampus
(79). In the STOP knockout mice, 5-HT levels, as well as 5-HTT
density and terminals, are reduced in projection areas such as
hippocampus, but increased in the raphe suggesting impaired
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trafficking of 5-HT vesicles resulting in deficits in hippocampal
neurogenesis, reduced anxiety, increased helplessness, and
impaired cognitive function (80, 81). Despite these deficits in
5-HT innervation, no significant difference in the number of
dorsal raphe 5-HT neurons was observed in GAP-43 or in STOP
knockouts compared to wild-type littermates. These results
suggest that GAP-43 and STOP proteins are the key regulators of
normal 5-HT outgrowth and innervation in healthy conditions.

Concerning 5-HT axon pathfinding and guidance,
Fenstermaker et al. (82) reported that Wnt signaling to
planar cell polarity components is required for anterior to
posterior axon projection and for proper orientation of 5-HT cell
bodies in the raphe nuclei, using mice lacking individual planar
cell polarity genes (82). In addition, to guide the 5-HT axons
along the midline and form the long-distance connectivity both
Robo1/2 and Slit1/2 have key roles in the formation of major
forebrain tracts as shown in knockout mouse lines (83, 84).

Genes involved in cell adhesion have also been implicated
in 5-HT axonal outgrowth in development, including the
Pcdh-α isoforms (85, 86). In particular, loss of the αC2
isoform in serotonergic neurons, but not in 5-HT target brain
regions, leads to abnormal projection and tiling of serotonergic
axons, associated with increased depression-like behaviors (87).
Interestingly, differentiation of induced pluripotent stem cells
from SSRI-resistant compared to SSRI-responsive depressed
patients to a serotonergic phenotype resulted in deficiencies
in Pcdh-α expression and neurite outgrowth in vitro (88).
More recently, an epigenome-wide association study of 150
monozygotic twins reported 428 differentially methylated genes
associated with early-onset major depression, many of which
are implicated in neurodevelopmental and cell adhesion genes
including the protocadherin-α (Pcdh-α) gene cluster (89).
Taken together these studies implicate Pcdh-α genes in 5-
HT axonal outgrowth, major depression and response to
SSRI antidepressants.

VISUALIZING SEROTONIN AXONS

Early Markers
Early studies of 5-HT projections in the brain relied
on a relatively insensitive formaldehyde-induced
immunofluorescence method to visualize 5-HT (90). Subsequent
studies used labeling with [3H]5-HT or immunostaining for 5-
HT to visualize 5-HT axons in brain sections (71, 91). However,
more recent studies have used the more sensitive approach of
5-HTT immunostaining to visualize 5-HT projections (92). In
addition, antibodies to TPH have been useful, particularly in
human post-mortem brain sections (41). These studies have
revealed that 5-HT fibers rarely branch and have a high density in
many brain regions. A high density of 5-HT projections has been
shown in the cerebral cortex and subcortical regions including
striatum, hippocampus, entorhinal cortex and the NAc [core and
caudal shell (93)]. In a single fiber, there are several specialized
boutons or varicosities where 5-HT is concentrated (91). It has
been estimated that there are around 6 × 106 varicosities/mm3

in the rat cortex. In addition, each cortical neuron may receive
around 200 varicosities (94, 95). However, there is evidence of
some non-5-HT producing neurons that transiently express

5-HTT during development in the thalamus identified by 5-HT
uptake and in situ hybridization for 5-HTT RNA (96). Using
5-HTT-cre mice to drive reporter gene expression, labeling was
seen in dorsal thalamus, cingulate cortex, hippocampal CA3
neurons, retinal ganglion cells, superior olivary and cochlear
nuclei during embryonic development and postnatally in medial
prefrontal cortex (97). These studies suggest that neurons that
lack TPH can take up 5-HT and in the thalamus can store the
5-HT in vesicles for co-transmission with glutamate. On the
other hand, chronic SSRI-induced blockade of 5-HTT leads to
uptake and release of 5-HT by the dopamine transporter in DA
neurons (98, 99). Similar, l-DOPA treatment leads to DA uptake
and release in 5-HT neurons (100), indicating cross-talk between
monoamine systems at the level of co-transmission following
chronic drug treatment.

Non-synaptic 5-HT/Volume Transmission
In addition to conventional synapses, serotonin is also released
from varicosities into extracellular spaces with no target cell
dendrites nearby (70, 101), a process termed volume transmission
(102, 103). The non-synaptic release of 5-HT allows a paracrine
transmission of serotonin to distal neurons and glia, particularly
in the presence of 5-HT reuptake blockers, to activate high-
affinity 5-HT receptors. Thus, both synaptic and non-synaptic
5-HT release may be implicated in the actions of raphe activation.
As discussed below, activation by 5-HT of multiple 5-HT
receptors engage several effector proteins to regulate neurite
outgrowth, growth cone motility, synaptogenesis, and shape the
dendritic spine and density in a wired brain.

The above examples illustrate that to identify 5-HT
neurons and their projections it is important to combine
different approaches. Recently, several genetic approaches
using transgenic mice 5-HT-specific promoters (including
5-HTT, TPH2, Pet-1) to drive the expression of reporter genes
(such as LacZ, YFP) have been used in combination with
immunostaining for 5-HT markers (5-HT, 5-HTT, TPH2) to
identify 5-HT projections (104, 105). These labeling approaches
have been combined with anterograde and retrograde labeling
techniques (106) to further define at a macroscopic level the
neuroanatomy of the 5-HT system (56, 107–111). For example,
at the cellular level, dual retrograde tracing revealed that a
small (10–20%) proportion of neurons innervate both nucleus
accumbens and medial prefrontal cortex (112). Single-cell
biotin labeling has also been used to localize region-specific
5-HT/vGlut3 projections (113). These results indicate that single
5-HT neurons can innervate multiple brain regions.

Visualizing 5-HT Synapses
For high-resolution visualization of 5-HT synapses, electron
microscopic (EM) studies (91) and 3D reconstruction of 5-HTT-
positive axons have been used to map the 5-HT boutons located
proximal to excitatory or inhibitory synapses in limbic brain
regions (114, 115). Post-synaptic components of excitatory or
inhibitory synapses form “triads”. To finely dissect how 5-HT
exerts its modulatory actions, asymmetrical synapses/excitatory
triads were mostly localized in the hippocampus, cortex, mPFC
while symmetrical synapse/inhibitory triads were enriched in
the dorsal raphe nucleus (DR), ventral tegmental area (VTA),
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central and basolateral amygdala (CeA, BLA) (116, 117). The
combination of both (excitatory-inhibitory) was observed in
areas like thalamic regions, bed nucleus of stria terminalis
(BNST), and nucleus accumbens (NAc) (91, 114, 115). The
preferential proximity of 5-HT boutons to neurochemical
excitatory/inhibitory synapses could therefore suggest that
serotonergic axons projecting to one area may preferentially
target local glutamatergic, interneurons, or both to modulate
their activity. For example, the preferential proximity of 5-
HT-positive axon terminals to GABA terminals engaged in
symmetrical synapses in DR and amygdala sub-regions (CeA,
BLA) suggests that 5-HT mainly modulates the activity of
interneurons in DR and amygdala. In contrast, 5-HT axon
terminals are mainly engaged in asymmetrical synapses in
mPFC to modulate the activity of excitatory neurons. Therefore,
alterations in 5-HT system activity which preferentially change
the activity of different cell types in target brain regions
could differentially impact behavioral output. Recently, using a
semi-automated approach that combines immunohistochemistry
and high-resolution confocal microscopy to label 5-HTT
immunoreactive axons has allowed researchers to reconstruct
the 5-HT axons in 3D through their distribution within limbic
brain regions (114, 115). Using this approach, the changes in
5-HT axon properties have been also determined in a model
of post-stroke depression induced by focal ischemia in mice
medial prefrontal cortex (mPFC), before and after treatment with
chronic fluoxetine (64).

Imaging techniques have shown that the density and other
features of 5-HT fibers can be altered during and after
development. For example, Azmitia et al. (118) found that the
density of serotonergic fibers is unusually high in the cerebral
cortex of individuals suffering from autism spectrum disorders
(118). In contrast, post-mortem studies in adult subjects showed
that depression is associated with reduced 5-HT innervation of
the orbitofrontal cortex in addition to the loss of hippocampal
volume (32). Liu and Nakamura (65) reviewed the effects of
chronic stress on regeneration of noradrenaline (NA) and 5-HT
axons following NA or 5-HT neurotoxin in adult rats (65). They
reported that, in contrast to NA axons, 5-HT axons are more
dynamic in morphological plasticity as they are easily affected
by stress and rapidly regenerate after damage. 5-HT axons also
exert an inhibitory effect on NA axon regeneration. Furthermore,
in a depression model induced by 9-week administration of
interferon-α to adult male Sprague-Dawley rats, the density
of 5-HT-stained axons decreased specifically in the ventral
medial prefrontal cortex and amygdala (119). Thus, using new
imaging approaches could promote the early diagnosis and
development of more effective treatments for depression based
on the morphological plasticity of 5-HT axons.

VOLUME TRANSMISSION: BEYOND

SYNAPTIC COMMUNICATION IN THE

WIRED BRAIN

Recent scientific evidence has focused on the complexities
of neurotransmitter (NT) communication in the wired brain.

In this regard, the importance and relevance of both fast-
targeted synaptic and slow-non synaptic transmission has
been recognized.

The concept of non-synaptic communication or volume
transmission in the brain was proposed in the 1980s (102, 120),
and shown for monoamines including 5-HT (117, 121). In
1994, Bjelke et al. showed indirect evidence that amphetamine-
induced dopamine release may diffuse long distances following
fiber tracts, possibly to the contralateral hemisphere (122). This
is supported by the diffusion of Texas-Red-labeled dextran
injection in the striatum, which diffuses along fiber tracts to the
contralateral brain hemisphere (123). More recently, based on
the half-life of dopamine it has been calculated that it might
diffuse up to 7 microns (124). With newer, more sensitive
indicators specific for dopamine and other monoamines (125),
it may be possible to detect the diffusion of dopamine from
non-synaptic release.

Using techniques such as receptor autoradiography,
immunohistochemistry, and EM imaging has shown for
monoamines a mismatch between the location of NTs relative
to synaptic structures (103, 126, 127). For example, Martin
et al. (128) showed that 94% of tyrosine hydroxylase-positive
boutons in macaque prefrontal cortex Area 10 had no identifiable
synaptic association in non-human primates (129). Rice et al.
(130) modeled dopamine release to show that the presence
of dopamine outside of the synaptic zone in the nigrostriatal
pathway could be due to the spillover from the synaptic cleft
and release into the surrounding extracellular space. Dopamine
concentration remains sufficiently high to activate extra-synaptic
dopamine receptors on surrounding cells (130). Mapping
studies using diverse techniques also identified varicosities filled
with NT granules localized along the axons. This evidence
supports the existence of NTs in a high volume in non-terminal
axon segments. Rodent studies showed that the main action
of modulatory NTs including acetylcholine, norepinephrine,
dopamine, and serotonin in the brain is through volume
transmission via non-synaptic contacts of varicosities within
axons (126).

After the first evidence supporting the concept of volume
transmission in dopamine release in the brain by Fuxe and
Ungerstedt (131), similar approaches were used for the 5-
HT cell bodies located in dorsal raphe upon treatment of
rats with 5-HT reuptake blocker clomipramine (132). The
release of 5-HT from vesicles in the soma, dendrites, and/or
axonal varicosities could also be independent of targeted
synapses (133–135). More directly, parachloroamphetamine-
induced non-synaptic somatodendritic release of 5-HT has
been visualized using 3-photon microscopy of dorsal raphe
sections (136). Somatodendritic and axonal release of 5-HT can
be triggered by neuron depolarization, the stimulation of L-
type calcium channels, activation of glutamatergic receptors,
and/or by activation of 5-HT2 receptors (137). Furthermore,
somatodendritic 5-HT release can also regulate the rate of
discharge of serotonergic neurons and their tonic activity,
via somatodendritic 5-HT1A and 5-HT2B autoreceptors (29,
138, 139). Nevertheless, direct evidence of 5-HT volume
transmission-induced depression of 5-HT firing has not been
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reported (140). However, it has been recently shown that
somatodendritic release of dopamine acting via D2 receptors
autoinhibits the firing of the same neuron (141), suggesting a
truly auto-regulatory system.

AXONAL AND NEURITE OUTGROWTH:

SEROTONIN RECEPTORS

During development, differentiation of 5-HT neurons (e10.5–
13 in rat) and outgrowth 5-HT projections is initiated early
in embryonic development of the brain (e12–14 in rat) and
continues well into post-natal development (p21 in rat) (73, 76,
142, 143). The availability of serotonin during embryonic to early
post-natal developmental stages implicate serotonin signaling in
directed axonal and neurite outgrowth during development (144,
145) and also in mediating neuroplasticity responses to external
stimuli during and post-development (146). In this light, deletion
of TPH2 to block neuronal 5-HT synthesis results in abnormal
projections of 5-HT neurons both during development and in
adults (147–150). Serotonin can also accumulate in (96, 151) and
affect the development of non-serotonergic neurons in cortex
and hippocampus (147, 152–155). Vicenzi and Gasperini (156)
recently found that exogenous serotonin acts as a guidance cue
during axon pathfinding in sensory neurons in vitro, capable
of concentration-dependent attraction (via 5-HT2A receptor) or
repulsion (via 5-HT1B receptor) of growth cone motility (156).
However, the role of endogenously released 5-HT gradients in
axonal outgrowth in vivo remains to be assessed.

The actions of serotonin on target cells, including glutamate
and GABA neurons, are mediated by a large family of 5-
HT receptors. Currently, genes for 14 receptors, including 13
distinct heptahelical G protein-coupled receptors (GPCRs) and
one ligand-gated ion channel, have been identified. Based on their
structural and downstream signaling characters, receptors are
divided into seven distinct classes including 5-HT1-7 receptors
(72, 157). The role of some key receptors in the 5-HT axonal
transmission including axonal growth and axonal guidance is
summarized below.

5-HT1 Receptors
The largest class of 5-HT receptors is the 5-HT1 receptor
family characterized by an intronless coding sequence with five
subtypes sharing 40–63% sequence homology (72, 157). The
5-HT1A,−1B,−1D,−1E and−1F receptors are localized in a
wide variety of brain regions and show distinct pharmacological
characteristics. The 5-HT1A receptors are broadly expressed
in cortex, limbic areas, raphe nuclei (on 5-HT neurons
as autoreceptors), in extrapyramidal areas, such as the
substantia nigra, caudate-putamen, and in the cerebellum
during embryonic-early postnatal development (158–168). The
5-HT1A receptors have been also found on astrocytes (169, 170)
to mediate neuroprotective actions (171).

Using in vivo studies, Azmitia et al. (172) showed that 5-
HT1A receptors have a key role in 5-HT-induced increases
MAP2 and synaptophysin in the hippocampus, hypothalamus,
parietal and temporal cortices, and the temporal pole (172). In

vitro studies showed that 5-HT1A receptor stimulation decreased
neurite outgrowth in cortical neurons (173), increased it in
hippocampal cultures (174) while had no effect or inhibit
outgrowth in serotonergic raphe neurons (175, 176). The
5-HT1A receptor can trigger diverse downstream signaling
mechanisms that are region- and cell-specific and may mediate
these actions (177, 178). 5-HT1A receptor coupling via Gβγ

subunits reduces neuronal activity by opening potassium
channels and closing calcium channels. However, the receptor
is coupled primarily to Gi3 in 5-HT neurons and Gi2 in
hippocampal neurons, which may underlie differential signaling
and desensitization in these cells. While in 5-HT neurons,
the 5-HT1A receptor appears to inhibit extracellular regulated
protein kinase (ERK) ERK1/2 activity (179), it signals to activate
it in developing and adult hippocampal neurons and may
play roles in synaptogenesis (180). Recent studies implicate 5-
HT1A signaling through Gβγ and tyrosine kinase receptors to
activate ACII (181), phospholipase C (PLC)/protein kinase C
(PKC) (182), calcium-calmodulin-dependent protein kinase II
(CAMKII) (183), and phosphatidylinositol 3’-kinase (PI3K)/Akt
signaling (184) mediating synaptogenesis, dendrite outgrowth,
cell survival. Thus, the 5-HT1A receptor appears to modify
its signaling repertoire depending on the cell type (5-HT vs.
post-synaptic neurons) and the developmental state of the
neuron (178). Previous studies also showed the crucial role of
serotonin in modulating the neuronal guidance cues to shape the
connectome in the wired brain mediated by the 5-HT1 family
(185, 186). For example, 5-HT1B/1D receptor activation induces
the growth and guidance of embryonic thalamocortical axons
(187). In this process, axon responses to netrin-1 shift from
attraction to repulsion during the cortical network shaping.

Cortical plasticity in adulthood can also be modified by 5-HT1
receptor activity. For example, chronic fluoxetine treatment
induced a full recovery from monocular deprivation in adult
rats by increasing brain-derived neurotrophic factor (BDNF)
expression to reduce GABAergic activity in the visual cortex
thus enhancing excitatory long-term potentiation (188). These
actions of fluoxetine suggest that synaptic, possibly structural
re-organization of the cortex can be induced in adulthood.
Interestingly, these actions of fluoxetine were blocked by 5-HT1A
antagonist WAY-100635, implicating 5-HT1A-induced BDNF
expression in adult cortical plasticity (189). It remains unclear
whether similar 5-HT1-induced signaling to BDNF in the
PFC may mediate synaptic reorganization implicated in the
antidepressant actions of SSRIs as seen for rapidly acting
antidepressants such as ketamine (190, 191).

5-HT2 Receptors
The 5-HT2 receptor subtypes including 5-HT2A-C share about
50% amino acid sequence identity and show similarities
concerning molecular structure, pharmacology, and signal
transduction pathways (72, 192). 5-HT2A receptor expression
is widely observed in cortical areas (neocortex, entorhinal,
and piriform cortex), olfactory tubercle, dentate gyrus, and
several brainstem nuclei, motor cranial nerve nuclei, and the
spinal cord ventral horn (168, 193). In vitro studies have
shown that stimulation of 5-HT2A receptors inhibits neurite

Frontiers in Psychiatry | www.frontiersin.org 5 December 2021 | Volume 12 | Article 802581

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Vahid-Ansari and Albert Serotonin Rewiring in Major Depression

growth in serotonergic neurons (176) while increasing neurite
outgrowth in thalamic neurons (194), with no effects on cortical
glutamatergic neurites (195). Recent studies by Vicenzi et al.,
(156) using a growth cone motility assay showed that serotonin
is capable of acting as both attractive and repulsive guidance
cue on its own axons via activation of 5-HT2A and 5-HT1B
receptors, respectively (156). The low concentration of serotonin
as 50µM induces attraction mediated by 5-HT2A while twice
this concentration elicits the repulsion through the stimulation
of 5-HT1B. In agreement, high-resolution imaging of growth
cones indicateds that differential signaling is involved. For these
actions, 5-HT2A receptors signaled through their canonical
pathways of endoplasmic reticulum-mediated calcium release
and 5-HT1B through cAMP depletion.

5-HT3 Receptors
The 5-HT3 receptors, the only ligand-gated, non-selective cation
channel 5-HT receptors, are expressed in the cerebral cortex,
hippocampus, amygdala, and the solitary tract nucleus (196). The
5-HT3 receptor is not coupled to second-messenger cascades
which makes it different from the other members of the 5-
HT receptor family. The expression of 5-HT3 receptors in
neuroblasts during brain development has suggested that they
may play a role in neuronal differentiation and development
(197). However, there is debate regarding the role of 5-HT3
receptors in neurite outgrowth, as 5-HT3 receptors may enhance
dendritic spine formation in thalamic cultures (194), but not
neurite outgrowth (198). For example, 5-HT3 receptors form a
complex with the light chain of microtubule-associated protein
1B (MAP1B) and the tubulin cytoskeleton in dendrites and
growth cones of hippocampal neurons during developmental
(199). However, knockout of 5-HT3 receptor did not alter
dendritic spines at baseline or following long-term depression in
adult mice (200).

5-HT4 Receptors
5-HT4 receptors are implicated in the regulation of multiple
physiological processes and are highly expressed in various
regions of the limbic and in several basal ganglia components of
the rodent brain (201–203). In transfected cell lines and primary
neurons, 5-HT4 receptors primarily induce the cAMP pathway
via Gs proteins (204), but can also signal to ERK activation via
SRC protein kinase (205). In vitro studies showed that 5-HT4
receptor activation induces decreases in neurite outgrowth (206).
By contrast, studies in the hippocampus also showed that 5-HT4
receptor activation enhances learning-induced hippocampal
dendritic spine formation in vivo (207). 5-HT4 receptor
activation was shown to rapidly trigger dendritic spine formation
in hippocampal neurons (208) via G13-RhoA signaling pathway
(209). Pharmacological studies showed that agonist-induced 5-
HT4 receptor activation inhibits basal synaptic transmission
and theta-burst LTP via GABAergic activation (210), while
enhancing low-frequency induced hippocampal LTD (211).
In contrast, 5-HT4 antagonist induced thalamostriatal spike
timing-dependent LTD expression (212), while blocking 5-
HT-induced late LTP in the amygdala (213). Therefore,
the 5-HT4 receptor has a role in modulating synaptic

transmission via the regulation of long-term plasticity. In
addition, 5-HT4 receptorsmediate SSRI-induced “dematuration”
of adult hippocampal granule neurons implicated in behavioral
actions (214, 215). Furthermore, the antidepressant actions
of SSRI in depression models requires 5-HT4 receptors (216,
217). Interestingly 5-HT4 receptors have been implicated
in rapid induction of hippocampal neurogenesis and rapid
antidepressant actions (218). Since the above studies have
used systemic 5-HT4 ligands, global 5-HT4 knockout mice, or
slice preparations, the relative roles of 5-HT4 induced actions
on region-specific synaptic transmission, neuroplasticity, and
neurogenesis in its behavioral and cognitive actions remains
to be clarified using tissue-specific gene knockout or drug
delivery approaches.

5-HT6 Receptors
The 5-HT6 receptors are expressed in diverse brain areas
including the olfactory tubercle, cortex, dorsal and ventral
striatum, hippocampus, amygdala as well as choroid plexus
(219–221), and are implicated in schizophrenia, anxiety, and
Alzheimer’s disease (222). The 5-HT6 receptor activates ACs
by coupling to Gs proteins (223), interacts with Fyn kinase
to mediate ras-MEK-ERK1/2 signaling (224, 225), and with
Jab1 to couple to the transcription factor c-Jun (226). In
vivo studies in the developing cortex have implicated 5-HT6
receptors localized in dendritic cilia in dendritic outgrowth
and neuronal differentiation, signaling via the Fyn pathway
(227, 228). Actions of 5-HT6 signaling on neurite outgrowth
involve constitutive activation of the receptor by cdk5, which
can be blocked by 5-HT6 antagonist (229, 230). In addition,
5-HT6 signaling regulates migration of cortical pyramidal
neurons and interneurons during development (231, 232). More
recently, 5-HT6-/- mice have been shown to have altered in
vivo dendritic and neuronal morphology, increased neuronal
excitability, and increased anxiety and cognitive impairment
phenotypes (233). In terms of neurotransmission, agonist-
induced 5-HT6 receptor activation acutely increases expression
of BDNF and Arc in cortical and hippocampal brain areas (234)
and in the hippocampal CA1 area increases GABA release and
decreases synaptic plasticity (235, 236). Using a 5-HT6 receptor
antagonist increases the levels of glutamate, acetylcholine,
and catecholamine in the frontal cortex and hippocampus
and results in enhanced excitatory neurotransmission. 5-
HT6 receptor antagonists inhibit the mTOR complex, which
promotes neuronal survival and increases neurite outgrowth
(237). This 5-HT6 modulation of the mTOR complex provides a
promising target to treat anxiety, schizophrenia, and Alzheimer’s
disease (230). Although an increasing body of studies indicates
that acute effects of both 5-HT6 receptor antagonists and
agonists elicit improvement in depression and anxiety observed
in the preclinical models (238), the underlying mechanisms
are not clear. Given the importance of 5-HT6 receptors in
cortical development, this receptor may also play a role in
the recovery and regeneration of 5-HT projections lost in
adulthood and associated with cognitive impairment (239) and
depression (238).
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5-HT7 Receptors
The 5-HT7 receptors are involved in the sleep-wake cycle,
body temperature, depression-like behavior and the processes
of learning and memory (240–242). In the brain, they are
mainly expressed in the thalamus, hypothalamus, hippocampus,
prefrontal cortex, amygdala, lateral habenula, raphe nuclei,
and the suprachiasmatic nucleus (240, 243, 244). 5-HT7
receptors couple to Gαs (245) and Gα12 (206). Gα12/13
proteins signal to activate JNK, G protein signaling proteins
(RGS) (246), non-receptor tyrosine kinases (nRTK) to signal
to the Rho family of small GTPases that promote neurite
extension and branching (247, 248). In vitro studies reported the
involvement of 5-HT7 receptors in neurite outgrowth, spino-
and synaptogenesis in young neurons, and increases in axon
outgrowth via mTOR, Cdc4, to regulate actin filaments dynamics
and metalloproteinase induced synaptic remodeling (249–252).
Interestingly, in postnatal development, the 5-HT7 receptor is
co-expressed with 5-HTT on PFC neurons and mediates PFC
projections to the DRN implicated in development of anxiety and
depression like phenotypes in mice treated postnatally with SSRI
(253). The role of 5-HT7 receptors in modifying PFC projections
during adulthood remains to be elucidated.

TRIGGERING 5-HT AXONAL AND NEURITE

OUTGROWTH

How is spontaneous 5-HT axonal outgrowth triggered? By
analogy with activity-dependent neuroplasticity following stroke
(254, 255), it is hypothesized that regrowth of 5-HT axons after an
injury is driven by the activity of the affected 5-HT neurons. For
example, following a stroke to the left mPFC, we have observed
a 3–4 fold chronic activation (FosB+ cells) of dorsal raphe 5-HT
and vGlut3-positive neurons that is maintained after fluoxetine
treatment (256). Since full recovery of 5-HT innervation and
behavior is only seen after chronic fluoxetine treatment (64),
this suggests that fluoxetine-induced augmentation of 5-HT
levels at target regions is critical for 5-HT innervation to
mediate behavioral and cognitive recovery. This implicates 5-
HT autoregulatory effects on its own axons in affected area,
which may be mediated via 5-HT receptor signaling (as discussed
above). The importance of 5-HT neuronal activation is suggested
by deep brain stimulation of the mPFC in rats subjected to
chronic social defeat. Increasing cortical drive to the raphe
induced dendritic remodeling of 5-HT neurons to restore their
activity, resulting in increased size and number of presynaptic 5-
HT terminals in the hippocampus (66). The released 5-HT likely
signals through a variety of 5-HT receptors on 5-HT projections,
local glial cells and target neurons to ultimately restore behavior
as discussed above.

DETECTING 5-HT AXONAL AND NEURITE

OUTGROWTH IN HUMANS

Does the loss of 5-HT innervation occur in clinical depression,
and can it be reversed by chronic SSRI treatment? The
problem is how to visualize 5-HT innervation in depressed
patients. One method is to use the 5-HTT as a biomarker

for 5-HT innervation. In post-mortem brain, several regions
show reduced 5-HTT staining including the ventral PFC, which
was associated with depression and childhood maltreatment
(257, 258). More specifically, visualization and quantification
of 5-HTT-immunopositive processes have shown a reduction
in the length of 5-HT axons in orbitofrontal cortex from
depressed subjects (32). This region integrates multi-model
sensory input to drive reward and affective behavior (259),
and its activity is inversely correlated with the severity of
depression (260). In living patients, this has been evaluated in
positron emission tomography studies using ligands such as
11C-DASB. This is supported by the loss of DASB binding in
cortex and striatum following MCAO in rats, with a gradual
recovery over 3 weeks (128), similar to the time course that we
observed in post-ischemic mice (64). Using 11C-DASB to label
5-HTT, a reduced 5-HTT ratio between dorsal raphe/ventral
striatumwas seen in unmedicated depressed compared to healthy
controls, suggesting reduced 5-HT innervation to this reward
processing center (261). By contrast, no difference in 5-HTT
levels was seen in recovered depressed subjects compared to
controls (262), whereas alterations are seen in several brain
areas of severely depressed patients (263). Restorative effects
of antidepressant treatment on 5-HTT levels have also been
reported. In depressed subjects, altered 5-HTT ratio between
median raphe to bilateral habenula, amygdala-hippocampus and
subgenual cingulate cortex predicted treatment response (264).
In bipolar depression, lower levels of 5-HTT and 5-HT1A
predicted response and remission to 8-wk lithium treatment
(265). Taken together, these studies suggest that alterations in
5-HTT levels, perhaps due to altered 5-HT innervation, are
associated with depression and response to SSRIs. However, these
changes could simply reflect changes in 5-HTT expression level,
rather than 5-HT innervation. Functional connectivity studies
using fMRI with the raphe as a seed may provide addition
evidence of impaired 5-HT projections, as raphe connectivity
strength mirrors 5-HTT levels in healthy controls (266). Acute
tryptophan depletion decreased functional connectivity of the
raphe to right pregenual anterior cingulate cortex in SSRI-
resistant depressed subjects, but increased raphe-left thalamus
connectivity in SSRI-responders, suggesting that increased 5-
HT innervation correlates with SSRI response (267). Taken
together, these studies indicate a deficiency in 5-HT innervation
occurs in major depression and can be modified by chronic
treatment in SSRI-responders. The importance in behavior
of these neuroplasticity changes remains to be addressed but
developing strategies to enhance 5-HT neuroplasticity may
provide a more robust antidepressant response. Using models of
SSRI-resistant depression such as the cF1ko mice (10), it will be
possible to elucidate whether changes in 5-HT axons associated
with depression and anxiety are unresponsive to fluoxetine
and develop alternative or augmentation therapies to efficiently
enhance the activity of 5-HT system and axonal plasticity to treat
SSRI-resistant patients.

CONCLUSION

Although not extensively studied, increasing evidence is
indicating that deficiencies in 5-HT innervation associated
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with development, chronic stress or brain injury may
lead to depression (10). Furthermore, the 5-HT system is
capable of regenerating lost projections. Particularly after
injury or chronic stress, 5-HT rewiring is induced during
recovery (62), and can be enhanced by SSRI treatment
or activation of 5-HT neurons (64, 66). While 5-HT
rewiring correlates with recovery (66, 256), it remains to
be directly addressed how important this mechanism is
for recovery in rodent models. In humans, some research
shows alterations in 5-HTT labeling in post-mortem OFC
associated with major depression (32). Further studies are
needed to determine what other brain regions might be
affected, how early, and the effect of successful treatment on
these projections.

Exactly how SSRIs might trigger reinnervation remains
unclear. For example, 5-HT1A receptor-mediated induction of
BDNF has been implicated in cortical synaptic plasticity, but
whether BDNF mediates changes in innervation is unclear
(188). However, abundant evidence indicates that several 5-HT
receptors have actions to enhance synaptic plasticity and the
formation of new synaptic connections. Direct activation of some
of these receptors has been shown to mediate antidepressant

actions in some tests and certain models of depression. However,
it remains unclear how effective these compounds will be in
human depression.

By coordinately targeting 5-HT activity, 5-HT release and 5-
HT receptor-induced synaptic remodeling may provide a more
effective strategy to treat depression, even in treatment-resistant
depressed subjects.
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