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Purpose: Recent evidence supports the role of reduced cerebrospinal fluid (CSF) pressure in the pathogenesis of primary
open-angle glaucoma (POAG). We investigated the association of variants in two candidate genes that are important in
CSF production, aquaporin 1 (AQPI) and solute carrier family 4, sodium bicarbonate transporter, member 10
(SLC4A410), with POAG in the Caucasian population.

Methods: POAG subjects (n=382) met the criteria of glaucomatous optic neuropathy with consistent visual field loss.
Intraocular pressure was not used as an inclusion criterion. Control subjects (n=363) did not meet any of the inclusion
criteria and had no family history of glaucoma. Eleven tagging single nucleotide polymorphisms (SNPs) for AQPI and
SLC4A410 were genotyped in the POAG and control subjects, using allelic discrimination assays. Genotype frequencies
were compared between the POAG and control subjects, using logistic regression adjusted for gender.

Results: There was no statistically significant difference in genotype frequencies between POAG and control subjects for
any of the tested SNPs in AQP1 and SLC4A10 (p>0.05).

Conclusions: There was no association between common sequence variants in the AQP1 or SLC4A410 genes and POAG
in the Caucasian population. This is the first study to investigate the association between these two candidate genes and

increased risk for POAG.

Primary open-angle glaucoma (POAG; OMIM 137760)
is the most common form of glaucoma, which is the leading
cause of irreversible blindness worldwide [1,2]. POAG is
characterized by a chronic optic neuropathy and progressive
loss of retinal ganglion cells, leading to specific visual field
defects in the absence of a known secondary cause [3,4].
Several risk factors have been associated with POAG,
including elevated intraocular pressure (IOP), advanced age,
black race, and family history [5]. To date, four causative
genes for POAG from 11 candidate chromosomal loci have
been identified, including MYOC (myocilin), OPTN
(optineurin), WDR36 (WD repeat domain 36), and CYPIBI
(cytochrome P450, family 1, subfamily B, polypeptide 1), but
these four genes together account for less than 10% of POAG
cases [6-10].

Recent studies have provided strong support for the
theory that reduced cerebrospinal fluid (CSF) pressure may
play a role in the pathogenesis of POAG. In a retrospective
review of patients with a history of lumbar puncture at the
Mayo Clinic (Rochester, Minnesota), Berdahl et al. [11]
reported that the mean CSF pressure was significantly lower
in POAG patients when compared with nonglaucomatous
control patients. A prospective study conducted by Ren et al.
[12] confirmed that the mean CSF pressure is lower in POAG
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patients and in normal tension glaucoma (NTG) patients when
compared with nonglaucomatous control patients. A
decreased CSF pressure can lead to an increased translaminar
pressure difference, which is defined as the pressure
difference between IOP and CSF pressure [13]. When the
translaminar pressure difference is abnormally increased,
axoplasmic flow is disrupted, leading to retinal ganglion cell
death and optic disc changes characteristic of glaucoma
[14-18]. These findings lend support to the hypothesis that a
decreased CSF pressure resulting in an increased translaminar
pressure difference may contribute to the pathogenesis of
glaucoma.

The candidate gene approach is used to study genes that
are hypothesized to play a role in the etiology of a complex
human disease with genetic contributions. This approach has
been successful in identifying genes, such as complement
factor H in age-related macular degeneration [19]. In this
study we investigated aquaporin 1 (AQPI) and solute carrier
family 4, sodium bicarbonate transporter, member 10
(SLC4A10) as candidate genes for POAG. AQPI maps to
chromosomal location 7pl4 and SLC4410 maps to
chromosomal location 2q23-q24, neither of which is at a
known chromosomal locus for POAG listed by the Human
Genome Organization [20-23]. Both of these genes are
expressed in the choroid plexus and have been shown to be
important in CSF production [20-29]. Knockout mouse
models of these genes demonstrate a significant reduction in
CSF production and intracranial pressure [22,28].
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We hypothesized that AQPI and SLC4A410 have a role in
the pathogenesis of POAG because of their function in CSF
production and their effect on the translaminar pressure
difference. In this study, we investigated the association
between sequence variants of these genes with increased risk
for POAG in the Caucasian population.

METHODS

Subjects: This study was reviewed and approved by the
Institutional Review Board of Duke University Medical
Center (Durham, NC) and adhered to the tenets of the
Declaration of Helsinki. Informed consent was obtained from
all study participants. Study subjects were recruited from the
Duke University Eye Center (Durham, NC) for a total of 382
subjects with POAG and 363 control subjects. Subjects with
POAG were unrelated and met the following inclusion
criteria: 1) age of onset greater than 30 years; 2) glaucomatous
optic neuropathy in both eyes; and 3) visual field loss
consistent with optic nerve damage in at least one eye [30].
Glaucomatous optic neuropathy was defined as a cup-to-disc
ratio greater than 0.7 or focal loss of the nerve fiber layer
resulting in a notch, associated with a glaucomatous visual
field defect. Visual fields were performed using standard
automated perimetry or frequency doubling test [2]. IOP was
not used as an inclusion criterion. The exclusion criteria for
POAG subjects included the diagnosis of a secondary form of
glaucoma or a history of ocular trauma. The control subjects
were examined by the same glaucoma subspecialist (RRA)
who examined the POAG subjects. The control subjects were
unrelated and met the following criteria: 1) no first-degree
relative with glaucoma; 2) IOP less than 21 mmHg in both
eyes without treatment; 3) no evidence of glaucomatous optic
neuropathy in either eye; and 4) normal visual field in both
eyes.

Genomic DNA genotyping: Genomic DNA was extracted
from peripheral blood samples via alcohol and salt
precipitation using Gentra Systems PUREGENE DNA
Purification Kit (Qiagen, Valencia, CA). Based on the
genotype data from the HapMap Project, HaploView software
version 4.1 (Broad Institute, Boston, MA) was used to select
11 tagging single nucleotide polymorphisms (SNPs) for
AQPI and SLC4A410 in the Caucasian population, using an
r? threshold of 0.6 and a minor allele frequency threshold of
0.05 [31]. TagMan allelic discrimination assays were used for
genotyping with Assays-On-Demand and Assays-By-Design
products, according to the standard protocols from the
manufacturer (Applied Biosystems, Foster City, CA)[32]. For
quality control purposes, two Centre d'Etude du
Polymorphisme Humain standards (CEPH, Paris, France) and
quality control samples were placed within and across 384-
well plates (Applied Biosystems, Foster City, CA), and
laboratory personnel were blinded to the location of these
samples. Genotype submission to the analysis database
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required matching genotypes for all quality control samples
and at least 95% genotyping efficiency.

Statistical  analysis:  Analysis of Hardy—Weinberg
equilibrium was performed separately for POAG and control
subjects with Genetic Data Analysis (GDA) software [33].
Pairwise linkage disequilibrium (LD) between SNPs was
calculated with the GOLD software [34]. Genotype
frequencies in POAG and control subjects were compared by
logistic regression with adjustment for gender using SAS
software (SAS Institute Inc., Cary, NC). SNP genotypes were
coded according to a log-additive risk model, which assumes
that the risk from carrying a single copy of the variant (minor)
allele is midway between that of zero copies (reference
genotype) and of two copies on the logarithmic scale. Power
calculations were performed using QUANTO software
according to previously described methods, assuming a
population prevalence of 10% and a log-additive risk model
[35].

RESULTS

A total of 382 POAG subjects and 363 control subjects were
included in the Caucasian data set. Of the POAG subjects, 15
subjects had NTG, defined as a maximum IOP <22 mmHg.
The mean age of onset of POAG in the experimental subjects
was 57.6x£14.2 years, and the mean age of control subjects at
the time of ophthalmologic exam was 64.8+9.3 years. The
experimental group was 49.7% female, and the control group
was 59.8% female.

A total of 11 tagging SNPs were selected to cover the LD
blocks of AQPI and SLC4A10, using HaploView software
(Figure 1). All of these were in Hardy—Weinberg equilibrium
(p>0.01) in the Caucasian controls. We did not observe
statistically significant pair-wise LD (with an r? cut-off of 0.6)
between the four tagging SNPs of AQP/ or the seven tagging
SNPs of SLC4A410. No significant genotype frequency
differences between cases and controls were detected in either
AQPI or SLC4410 (Table 1).

For the three SNPs with lower minor allele frequencies
(ranging from 7% to 16% for rs765840, rs1399650, and
rs1979112), our Caucasian data set had >94% power at a two-
tailed significance level of 5% to detect an odds ratio of 2 or
greater. For all other SNPs, our Caucasian data set had >90%
power at a two-tailed significance level of 5% to detect an
odds ratio of 1.5 or greater.

DISCUSSION

Recent studies have shown that CSF pressure is reduced in
POAG subjects as compared to control subjects, suggesting
that CSF pressure may play a role in the pathogenesis of
POAG [11,12]. Decreased CSF pressure leads to an increase
in the translaminar pressure difference. Elevations of IOP also
increase translaminar pressure differences, which have been
shown to disrupt axoplasmic flow and cause retinal ganglion
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Figure 1. Schematic of aquaporin-1
(AQPI) and solute carrier family 4,

sodium  bicarbonate transporter,
member 10 (SLC4A410) genes. The
locations of the genotyped tagging
single  nucleotide  polymorphisms
(SNPs) identified using HaploView
software in the AQPI and SLC4A410
genes are shown in relation to the exons
that are depicted as vertical boxes or
lines and the introns that are depicted as
a horizontal line.

TABLE 1. MINOR ALLELE FREQUENCIES OF TAGGING SNPs IN THE AQP1 AnD SLC4A10 GENES IN CAUCASIAN POAG AND CONTROL

SUBJECTS
Candidate gene SNP Allele (El?:;l;(;l)s (I:IS;;(;) p-value*

AQPI rs1004317 G 0.404 0.399 0.786
rs17159702 G 0.292 0.265 0.297

rs765840 A 0.067 0.077 0.468

rs1049305 C 0.412 0.367 0.078

SLC4A410 rs1399650 C 0.157 0.152 0.739
r$2892769 C 0.451 0.439 0.639

rs1551051 T 0.267 0.237 0.146

rs1979112 G 0.121 0.141 0.221

rs1227929 T 0.409 0.411 0.901

rs1913807 T 0.207 0.213 0.574

rs4500960 A 0.490 0.483 0.726

The asterisk indicates that the p-value is from logistic regression with adjustment for sex, using log-additive coding of SNP
genotypes; SNPs: single nucleotide polymorphisms; POAG: primary open-angle glaucoma; AQP1: aquaporin-1; SLC4A410:
solute carrier family 4, sodium bicarbonate transporter, member 10.

cell death in a glaucomatous pattern [14-18]. Two genes that
are expressed in the choroid plexus and have been shown to
be important in CSF production are AQPI and SLC4A410
[20-29]. These two genes were selected out of many other
genes implicated in CSF production because of their selective
expression in the choroid plexus, their functional significance
in water and ion transport, and their demonstrated role in CSF
production in knockout mouse models [20-29]. However, we
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did not detect an association between common tagging SNPs
of AQP1 or SLC4A410 and POAG in this study.

In this study we focused on the potential role of genes
associated with CSF production in glaucoma. It is important
to note that AQPI is also expressed in the trabecular
meshwork and Schlemm’s canal cells located within the
conventional aqueous outflow tract of the eye [36], while
SLC4A410 is not [37]. AQPI is believed to improve cell
viability in the setting of mechanical strain, but the degree to
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which AQP1 contributes to bulk outflow in the conventional
outflow tract of the eye is uncertain [38-40].

It is known that AQP! and SLC4A410 are major
contributors to CSF production. Due to the functional
importance of AQP! and SLC4A410 in CSF production,
sequence variants within these two genes might be expected
to be more prevalent in NTG patients since both a
retrospective and a prospective study showed a trend of NTG
patients having lower CSF pressure than POAG subjects
[12,41]. Our Caucasian data set is composed primarily of
POAG subjects with high tension glaucoma, and only 15
subjects had NTG. Therefore, this study did not have
sufficient power to detect an association between AQPI or
SLC4A10 and an increased risk of NTG.

Our large sample size provided adequate statistical power
to detect a moderate or strong association between common
sequence variants of these two genes and an increased risk of
POAG in the Caucasian population. However, we cannot rule
out the presence of such an association in populations of
different ancestry. It is also possible that only rare sequence
variants in these genes, which our study was not designed to
detect, have an appreciable effect on CSF production and
pressure. Additionally, mutations identified in different
regions of AQP1 have been shown to reduce water and ion
transport function [42-43]. Targeted mutations, such as an
exon deletion in SLC4A10 knockout mice, resulted in an 88%
reduction in brain ventricle size from decreased CSF
production as compared to wild-type mice [28]. The effect of
knockout models of these genes on the optic nerve has not
been described to date. Further studies would be necessary to
identify naturally occurring mutations in 4AQP/ and
SLC4A10 that lead to decreased CSF pressure.

In conclusion, we did not find an association between
common sequence variants in AQP/ and SLC4A410 and high
tension POAG in our Caucasian data set. Further studies are
needed to determine if variants within these two genes are
associated with NTG only or if rare sequence variants with a
greater effect on CSF pressure may play a role in POAG in
populations of Caucasian or non-Caucasian origin.
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