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Abstract

Scientists have observed local field potential theta rhythms (3—-12 Hz) in the hippocampus for decades, but
understanding the mechanisms underlying their generation is complicated by their diversity in pharmacological
and frequency profiles. In addition, interactions with other brain structures and oscillatory drives to the hippocam-
pus during distinct brain states has made it difficult to identify hippocampus-specific properties directly involved
in theta generation. To overcome this, we develop cellular-based network models using a whole hippocampus in
vitro preparation that spontaneously generates theta rhythms. Building on theoretical and computational analy-
ses, we find that spike frequency adaptation and postinhibitory rebound constitute a basis for theta generation in
large, minimally connected CA1 pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV™)
inhibitory cells. Sparse firing of PYR cells and large excitatory currents onto PV™ cells are present as in
experiments. The particular theta frequency is more controlled by PYR-to-PV™ cell interactions rather than
PV*-to-PYR cell interactions. We identify two scenarios by which theta rhythms can emerge, and they can be
differentiated by the ratio of excitatory to inhibitory currents to PV* cells, but not to PYR cells. Only one of the
scenarios is consistent with data from the whole hippocampus preparation, which leads to the prediction that the
connection probability from PV* to PYR cells needs to be larger than from PYR to PV* cells. Our models can
serve as a platform on which to build and develop an understanding of in vivo theta generation.
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Brain rhythms have been linked to cognition and are disrupted in disease. This makes it essential to
understand mechanisms underlying their generation. Together with experiments, theory and mathematical
models help provide an understanding and contribute to a framework to dissect out the cellular contribu-
tions to network activity. However, models are inherently biological approximations, and thus the specific
experimental and theoretical context on which they are built will shape their output. If the approximations
and contexts are not taken into account, particularly when using previously constructed models, misinter-
pretations can arise. Here we develop microcircuit models that are mapped onto specific experiments,
allowing us to obtain essential balances for generation mechanisms of a dominant rhythm in the hippocam-

\pus: the theta rhythm. /
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Introduction

The goals of mathematical modeling in neuroscience
are many and varied. For any particular study, modeling
goals need to be clear, as they guide our decisions during
model development. Developed models can be used to
generate new hypotheses and investigate interactions
across different scales. In doing this, it is helpful to con-
sider what is meant by an explanation. Aristotle’s doctrine
of the four causes (Falcon, 2015)—material, formal, effi-
cient and final, as described and interpreted in Brette
(2013)—is useful. The efficient cause is what triggers the
phenomenon to be explained; the material cause refers to
the physical substrate of the phenomenon; the formal
cause is the specific pattern (“balance”) responsible for
the phenomenon; and the final cause is the function of the
phenomenon. Typically, as stated by Brette (2013), theo-
retical approaches tend to focus on formal and final
causes, and experimental approaches on material and
efficient causes. Although all four causes may be needed
to obtain a complete understanding, considering these
causes can serve to clarify modeling goals and guide
usage of developed models.

Electrical oscillations, as recorded in electroencephalo-
grams and local field potentials (LFPs), are hallmarks of
the brain that are linked to normal and pathologic func-
tioning (Buzsaki, 2006). Thus, it is essential to understand
the mechanisms underlying their generation. A large part
of the challenge in obtaining mechanisms underlying os-
cillation generation is the multiscale nature of the brain,
with its biological complexity and cellular specifics (Cohen
and Gulbinaite, 2014). Various building blocks have long
been known (Gjorgjieva et al., 2016), and it is clear that, for
example, postinhibitory rebound building blocks contrib-
ute to the generation of cortical oscillations (McCormick
et al.,, 2015). However, it is unclear if one can identify
essential building block combinations and balances that
underlie oscillation generation in the mammalian brain. In
the Aristotelian sense, we have some insight into efficient
causes (building blocks) for oscillation generation, but we
do not yet have formal cause explanations.
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Almost 80 years ago, Jung and Kornmuller discovered
theta (3-12 Hz) rhythms in the rabbit (Colgin, 2013). These
dominant rhythms are associated with memory process-
ing and spatial navigation, present when the animal is
actively exploring or during REM sleep. They can be
parsed into atropine-resistant or atropine-sensitive types,
with higher or lower theta frequencies, respectively (Buz-
saki, 2002; Colgin, 2013, 2016), and in vitro models of
theta rhythms have been developed (Gillies et al., 2002;
Traub et al., 2004). Further, low or high theta rhythms
were found to be elicited in rats with fearful or social
stimuli respectively (Tendler and Wagner, 2015). In the
human hippocampus, theta rhythms are linked to similar
behaviors (Lega et al., 2012), although it may be the case
that they are associated with a wider behavioral repertoire
relative to rodents, as they are present without sensory
input (Qasim and Jacobs, 2016). Theta rhythms are heav-
ily studied, but with multiple forms, pharmacological sen-
sitivities, and interactions between brain structures, it is
challenging to have a clear understanding of their gener-
ation.

To explain how theta rhythms are generated, we need
to have models that can be mapped onto experiments. As
discussed by Colgin (2013), it is traditionally thought that
the medial septum (MS) is critical for the generation of
theta rhythms, since they are disrupted when the MS
is lesioned or inactivated. Indeed, to understand theta
rhythms, many studies have explored, characterized, and
modeled the interactions between MS and hippocampus
(e.g., Brazhnik and Fox 1999; Wang 2002; Borhegyi et al.,
2004; Hajos et al., 2004; Kocsis and Li, 2004; Manseau
et al.,, 2008; Varga et al.,, 2008; Hangya et al., 2009).
However, the hippocampus can exhibit theta rhythms
without the MS (Goutagny et al., 2009). Further, distinct
inhibitory cell populations, such as parvalbumin-positive
(PV™) cells, fire at unique phases of the theta rhythm and
play important roles in their generation (Varga et al., 2014;
Amilhon et al., 2015). Ultimately, to understand the varied
functional roles of these dominant rhythms and how they
are modulated and controlled, we need to include cellular
aspects and be clear about the particular form of theta.
From a mathematical modeling perspective, this reduces
to deciding what “parameters, parameters, parameters”
(Skinner, 2012) and values to use and how to represent
the biological system, given that any mathematical model
is an approximation of the biology.

In this article, we develop microcircuit models that are
mapped to an in vitro whole hippocampus preparation
that spontaneously expresses theta rhythms. We take
advantage of theoretical insights and the ability to readily
do thousands of network simulations with our developed
mathematical models. We present an explanation for in-
trinsic CA1 theta generation that has elements of efficient,
material, and formal causes. It involves building blocks of
spike frequency adaptation and postinhibitory rebound in
large pyramidal cell populations coupled with fast-firing
PV* cells, in which there is a larger connection probability
from PV* to pyramidal cells relative to the other way.
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Figure 1. Overall strategy. The three schematic parts (left, right, lower) of theory, simulation, and experiment/mathematical model
development are bidirectionally linked by arrows. Theory refers to mean field theory that was used to constrain the parameter sets
to examine in simulations, using cellular models derived from experiment. Simulation refers to the computation of thousands of
network simulations done. Experiment/mathematical model development refers to the cellular, Izhikevich-type models that were
developed in the experimental context of the whole hippocampus preparation. In the middle is a schematic of the whole hippocampus
preparation with an added blue square to illustrate the piece of tissue from the CA1 region of the hippocampus that is being modeled.
The hippocampus schematic is adapted from Fig. 1 of Huh et al. (2016). Orange arrows are links in the present work and black arrows,
in previous work. Dashed orange arrow from theory to experiment is because it is indirect, as theory previously contributed to

simulation.

Materials and Methods

Here we summarize our overall strategy, the experi-
mental context of the whole hippocampus preparation,
and our mathematical models and analyses. We also
describe previous and motivating modeling work that the
results are built on.

Overall strategy

Our goal is to develop experimentally motivated micro-
circuit models of a hippocampal CA1 network to provide
insight into the mechanisms underlying theta rhythm gen-
eration. Our approach is shown in the schematic of Fig. 1,
where orange and black arrows refer to links in the pres-
ent or previous work, respectively.

Cellular mathematical models of excitatory and inhibi-
tory cells based on whole-cell patch clamp recordings
from the whole hippocampus preparation were previously
developed (Ferguson et al., 2013, 2015b). These cellular
models were used to generate either excitatory (Ferguson
et al., 2015a) or inhibitory (Ferguson et al., 2013) network
models with sizes and connectivities as appropriate for
the experimental context. A mean field theory (MFT) ap-
proach was taken advantage of to determine parameter
regimes in the excitatory networks (Ferguson et al,
2015a).

In the present work, we combine these excitatory and
inhibitory networks and perform a detailed computational
analysis of this network. We investigate the dynamic in-
terplay between these two cell populations and their roles
in theta generation. Further theoretical analyses are re-
quired to fully understand the network dynamics. Overall,
our strategy combines experiment, model development,
simulation and theory. Our models bring together network
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size, connectivity, and cellular characteristics in a closed
fashion given the experimental context.

Experimental context

In 2009, Goutagny et al. (2009) developed an in vitro
whole hippocampus rodent preparation that spontane-
ously generates theta (3-12 Hz) rhythms in the CA1 re-
gion. By blocking transmission across the septo-temporal
axis, they identified multiple theta oscillators in the hip-
pocampus (see Supplementary Fig. 11 in Goutagny et al.
[2009)). Further, the presence of these theta oscillations
was not dependent on the CA3 region (see Supplemen-
tary Fig.10 in Goutagny et al. [2009]) and required GABA,
and AMPA receptors (see Supplementary Table 1 in Gout-
agny et al. [2009]). Given this, we estimate that the mini-
mum circuitry required for CA1 theta rhythms is contained
in ~1 mm?®. Using known cell densities and approximate
volumes of axonal innervation (West et al., 1991; Aika
et al.,, 1994; Sik et al., 1995; Jinno and Kosaka, 2006;
Hosseini-Sharifabad and Nyengaard, 2007), we approxi-
mate that 30,000 excitatory pyramidal (PYR) cells and 500
PV~ cells are involved in the spontaneous generation of
theta rhythms in the CA1 region of the hippocampus. This
size estimate is thoroughly described in previous model-
ing work (Ferguson et al., 2013, 2015a).

Subsequent work by Amilhon et al. (2015) indicates that
networks of PV" and PYR cells could encompass the
basic (minimal) units required for theta rhythm generation
in the whole hippocampus preparation. This is because
optogenetically silencing PV" cells eliminates the theta
rhythm, whereas silencing somatostatin-positive inhibi-
tory cells does not. Further, it is the case that PV™" cells
receive large excitatory postsynaptic currents (EPSCs)
relative to PYR cells during ongoing theta rhythms. Also,
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simultaneous recordings from PV™ or PYR cells with ex-
tracellular field recording of the theta rhythm indicates
that the majority of PV* cells fire phasically with the
rhythm, whereas PYR cells fire sparsely (Huh et al., 2016).
We estimate that 20% or less of the PYR cells are firing,
based on Huh et al. (2016). Given that PV™ cells receive
large EPSCs and that PYR cells fire sparsely, ongoing
theta rhythms must necessarily be dependent on a large
network effect.

During the ongoing theta rhythm, EPSCs in PYR cells
are very small and variable (estimated to be <20 pA),
whereas the inhibitory postsynaptic currents (IPSCs) to
the PYR cells are larger (estimated to be ~200 pA). Con-
versely, the PV™ cells receive very large EPSCs (estimated
to be up to 1000 pA) and smaller IPSCs (~200 pA). These
estimates are based on whole-cell current recordings
from Huh et al. (2016). Given these estimates, EPSC/IPSC
ratios for PYR cells are <1, and EPSC/IPSC ratios for PV™"
cells are >1.

Overall, we aim to determine the conditions under
which our network models can produce population bursts
at theta (3-12 Hz) frequency, given that there is sparse
firing of excitatory PYR cells and non-sparse firing of
inhibitory PV* cells, and particular excitatory/inhibitory
balances (Huh et al., 2016).

Mathematical models
Cell model

Previously developed cellular models are based on ex-
perimental data from the in vitro whole hippocampus
preparation (Ferguson et al., 2013, 2015b). They use the
mathematical model structure developed by Izhikevich
(2006, 2010), in which the subthreshold behavior and the
upstroke of the action potential is captured and a reset
mechanism to represent the spike’s fast downstroke is
used. Despite being relatively simple, parameter choices
can be made such that they have a well-defined (albeit
limited) relationship to the electrophysiological record-
ings. The structure has a fast variable representing the
membrane potential, V (mV), and a variable for the slow
“recovery” current, u (pA). We used a slight modification
to be able to reproduce the spike width. The model is
given by

CmV = k(V — r)(V - Vt) —u+ Ishift + lother - /syn
u=ab\V -yv)—u]

ifV =V, thenV «—c, u<—u + d

where k = Koy iV = v, k = Kygy it V > v,

M

where C,, (pF) is the membrane capacitance, v, (mV) is the
resting membrane potential, v, (mV) is the instantaneous
threshold potential, v, (MV) is the spike cutoff value,
Isnire (PA) is a current that shifts the f—I curve laterally to
allow the model to easily capture the rheobase current (for
the strongly/weakly adapting models, rheobase current is
~0/5 pA, respectively), I, (PA) represents the synaptic
input from the presynaptic cell population (further details
below), I e (PA) is an (excitatory) current drive to the
network that is not directly modeled through I, (further
details below), a (ms™) is the recovery time constant of
the adaptation current, b (nS) describes the sensitivity of
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Table 1. Cell model parameters

PYR cell PV~ cell
Parameter Weakly adapting Strongly adapting
v, (mV) -61.8 -61.8 -60.6
v, (MV) -57.0 -57.0 -43.1
Vpeak (MV) 22.6 22.6 2.5
a (ms™) 0.00008 0.0012 0.1
b (nS) 3 3 -0.1
c (mV) -65.8 -65.8 -67
d (pA) 5 10 0.1
Kiow (NS/MV) 0.5 0.1 1.7
Kpign (nS/mMV) 3.3 3.3 14
C., (PF) 300 115 90
Ishite (PA) -45 0 0

the adaptation current to subthreshold fluctuations
(greater values couple V and u more strongly, resulting in
possible subthreshold oscillations and low-threshold
spiking dynamics), ¢ (mV) is the voltage reset value, d (pA)
is the total amount of outward minus inward currents
activated during the spike and affecting the after-spike
behavior, and k (nS/mV) represents a scaling factor. Pa-
rameter values for the cell models (strongly and weakly
adapting PYR and PV~ cell models) are given in Table 1.

Synaptic model
Synaptic input is modeled through a chemical synapse
represented by

/syn =g X S(V - Erev) ’ (2)

where g (nS) is the maximal synaptic conductance of the
synapse from a presynaptic neuron to the postsynaptic
neuron, E,., (mV) is the reversal potential of the synapse,
and V (mV) is the membrane potential of the postsynaptic
cell. The gating variable, s, represents the fraction of open
synaptic channels and is given by first-order kinetics
(Destexhe et al.,, 1994; Ermentrout and Terman 2010,
p.159):

$ = alTIA — s) — Bs. @)

The parameters « (in mM'ms™) and B (in ms™) in Eq.
3 are related to the inverse of the rise and decay time
constants (tz and 15 in ms). [T] represents the concentra-
tion of transmitter released by a presynaptic spike. Sup-
pose that the time of a spike is t = t, and [T] is given by
a square pulse of height 1 mM lasting for 1 ms (until t,).
Then, we can represent

st —t) =s,. + (s(ty) — s )el -t/ t, <t <t

where

« _ 1
and Ts—a+B.

S.
a +

@

After the pulse of transmitter has gone, s(t) decays as

s(t) = s(t,)e A1), (6)

Network models
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Figure 2. Network schematics. Left: Excitatory PYR cell networks. The large circle with PYR represents a population of individual PYR
cells, and the black triangles represent excitatory connections. Middle: Inhibitory, fast-firing cell networks. The large circle with PV*
represents a population of individual inhibitory, fast-firing PV* cells, and the black circles represent inhibitory connections. The
connections are schematized so that there is clearly not all-to-all coupling. “Other” input is either deterministic or noisy, excitatory
synaptic input. Right: Excitatory-inhibitory cell networks. PYR and PV* cell populations combined to create networks of 10,500 cells.
However, now the excitatory input to PV* cells comes directly from the PYR cell network.

Excitatory, inhibitory, and excitatory-inhibitory network
models are illustrated in Fig. 2 for PYR cell networks (top),
PV* cell networks (middle), and PYR-PV* cell networks
(bottom). Networks have either deterministic or noisy
“other” input. If deterministic, then I,,,., is a constant,
tonic input to individual cells in the network, where I .., is
chosen from a normal distribution with mean /,,,, (pA) and
SD Tapp (pA) If noisy, then Iother = = ge(t)(v - Erev)- ge(t) is
a stochastic process similar to the Ornstein-Uhlenbeck
process as used by Destexhe et al. (2001):

202

e

da 1,
at - T_e(QE(t) ge,mean) +

Xe(t) 5 6)

Te

where x.(f) is an independent Gaussian white noise pro-
cess of unit SD and zero mean, g, nean (NS) is the average
conductance, o, (nS) is the noise SD value, and 7, is the
time constant for excitatory synapses. 7, is fixed based on
values as used in Destexhe et al.. (2001) (1, = 2.73 ms).

Network model parameters, rationale

Random connectivity was used throughout, and the
probability of connection is given in Table 2, where it is
fixed for PYR or PV* cell networks, as estimated in pre-
vious work. Network sizes and synaptic time constants
are given in Table 2. Time constant values are taken from
Papp (2013) for PYR-PV, Spruston et al. (1995) for PYR-
PYR, and Bartos et al. (2002) for PV-PV and PV-PYR

Table 2. Network model parameters

Synaptic time
constants

Number of Probability Rise time Decay time

Parameter cells of connection (ms) (ms)
PV* cells 500

PV-PV 0.12 0.27 1.7
PV-PYR 0.01 -1 0.3 3.5
PYR cells 10,000

PYR-PV 0.01 -1 0.37 2.1
PYR-PYR 0.01 0.5 3

Connectivity between PV* and PYR cells was not fixed, but ranged in val-
ues as indicated. A resolution of 0.01 was used from 0 to 0.1, and 0.1
upward.
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connections. Excitatory and inhibitory reversal potentials
E.,.. and E;,, as derived from the experimental context are
-15 and -85 mV, respectively (Huh et al., 2016).

PYR cell networks

Gy (NS) is the maximal excitatory (AMPA) synaptic
conductance between PYR cells. Parameter explorations
for deterministic networks included: /,,, (pPA) = [0, 5,
10,. .., 75,80] and a,,, (PA) = [0, 5, 10, 15, 20]. Parameter
explorations for noisy networks included: ge mean (NS) =
[0,1,2] (mainly, but values up to 10 explored) and o, (nS) =
[0,0.2,0.4,0.6]. g,,,, (NS) = [0.014, 0.024, 0.034,. . ., 0.084,
0.094] was used in both deterministic and noisy networks.

PYR-PV™* cell networks

A full exploration was done for connectivity between
PV™ and PYR cell networks (Table 2). We use cp,, pyr and
Cpyr py to refer to the probability of connection from PV™*
to PYR cells or from PYR to PV cells, respectively. g,,, is
the maximal inhibitory synaptic conductance between
PV~ cells, and a parameter value of 3 nS was used based
on our previous PV cell network modeling (Ferguson
et al., 2013).

Deterministic networks Full connectivity explorations
were done for chosen parameter sets: [g,,. app:Tapp] =
[0.014, O, 0], [0.014, 0O, 10], [0.024, 30, 0], [0.054, 5, 5],
[0.054, 20, 20], and [0.074, 75, 15]. g,,p, (NS) is the
maximal inhibitory synaptic conductance on PYR cells
from PV™ cells. It was fixed at 8.7 nS, as approximated
from IPSCs in Bartos et al. (2002), for most of the simu-
lations. g,,.,, (NS) is the maximal excitatory synaptic
conductance on PV~ cells from PYR cells. A value of 1 nS
was used for most of the simulations, as estimated from
Papp (2013).

Noisy networks Full connectivity explorations were
done for g mean (NS) = [0, 1, 2], o, (NS) = [0, 0.2, 0.4, 0.6]
with g,,,, = 0.014 nS, all g,,, values given above, and o, =
[0, 0.2, 0.4, 0.6] With gg mean = 0 NS. gy = 8.7 NS Was
used, but additional simulations using values of [6, 6.5,
7..., 11.5, 12] were done for two parameter sets with
ge,mean =0 nS; [Ue! gpyr! CPYR,PV’ cP\/,PYFs’] = [02v 0084v
0.4, 0.5] and [0.6, 0.014, 0.02, 0.3]. Similarly, gpyrp, = 3
nS was used and scaled for network size (see below).
Additional simulations were done for g, values of [0.5,
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1,1.5,2,. .., 5.5, 6] for the chosen parameter sets. Over-
all, close to 6000 simulations were performed.

Analyses

For each network simulation, we defined the population
activity as the average membrane potential of all model
cells. Then, using the fast Fourier transform (fft), the net-
work frequency (f,e.« in Hz) is defined as the frequency at
which there is a spectral peak in the overall population
activity. In this analysis, we disregard the initial transient
activity (500 ms).

We defined a population burst based on the distribution
of spikes of the PYR cell network. To do so, the total
number of spikes within a small bin width were summed,
where the bin width was dependent on the average
peak frequency: bin width = int(p, X round{[(p, X exp
( ~ P3 X fpeak + p4) + ps]/p1})1 where p1= 27 P2 = 202647
ps; = 0.2656, p, = 2.9288, and ps; = 5.7907, such that for
peak frequencies ranging from 7., = 3-12 Hz, the bin
width ranged from ~23 to 7 ms. In this way, the bin would
be smaller for higher frequencies. Then, the total number
of spikes per bin width was normalized to its maximum
(excluding transient activity within the first 500 ms) so that
networks with significantly different levels of activity could
be compared. A moving threshold capturing approxi-
mately five cycles was set to be the mean + 0.35 SDs of
the local normalized distribution. Then, the burst was
determined to be the midway point between the increase
past threshold and the previous decrease past the thresh-
old (with the requirement that these points are at least
1/(frear X 2.5) ms apart). If the difference between the
peak to trough of the burst is <0.2, it is no longer con-
sidered to be a burst. A population burst is considered to
be more robust if the power of the fft is larger or the
normalized size of the PYR cell spike distribution is larger.
We note that if the population burst is reasonably robust,
then the burst frequency as determined from the fft is
essentially the same as the inverse of the burst width.

We automated the categorization of our network output
for the different parameter sets explored. Specifically,
nonfiring cases were considered when there were <300
spikes per burst bin. If network burst frequencies were
within theta frequency ranges, they were further examined
to determine their stability. Bursts were considered to be
stable if there were at least two occurrences of two con-
secutive amplitudes decreasing by >79%. For each
burst, we determined the burst width, the number of cells
that fired in the burst, and the total number of spikes in the
burst. In this way, we can not only track these properties
for the network as a whole, but also determine how they
change over time. This analysis was based on custom
code written in Matlab.

For each simulation, we recorded EPSCs and IPSCs
from 100 PYR and 50 PV cells and chose a subset to
analyze. Specifically, we used peakfinder in Matlab and
ignored any peaks that were below a value thresholded at
an order of magnitude less than the main peaks. The first
second was not included in the calculations. We com-
puted averages and SDs of 3 PV* and 5 PYR cells and
rounded them to give the reported values.
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Simulations were run using the Brian simulator (Good-
man and Brette, 2009) on the GPC supercomputer at the
SciNet High Performance Computing Consortium (Loken
et al., 2010). The initial conditions of our membrane po-
tentials (V) were chosen to be uniform random values from
-55 to —65 mV. We used the forward Euler method for
integration with a time step of 0.02 ms. PYR cell networks
were simulated for 10 s, whereas PYR-PV™* cell networks
were simulated for 4 s. For noisy simulations, simulations
were done with second-order explicit Runge-Kutta nu-
merical integration, with a time step of 0.04 ms. A subset
of these simulations was also run with the forward Euler
method and compared.

Motivating modeling studies
Excitatory (PYR cell) networks, deterministic

In previous work, it was considered whether CA1 PYR
cell networks on their own could generate theta rhythms
(Ferguson et al., 2015a) or, more specifically, given CA1
PYR cell intrinsic properties, connectivity, and cell num-
bers, can one obtain theta frequency (3-12 Hz) population
bursting as observed in the experimental context? This
was directly addressed in Ferguson et al. (2015a). Individ-
ual PYR cell models were based on whole cell recordings
from the whole hippocampus preparation (Ferguson et al.,
2015b). Cells exhibited either weak or strong adaptation
(determined by how much their frequency changed over
the course of a 1 second long input), and postinhibitory
rebound (spiking after being released from a hyperpolar-
izing current), and these models captured these proper-
ties. These PYR cell models were connected in a network
(see left schematic of Fig. 2 and model details above) and
MFT was used to find parameter regimes in which the
network exhibited theta frequency population bursts (Fer-
guson et al., 2015a). Due to a scaling relationship between
cell number, connection probability, and g,,, from the
MFT, one can use 10,000, rather than 30,000, PYR cells in
the network simulations.

Stable theta frequency population bursts emerged from
these PYR cell network models without a phasic drive.
Similar to what was predicted from the MFT simulations,
larger mean excitatory drive, /,,,, was required to obtain
theta frequency bursts as the SD of the drive, o, in-
creased (Ferguson et al., 2015a). Burst frequencies were
determined by three factors: the mean excitatory drive,
lpp (Which increases the burst frequency as it increases);
the recurrent synaptic strength, g, (which decreases
burst frequency as it increases); and the SD of the excit-
atory drive across the cells, o,,, (Which increased fre-
quencies as it increased) (Ferguson et al., 2015a;
Ferguson, 2015).

From the parameter sets explored, network output was
automatically categorized (see specifics in above sec-
tions) such that nonfiring, stable theta frequency bursts,
unstable bursts, or other groupings were apparent. In Fig.
3, we show three example outputs, one of which exhibits
theta rhythms (bottom), another unstable bursts (top), and
the third asynchronous behavior (middle). In the theta
bursting parameter regimes, we analyzed our networks to
determine how many PYR cells were firing (i.e., active)
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Figure 3. Deterministic excitatory PYR cell networks. Three examples are shown of raster plots and normalized spike distributions,
one of which shows a theta frequency population burst. The spike distributions are used to determine the burst bins, and the red
symbols represent the separation of the bins. [, and “other” input parameter values: I, = 5 pA, g,,,, = 0.054 nS, o,,, = 5 pA (top:
unstable bursts); /,,, = 0 pA, g,,,, = 0.014 nS, /., = 10 pA (middle: no bursts); /,,, = 30 pA, g, = 0.024 nS, /I, = 0 pA (bottom:
3.1 Hz rhythm).
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Table 3. PYR cell networks: numbers of active, firing cells in population bursts

Parameter

Deterministic networks gy, (NS) /5, (PA), 4pp (PA)
[0.064, 65, 0]
[0.024, 10, 5]
[0.054, 10, 10]
[0.014, 10, 15]
[0.014, 10, 20]
Noisy networks gy, (NS) ge mean (NS), 5 (NS)
[0.014, 1, 0.6]
[0.024, 1, 0.6]
[0.034, 2, 0.6]
[0.054, 2, 0.4]
[0.074, 2, O]

Average number of active cells Burst frequency (Hz)
(/10,000) per population burst (estimated from fft)
9703 6.8

5541 1.4

4929 2.0

5075 1.2

5085 1.1

5992 5.2

6173 5.2

6115 9.4

6757 9.4

6848 9.1

Example cases shown for each value of SD o, where there was the least number of active cells (deterministic networks), and for the five cases where there

were the least number of active cells (noisy networks).

during the population bursts. We found that >90% of
PYR cells are active when theta rhythms are present. In
Table 3, we show the minimal number of active PYR cells
for each o,,, value. Except for o,,, = 0, these minimal
cases all have frequencies that are below theta but ~50%
of their 10,000 PYR cells are still active. Also, the number
of active PYR cells during bursts increased with increas-
ing /.5, @nd also with increasing g,,,,- These observations
are from simulations that were performed using strongly
adapting PYR cell models. Weakly adapting PYR cell
models were also used, but specifics are not shown; it is
already known from previous MFT studies that more input
drive is required to achieve theta frequency population
bursts with the reduced cellular adaptation (Ferguson
et al., 2015a).

Thus, these model outputs suggested that an appropri-
ate balance between spike frequency adaptation and ex-
citatory connectivity in CA1 PYR cell networks could
provide an essential mechanism for theta population
bursts. However, the majority of PYR cells in the models
were active during the population bursts, which is not
consistent with experiment. This led us to consider how
inhibitory cells may contribute to burst dynamics.

Excitatory-inhibitory (PYR-PV™" cell) networks, deterministic

To build networks with both excitatory and inhibitory
cells, we first took advantage of previous work in which
cellular models for PV* fast-spiking cells were developed
based on experimental recordings from the whole hip-
pocampus preparation (Ferguson et al., 2013). Given this
work, estimates of EPSCs onto PV™ cells of ~1000 pA,
and that we want PV™ cells to fire coherent bursts, we set
g,v = 3 nS (Ferguson et al., 2013; Skinner and Ferguson
2013).

Next, rather than setting the excitatory drive to PV™" cell
network as deterministic “other” input as has been done
previously in Ferguson et al., (2013) (see middle sche-
matic of Fig. 2), we created networks in which the excit-
atory drive comes directly from the 10,000 PYR cell
network. This is shown in the right schematic of Fig. 2.
Because our model is designed to explore oscillatory
activity intrinsic to the CA1 region of the hippocampus,
input from other regions is not specifically included. We

July/August 2017, 4(4) e0131-17.2017

chose example PYR cell networks with distinct firing pat-
terns (nonfiring, stable bursts, etc.) and explored how the
connectivity between PYR cells and PV™* cells affects
network activity (Ferguson, 2015). This limited set of
deterministic, excitatory-inhibitory network simulations
provided a motivating basis for the expanded set of sim-
ulations presented in Results.

In PYR cell networks that exhibit stable bursts, introducing
PV* cells does not ensure that the bursts are maintained,
but instead requires that the connection probability from
PV* to PYR cells (cpy pyr) SUrpasses a critical value. This
critical connectivity value depended on the PYR-PV* con-
nection probability (Cpyrpy), as it could not be drastically
lower than this critical value. Interestingly, if stable bursts are
maintained, the frequency of the population bursts is always
higher in the PYR-PV™* cell networks relative to the PYR cell
networks alone. We note that for each set of simulations, we
did not alter the excitatory drive to the PYR cells, and thus
the cells did not increase their firing owing to an external
change in the amount of excitation. Rather, this increased
burst frequency is due to the postinhibitory rebound spiking
of the PYR cells as a response to the inhibitory input from the
PV* cells.

Alternatively, if the original PYR cell networks were unsta-
ble or nonfiring, stable population bursts in the theta fre-
guency range could emerge with the inclusion of the PV™
cell population. In all cases, and in contrast with our PYR cell
networks, it was possible to simultaneously obtain theta
frequency population bursts and sparse firing of the PYR
cells. These observations are illustrated in Fig. 4. Thus, even
when oscillations did not exist or were not stable in the PYR
cell networks, the influence of PV* cells could lead to stable
network rhythm generation and sparse firing. However, this
depended on an appropriate balance of connection proba-
bilities between the two populations.

Overall, we found that PYR cell networks could exhibit
coherent firing at various frequencies (=~0.5-6 Hz), but
when theta frequencies were produced, essentially all
PYR cells were recruited to fire in every cycle, a behavior
that is not consistent with what is seen in the experimental
setting, where PYR cells sparsely fire. However, the inclu-
sion of PV™ cells allowed sparse firing to emerge while
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Figure 4. Deterministic excitatory-inhibitory PYR-PV™ cell networks. Examples of population burst stabilization, sparse excitatory
firing, and network frequency increase are shown. PYR cell networks are shown on the left (same examples from Fig. 3). PYR-PV™
cell networks are shown on the right with connectivity parameters Cpyg py. Cpy pyr Of (0.05,0.2) and (0.01, 0.2) for top and bottom,
respectively. Inset shows that PYR cells firing is <20%. The population burst frequency increases from 3.1 to 6.7 Hz (bottom).

maintaining theta bursts, but of increased frequency, or
generating theta bursts. Because we did not change ex-
citation in any other way, a key contributor to this is
postinhibitory rebound firing. Thus, population bursts at
theta frequency in the PYR-PV™ cell networks with sparse
firing depend on a number of factors, including the
amount of input that the cells receive at any given point in
time. As such, the precise connection probabilities in the
models is not the essence, but rather the relative balance
between excitation and inhibition. More complete explo-
ration and analyses are needed to untangle this.

Results

We use network models that are minimal but at the
same time are constrained by experiment. In this way, we
reduce the uncertainty in choices for parameters and
parameter values. Detailed reasoning and rationale for our
choices are provided in Materials and Methods. We ex-
amine whether it is possible to capture the experimental
observations, and if so, what are the underlying mecha-
nisms that allow this? To start to address this, we have
presented previous work and motivating modeling simu-
lations using deterministic networks. Although limited,
these simulations showed that there is an intricate tan-
gling of cellular properties and excitatory and inhibitory
balances that underlie the generation of theta population
bursts with sparse PYR cell firing in the whole hippocam-
pus preparation. That is, there are many interconnected
factors. We thus performed an expanded set of simula-
tions using more biologically realistic input to obtain in-
sight into possible underlying mechanisms.

July/August 2017, 4(4) e0131-17.2017

Noisy networks
Excitatory PYR cell networks

We performed simulations with noisy, excitatory input.
That is, “other” input in Fig. 2 is given by a stochastic
rather than a deterministic process (see Materials and
Methods). Because we know that PYR cells do not re-
ceive large EPSCs during the endogenous theta rhythm
(Huh et al., 2016), we can focus on small mean excitatory
conductances. That is, an EPSC of 20 pA into a PYR cell
would give an excitatory conductance estimate of <1 nS,
given excitatory reversal potential and resting voltage
values. Given this, and that PYR cell recurrent connectiv-
ity is minimal, we consider excitatory drive (ge mean) Values
of 0—2 nS to fully encompass the biological situation in the
whole hippocampus preparation.

As would be expected, the patterns in these noisy net-
works are more variable than the deterministic PYR cell
network simulations. However, similar to the deterministic
simulations, burst frequency increased with increasing ex-
citatory drive (ge mean) @nd decreased with increasing recur-
rent synaptic strength (g,,,). There were no theta frequency
bursts for ge ,ean = 0, but for larger excitatory drives (ge mean
= 1 or 2), there were theta frequency population bursts
except for one case that was outside of the theta frequency
range: gp,r = 0.094 nS, g mean = 1, 0o = 0.6. Example
output is shown in Fig. 5 with (bottom) or without (top)
population bursts. Also shown in Fig. 5 is the PYR cell spike
distribution that was used to determine whether bursts were
present (see Materials and Methods).

The number of active PYR cells always exceeded 50%.
Table 3 provides details of the five networks with the most
sparse PYR cell firing. For weakly adapting cells, no theta
rhythms were obtained for g, ,eo, = 0 Or 1 but could emerge

eNeuro.org
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Figure 5. Noisy excitatory PYR cell networks. Two examples in which theta rhythms (population bursts) are either present (bottom)
or not (top). On the left is the raster plot, and on the right is the normalized spike distribution. Red stars delineate the automatic
detection of separate bursts. Parameter values: gq mean = 0, 9,y = 0.074, 0, = 0.2 (top row: no theta rhythm); ge mean = 1, Gpyr =

0.074, o, = 0.2 (bottom row: 4.4 Hz rhythm).

for larger input values. Because this would be beyond
EPSCs values observed in experiments, we did not do fur-
ther detailed explorations using weakly adapting cells. Thus,
similar to the deterministic PYR cell network simulations,
theta population bursts are present but never with sparse
firing of PYR cells in more realistic, noisy PYR cell networks.

July/August 2017, 4(4) e0131-17.2017

Excitatory-inhibitory PYR-PV™ cell networks

A full exploration of connectivities (Cpy pyr and Cpyg py)
with g, = 0.014 and g, mean = 0, 1, and 2 nS was done.
We first note that, similar to the deterministic simulations,
theta bursts could be present in PYR-PV™ cell networks
even if PYR cell networks did not have any population
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Figure 6. Noisy PYR to PYR-PV™" cell network transition. From one of the PYR cell network examples in Fig. 5 where there are no theta
bursts, two examples with different connectivities of PYR-PV* cell networks are shown in which theta population burst rhythms
emerge. Connectivity parameters cpyg sy, Cpypyr Of (0.2, 0.5) and (0.02, 0.5) for top and bottom, respectively on the right. Other
parameter values: g, (NS), ge mean (NS), Yoyr-pv (NS), Gpy-pyr (NS) = [0.074, 0, 0.2, 3, 8.7].

bursts. An example of this is shown in Fig. 6. A summary
of the burst frequencies is shown in the top part of Fig. 7
for two excitatory drives (e mean = 0 @and 1 nS). Theta
frequency bursts encompass colors that range from light
blue to orange. Given this, it is clear that PYR-PV™ cell
networks with ge mean = 1 NS had burst frequencies that
exceeded theta, except for when o, = 0 nS, meaning
noiseless networks. For g ;mean = 2 NS, the burst frequen-
cies far exceeded theta frequencies (not shown). Also,
since larger g, values result in an increased burst fre-
quency (see Fig. 8, right), it did not make sense to do
additional simulations with gg 62, = 1 0r 2 nS. This thus
led to a focus on simulations with g, nes, = 0 NS. The full
range of g,, values were simulated along with explora-
tions of PYR to PV* and PV* to PYR cell conductance
values (see Materials and Methods).

From a computational analysis that consisted of several
thousands of simulations, we were able to obtain a lay of
the land in terms of required parameter balances for theta
rhythms to occur, as well as their characteristics. This is
schematized in the bottom of Fig. 7, where the connec-
tivity ranges that refer to the summarized plots above are
indicated by the blue ellipse. As can be seen, they are
summarized only for smaller cpyg o, Values. However, as
Cpyrpv iNCreases, the burst frequency increases further
(not shown). As noticed in the motivating deterministic
simulations, and similarly here for the noisy runs, if cp, pyg
is too small, theta bursts are not present. That is, there
needs to be enough connectivity from PV* to PYR cells to

July/August 2017, 4(4) e0131-17.2017

have postinhibitory rebound firing of an appropriate
amount in PYR cells for theta bursts to occur. An example
of how theta bursts are lost (when cpyg py is also small) is
shown in Fig. 8, left.

An essence of theta rhythm generation and
experimental data matching

From our noisy and motivating deterministic simula-
tions, we are able to distinguish two scenarios, A and B,
by which theta rhythms occur. It is because of the wide
swaths of simulations and analyses of them that we are
able to identify these different scenarios as shown in Fig.
7. As schematized, the transition between scenarios is not
meant to be literal but illustrative, to consider the several
other parameters that would affect the exact transitions.
The difference between these two scenarios lies in how
active the PYR and PV™ cell populations are, which in turn
affects the EPSCs and IPSCs received by them.

So how do theta frequency bursts emerge in PYR-PV*
cell networks? We first point out that ge mesn, = 0 NS with
nonzero o, is the appropriate “other” input to use to have
theta frequency population bursts. This is because of
results from PYR cell networks and knowledge of EPSC
values to PYR cells in experiments. Also, as noted above,
if Cpypyr is Not large enough, there will be no theta
rhythms (Fig. 8, left). This immediately indicates the im-
portance of postinhibitory rebound spiking in PYR cells to
generate theta bursts. However, while cp, pyr Cannot be
zero (since this would mean that PV* cells are not cou-
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Scenarios A and B are differentiated by their EPSC/IPSC ratios to PV* cells, as given in magenta text.

pled to PYR cells and one would have PYR cell network
output, which we know has no theta bursts for ge mean =
0), the exact nonzero value needed for theta bursts to
emerge also depends on Cpyg py. The example shown in
Fig. 8 (left) is for a small value of cpyg p, and the PV cells
are not able to fire much or coherently. If ¢, pyg is de-
creased beyond a critical value, the PYR-PV™ cell net-
works do not generate theta frequency bursts, as the PYR
cells do not exhibit enough postinhibitory rebound to
enable robust burst firing in the theta range. The model
results are consistent with previous experimental findings
from Goutagny et al., (2009), suggesting the importance
of postinhibitory rebound firing in the generation of theta
rhythms. Once one is within parameter balance regimes
with robust theta frequency bursts, the frequency in-
creases with increasing cpyg s, and less so for increasing
Cpy.pyr, @s determined from an overall examination of the
simulations. This observation is particularly apparent in
the upper summary plot of Fig. 7 (ge mean = 0 and o, =

July/August 2017, 4(4) e0131-17.2017

0.6). We illustrate this with a slanted box (burst frequency
increases) in the schematic of Fig. 7. The changing burst
frequency can be seen if g, rather than ceygpy is
modified, as shown in Fig. 9.

The particular parameter balances that allow the gen-
eration of theta population bursts affect not only the
specific frequency of the population burst but also how
robust it is, that is, how easily discernible it is (see Mate-
rials and Methods). This interdependence of cellular and
synaptic properties affects how much the PYR and PV*
cell populations fire. It is clear that the addition of the PV*
cell population is what allows the PYR cell population to
fire sparsely. However, how sparse the firing of PYR and
PV~ cells are depends on where the parameter balance
lies. From our simulations, we observe that as Cpygpy
decreases, the firing of PV* cells becomes more sparse
and PYR cells become less sparse within a theta popu-
lation burst. This is illustrated by the box in the Fig. 7
bottom schematic. It makes sense that PV* cells would

eNeuro.org
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Figure 8. PYR-PV™ cell networks, parameter variations. Left: Example raster plots for decreasing cpy, pys. TWO examples are shown, with
the cpy, pyg Value shown in red along with the network frequency as appropriate. The average number of cells firing per burst are 548 (PYR
cells) and 22 (PV™" cells) for Cpy oy = 0.3. Other parameter values: g,,,,» 9e mean Ipyr-pv+ Jpv-pyr Crva,pv = [0.014, 0, 0.6, 3, 8.7, 0.02]. Right:
Example raster plots for changing g,,- Two examples are shown, with the g,,, value shown in red along with the network frequency. The
first, top example is the same as the one on its left. The average number of cells firing per burst are 514 (PYR cells) and 34 (PV* cells) for
Gpyr = 0.094 nS. Other parameter values: ge means Tes Ipyr-pvs pv-pyr Crvr,pvr Crvpvr = [0, 0.6, 3, 8.7, 0.02, 0.3].

fire less, as they are receiving less excitatory drive with a
reduced cpyg o, However, that PYR cells would fire less
sparsely when the PV™" cells are firing less indicates that
how much the PYR cells fire is not only dependent on
postinhibitory rebound firing. There are clearly different
balances going on. It is these different balances as
brought forth from our thousands of simulations and anal-
yses that allowed us realize that one could distinguish two
scenarios by which theta rhythms emerge. Specifically, in
scenario A, the PV™ cells fire less sparsely and the PYR
cells fire more sparsely than in scenario B.

In Table 4, we present analyses regarding the average
number of cells firing per burst as well as the average
number of spikes per cell per burst for several parameter
sets. From this table, the two different scenarios de-
scribed above regarding the relative firing of PYR and PV~
cells can be appreciated in more detail. The third and
fourth columns of Table 4 show examples where the

July/August 2017, 4(4) e0131-17.2017

proportion of actively firing PYR cells are larger or smaller,
and similarly for PV cells. That is, it appears that a
relative amount of sparseness can be distinguished. In
scenario B, the PYR cells are less sparse and are less
tightly bound to fire phase-locked with PV* cells due to
the postinhibitory rebound, and the PV~ cell firing is more
sparse. By contrast, in scenario A, the PV™ cells fire more,
and postinhibitory rebound plays a stronger role to more
tightly control PYR cell phase-locking (so more tightly
lined up with PV cells). In this way, scenarios A and B
can be differentiated by how much of a role postinhibitory
rebound plays in the subsequent theta rhythm. These
differences can be seen by comparing the cases shown in
Fig. 10 and examining explicit numbers as shown in
Table 4. We note that although it is clear that our models
are in line with experimental observations in terms of PV*
cells spiking more than PYR cells during theta rhythms
(population bursts) in the model (compare fifth and sixth
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Figure 9. Changing excitatory conductance g,,,.,,, from PYR to PV~ cells. Three example raster plots are shown, with the Gpyr-pv Value
shown in red with the network frequency as appropriate. The average number of cells per population burst is 290 (PYR) and 343 (PV*)
for gpyr0v = 0.5 nS; 81 (PYR) and 288 (PV™) for Goyrpv = 2 NS; 32 (PYR) and 238 (PV™) for Gpyrpv = 9 NS. Other parameter values:
ge,mean! Oey gpyr’ gpv-pyrv CPYR,PVv CPV,PYR = [O’ 02! 0084v 6’ 04' 05]

columns of Table 4), how much spiking PYR and PV™ cells
exhibit is not in line with experiment. Specifically, model
PV* cells do not spike on each population burst as has
been observed experimentally.

Excitatory and inhibitory currents for the chosen param-
eter sets in Table 4 are shown in Table 5. Specifically,
EPSCs and IPSCs to PYR and PV*" model cells are mea-
sured, and these values along with their ratios are given in
Table 5. We note that there can be large EPSCs to PV*
cells and small EPSCs to PYR cells as observed experi-
mentally. However, there is not always an appropriate
match; IPSCs to PYR cells are too large and IPSCs to PV~
cells are too large in some cases. If current ratios rather
than currents are compared, then it is always the case
that EPSC/IPSC ratios are appropriate for PYR cells rel-
ative to experiments, but only in some cases are the

July/August 2017, 4(4) e0131-17.2017

EPSC/IPSC ratios for PV* cells somewhat appropriate,
that is, close to or greater than 1. As such, we find that the
EPSC/IPSC ratio to PV* cells, but not the EPSC/IPSC
ratio to PYR cells, allows us to distinguish between sce-
narios A and B. We then conclude that scenario B, but not
scenario A, is consistent with the experimental data, and
so is the situation that is appropriate for the biological
system; that is, one in which postinhibitory rebound, al-
though required to be present, plays less of a role in theta
rhythm generation.

Discussion

Summary, theta essence, explanation, and
predictions

We have developed microcircuit models and obtained
an explanation for how theta rhythms can be generated in
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Table 4. PYR-PV" cell network scenarios, firings

Average Average

number of number of  Average Average

Burst active PYR active PV™  number of number of

Parameter g, (nS), o, (NS), Gpyr-pv (NS), frequency (Hz) cells (/10,000) cells (/500) spikes (/PYR cells) spikes (/PV* cell)
Gov-pyr (NS), Cpyr pvs Cpv pyvRs Jomean = 0 NS (from fft) per burst per burst per 100 bursts per 100 bursts
= [0.084, 0.2, 3, 8.7, 0.4, 0.5] 10 53 273 1 55
= [0.084, 0.2, 3, 8.7, 0.2, 0.5] 9.7 86 185 1 37
= [0.084, 0.2, 3, 8.7, 0.04, 0.5] 8.9 300 79 3 16
= [0.084, 0.2, 3, 8.7, 0.02, 0.5] 8.3 522 54 5 11
= [0.084, 0.2, 3, 8.7, 0.4, 0.3] 10 53 249 1 50
= [0.084, 0.2, 3, 8.7, 0.4, 0.7] 10 54 280 1 56
= [0.014, 0.6, 3, 8.7, 0.02, 0.3] 11.7 548 22 2 8
= [0.094, 0.6, 3, 8.7, 0.02, 0.3] 12 514 34 5 7
= [0.084, 0.2, 0.5, 6, 0.4, 0.5] 9.1 290 343 3 69
= [0.084, 0.2, 2, 6, 0.4, 0.5] 9.7 81 288 1 58
= [0.084, 0.2, 5, 6, 0.4, 0.5] 10.3 32 238 <.5 48

Examples to illustrate the relative firing of PYR and PV™ cell populations leading to a subsequent delineation of scenarios in Table 5.

the hippocampus. We used a strategy, as schematized in
Fig. 1, in which we took advantage of an experimental
context of an intrinsic CA1 theta with developed mathe-
matical models, leveraged theoretical studies, and did
extensive parameter variation analyses. This computa-
tional analysis allowed us to differentiate between two
scenarios of how theta rhythms could be generated, and
only one of them is consistent with the experimental data.

We suggest that spike frequency adaptation and postin-
hibitory rebound in CA1 pyramidal cells are sufficient
conditions (building blocks) for the generation of theta
rhythms with sparse excitatory cell firing. Moreover, if it is
the case that spike frequency adaptation is required, then
it is necessary to have postinhibitory rebound. Further,
our network simulations predict that theta rhythms are
present when the input to the PYR cells has a nonzero
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Figure 10. Theta rhythm generation by the two different scenarios. Left: Scenario B, same example as in Fig. 8 top. Right: Scenario
A, the average number of cells per population burst is 86 (PYR) and 185 (PV*). Parameter values: Yoyrs 9e.means Tes Ipyr-pvs Ipv-pyrs

Chv.pym Coyrpy = [0.084, 0,02, 3,8.7, 0.5, 0.2].

Table 5. PYR-PV" cell network scenarios, currents

Parameter g, (nS), o, (nS),

oyr-pv (NS); Gpy-pyr (NS), Cpyrpy, EPSC to PYR  IPSC to PYR
cPV,PY.‘-?’ ge,mean =0n cell (pA) cell (pA)
= [0.084, 0.2, 3,8.7,0.4,0.5] 4 1500

= [0.084, 0.2, 3, 8.7, 0.2, 0.5] 4 1600
=[0.084, 0.2, 3,8.7,0.04,0.5] 5 1500
=[0.084, 0.2, 3, 8.7, 0.02, 0.5] 7 730

= [0.084, 0.2, 3, 8.7, 0.4, 0.3] 4 2500
=[0.084, 0.2, 3, 8.7, 0.4, 0.7] 4 1150

= [0.014, 0.6, 3, 8.7, 0.02, 0.3] 1 410
=[0.094, 0.6, 3, 8.7, 0.02,0.3] 7 430

= [0.084, 0.2, 0.5, 6, 0.4, 0.5] 7 2000
=[0.084, 0.2, 2, 6, 0.4, 0.5] 4 2200
=[0.084, 0.2, 5, 6, 0.4, 0.5] 4 2700

E/I ratio EPSC to PV* IPSC to PV*  E/I ratio

(PYR cell) cell (pA) cell (pA) (PV* cell) Scenario
< 1 700 1800 <1 A
<1 550 1300 <1 A
<1 350 550 ~ 1 B
<1 300 275 ~ 1 B
<1 650 1950 <1 A
<1 740 1770 <1 A
<1 340 200 > 1 B
<1 220 200 ~1 B
<1 480 2450 <1 A
<1 650 2000 <1 A
<1 870 1900 <1 A

The same examples as in Table 4 but now showing excitatory and inhibitory currents and the delineated scenarios
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fluctuating input conductance of 0.6 nS or less and a zero
mean conductance. Our network models are minimal but
were able to capture an essence of the experimental data.
As such, we consider our models a foundation on which
to build.

This building block understanding leads to the follow-
ing claims and predictions. We first note that if PV™"
cells are removed from the network, then there are no
spontaneously generated theta rhythms. This is in ac-
cordance with Amilhon et al. (2015), in which the opto-
genetic silencing of PV* cells abolished intrinsically
generated theta rhythms in a whole hippocampus prep-
aration in vitro. We predict that spike frequency adap-
tation in PYR cells is required for theta rhythms to be
present, as balanced by a large enough PYR cell net-
work with connectivity that is minimal. The amount of
spike frequency adaptation controls the existence of
theta rhythms and its resulting frequency, as built on our
understanding from the theoretical mechanism. Thus, if
cellular adaptation in PYR cells is selectively adjusted—
say, by modulating potassium and calcium-activated po-
tassium channels—then one should see an effect on the
frequency of theta rhythms. If cellular adaptation is re-
duced enough, there would be no theta rhythms. Further,
by selectively altering either the amount of connectivity or
the conductance from PYR to PV™ cells, the theta fre-
quency would be strongly affected. Alternatively, if the
amount of connectivity or the conductance from PV* to
PYR cells is selectively adjusted, then the theta frequency
would be less affected. Too much reduction, however,
would result in no theta rhythms, as postinhibitory re-
bound would not be present. Finally, we explored a wide
range of parameter values in our network models, but only
a portion of them are in agreement with the experimental
data regarding EPSC/IPSC ratios. As such, we predict
that theta rhythms in the hippocampus are generated via
scenario B, where the EPSC/IPSC ratio to PV* cells is
greater than 1 (Fig. 7). Although postinhibitory rebound is
still an important element to have theta rhythms (i.e.,
Cpy,pyr Cannot be zero) in scenario B, it plays less of a role
relative to scenario A. If scenario B is the mechanism
underlying theta rhythms in the hippocampus, we predict
that the probability of connections or conductance from
PV" to PYR cells is larger than the probability of connec-
tion or conductance from PYR to PV* cells (see Fig. 7
schematic). It is of interest to note that large EPSCs onto
PV* cells can be present even if there is a minimally
connected CA1 PYR cell network that sparsely fires. This
is necessarily due to the large size of the PYR cell net-
work.

Our explanation here of theta generation in the hip-
pocampus has Aristotelian elements of efficient, material,
and formal causes (Falcon, 2015). That is, we find that
spike frequency adaptation and postinhibitory rebound in
large, minimally connected networks (efficient cause) con-
sisting of PYR and PV™ cells connected by inhibitory
(GABA,) and excitatory (AMPA) synapses (material cause)
generates theta rhythms. The models require parameter
balances of cellular adaptation in a large PYR cell network
with enough connectivity and postinhibitory rebound due
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to PV™ cells, and larger PV™ to PYR than PYR to PV~ cell
connectivity (formal cause). We note that a final cause
cannot be considered with the present model, as it uses a
whole hippocampus preparation in vitro, so function can-
not be directly addressed. There are several ongoing
efforts to consider theta rhythm functions (Colgin, 2013),
but as emphasized by Colgin (2013), it is important to
know what the underlying causes of theta generation are
in the first place. In future work, for example, one might
consider how our modeling work could be expanded and
linked to functional theta modeling studies such as recent
efforts by Chadwick et al. (2016) to capture the flexibility
of theta sequences by including phase-precessing in-
terneurons in septo-hippocampal circuitry.

It is important to emphasize that the form of theta
modeled and explained here is one that is intrinsic to the
hippocampus. However, with a baseline model of how the
intrinsic CA1 microcircuit can produce theta rhythms in
the absence of oscillatory synaptic input, we could gain
insight into how external sources influence and build on
this CA1 microcircuit. There is always the possibility that
in some cases the microcircuit is just perturbed and the
mechanisms remain intact, but in other cases it could be
that the mechanisms are entirely different. Our models
may help to identify which is the case, as it makes clear
testable predictions as described above.

Related modeling studies

Previous mathematical modeling studies of theta
rhythms have been described (Kopell et al., 2010; Fergu-
son and Skinner, 2015). Earlier models put forth theta
generation mechanism ideas based on coherence be-
tween theta frequency firing in oriens-lacunosum/molecu-
lare (O-LM) interneurons, in which a hyperpolarization-
activated inward current (h-current) is critical for the
coherence (Rotstein et al., 2005; Wulff et al., 2009). How-
ever, this has subsequently been shown to be unlikely,
since O-LM cells do not operate as theta pacemakers
(Kispersky et al., 2012), an assumption in the earlier mod-
els. In another hippocampal modeling study, it was shown
that theta rhythms could be generated in a network of
basket, O-LM, and pyramidal cells (Neymotin et al., 2011).
Although the focus of that study was not on theta gener-
ation per se, O-LM cells were strongly implicated in con-
tributing to theta rhythms.

Based on recordings from the hippocampus of behav-
ing rats, models were developed to support the observa-
tions that h-currents in pyramidal cells were needed to
allow theta frequency spike resonance to occur (Stark
et al., 2013). The mathematical models were focused on
considering the contribution of h-currents in pyramidal
cells and did not specifically consider connectivity be-
tween PYR and PV interneurons or the numbers of cells.
The study emphasized the importance of postinhibitory
rebound in theta rhythms. Interestingly, this same study
found that adaptation was not an important contributing
factor. In our modeling study, both cellular adaptation and
postinhibitory rebound are needed to bring about theta
rhythms in the hippocampus. However, unlike Stark et al.
(2013), which had an experimental in vivo context, our
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models are based on an intrinsically generated hippocam-
pal theta rhythm, thus removing contributions from other
brain structures. In this way, we were able to focus on
whether and how excitatory-inhibitory networks could
produce theta rhythms considering network size, connec-
tivity, and cellular characteristics. Given the complexity of
theta rhythms, one would expect that there could be
different balances of building blocks (cellular adaptation
and postinhibitory rebound), as well as additional ones
underlying theta rhythms in vivo. However, it is consider-
ably more challenging to dissect out an understanding of
theta rhythm generation in vivo. Using our network mod-
els and mechanistic understandings derived from them,
this challenge could be reduced.

A full-scale biologically detailed CA1 hippocampal
model has recently been developed (Bezaire and Soltesz,
2013; Bezaire et al., 2016). It is loosely based on the whole
hippocampus preparation and includes eight inhibitory
cell types. This model exhibits theta rhythms phase-
locked with gamma oscillations and shows distinct phase
relationships for different cell types. From model pertur-
bations, interneuronal diversity, and more specifically,
parvalbumin-expressing interneurons and neurogliaform
cells, were found to be important in theta generation.
Further, although not a particular focus, the generation of
theta rhythms in these detailed network models required a
particular balance of excitation. Considering Aristotle’s
four causes (Falcon, 2015), this descriptive understanding
of theta generation can be considered as a material cause
with elements of an efficient cause. However, due to its
very detailed nature, it would be difficult to acquire a
formal cause from it.

In a recent study Giovannini et al. (2017) focused on the
contribution of a nonspecific cation current in pyramidal
cells as critical for the maintenance of theta oscillations in
the isolated hippocampus preparation. Interestingly, sim-
ilar to our work here, they showed that when pyramidal
cells were coupled with inhibitory cells, theta oscillations
became more robust. This work could be considered as a
particular material cause explanation of theta rhythm gen-
eration.

Spike frequency adaptation and postinhibitory
rebound

Spike frequency adaptation as a mechanism to gener-
ate populations bursts has been used before, and previ-
ous work examined whether the amount of cellular
adaptation expressed in pyramidal cells was appropriate
to generate population bursts in pyramidal cell networks
(Dur-E-Ahmad et al., 2011; Ferguson et al., 2015a). How
best to model and examine adaptation naturally depends
on the questions being considered. For example, Benda
et al. (2010) examined how adaptation in the signal trans-
mission of sensory systems can be due to either adapta-
tion currents or dynamic thresholds. Coupled oscillator
theory was used to examine how adaptation contributed
to synchronization (Crook et al., 1998). In another study, a
fractional leaky integrate-and-fire model to capture spike
frequency adaptation was developed to set a framework
to help understand information integration in neocortex
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(Teka et al., 2014). For our CA1 pyramidal cell models, we
used an Izhikevich-type cellular model (Izhikevich, 2006),
and adaptation was captured in the d and a parameters
when fitted to experimental frequency-current curves (Fer-
guson et al., 2015b). Further, for postinhibitory rebound to
be present in these models, the b parameter needed to be
positive. Although the experimental data indicated that
both strongly and weakly adapting pyramidal cells exist,
this does not of course mean that there are simply two
types, as the existence and amount of adaptation de-
pends on the complement of biophysical ion channels in
the cells and what is uncovered by the particular experi-
mental protocol. In the work here, we used both types of
pyramidal cell models, but networks of weakly adapting
cells only were not able to produce theta rhythms given
other constraints of the experimental context.

In the intact hippocampus in vitro preparation, CA1
pyramidal cells exhibit postinhibitory rebound inhibition
(Goutagny et al., 2009; Ferguson et al., 2015b). H-currents
in pyramidal cells clearly play a key role in their ability to
express postinhibitory rebound. However, both the pres-
ence and the distribution of these currents, together with
the distribution of other currents, need to be taken into
consideration. Specifically, it was shown that postinhibi-
tory rebound is rarely observed in physiologic conditions
unless unmasked by the blocking of A-type potassium
currents (Ascoli et al.,, 2010), and rebound and other
properties vary along the longitudinal axis of the hip-
pocampus (Malik et al., 2016). Both h-currents and A-type
potassium currents are known to have a nonuniform dis-
tribution along pyramidal cell dendritic arbors, and puta-
tive functional contributions of this to temporal synchrony
have been made (Vaidya and Johnston, 2013). It is inter-
esting to note that a difference in the dorsal to ventral
patterning of h-currents exists (Dougherty et al., 2013),
bringing to light another possibility of rhythm modulation.
Further, traveling theta waves have been observed in both
rodent (Lubenov and Siapas, 2009; Patel et al., 2012)
and human (Zhang and Jacobs, 2015) hippocampus, sug-
gesting a coupled oscillator organizational motif in the
hippocampus. Although a “weakly coupled oscillator” ter-
minology has been invoked in describing these waves
(Colgin, 2013), this should not be confused with the math-
ematical theory where the assumption of weakly coupled
oscillators is used to reduce the system to a phase-
coupled system that is easier to analyze (Schwemmer and
Lewis, 2012).

Limitations

Given our highly simplified and minimal network mod-
els, we did not expect to find a perfect match to the
experimental data. However, it is important to note that
given our minimal models, we were able to examine sev-
eral thousand parameter sets, which in turn enabled us to
explore and understand what balances might be impor-
tant in bringing about theta rhythms. This balance and
building block understanding can serve as a basis for how
theta rhythm frequency and existence can be modulated
by additional inputs from other brain regions, as well as
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modulation that would affect adaptation and postinhibi-
tory rebound.

Our network models are minimal, but they were able to
produce theta rhythms with sparse firing, as represented
by population bursts, allowing us to suggest sufficient and
necessary conditions for their generation. Although our
models took into consideration network size, connectivity,
and cellular characteristics in a clear experimental con-
text, architecture was not considered. That is, connectiv-
ity used in the network models was random. This is clearly
a simplification, especially considering the recent finding
of motifs in pyramidal cells in the CA3 region of hip-
pocampus (Guzman et al., 2016). However, it is a reason-
able first approximation that allowed us to explore a wide
expanse of connectivities.

Variability in intrinsic cell properties and mixing of
weakly and strongly adapting pyramidal cells could be
considered. Introducing variability immediately raises the
question of how it should be done. For example, Harrison
et al. (2015) quantified the heterogeneity within and be-
tween the neocortical pyramidal cell classes. They exam-
ined the class-dependent variance and covariance of
electrophysiological parameters using simple models but
did not focus directly on network dynamics or rhythms.
Given our large explorations of conductances, connectivi-
ties, and noisy input, some variability was present in our
simulations.

Further, only one type of inhibitory cell was included in
our networks, that is, the fast-firing PV" cell type. It is
unlikely that only this one type of inhibitory cell contrib-
utes to theta rhythms, but we identified this as a good
place to start given that Amilhon et al. (2015) found that
they were essential. By no means do our models imply
that other inhibitory cell types are unimportant. On the
contrary, since our models clearly do not fully capture the
experimental data (e.g., model PV* cells fire too sparsely
relative to experiment), aspects are clearly missing. Be-
cause PV™ fast-firing cells also include bistratified and
axo-axonic cells, an expansion of PV* cell networks along
these lines could be considered (Ferguson et al., 2015c).
Given the diversity of inhibitory cell types (Chamberland
and Topolnik, 2012) and the different types of PV cells
(Baude et al., 2007), we did not specifically try to scale the
number of PV* cells as we did for PYR cells; however,
since we fully explored connectivity ranges between PV~
and PYR cells, this was in effect included. The inclusion of
O-LM cells and other inhibitory cell types in the network
models is important moving forward to be able to under-
stand how they modulate theta rhythms (Leao et al., 2012;
Amilhon et al., 2015; Sekulic and Skinner, 2017).

Conclusions and Future Work

Our network models represent closed, self-consistent,
accessible models that can generate theta rhythms in
hippocampus CA1. We intend them as a starting point on
which to build to understand the mechanisms underlying
theta rhythm generation in the hippocampus. Specifically,
the network model building block balances need to be
fully analyzed so that a more solid formal cause of expla-
nation can be obtained, beyond what was obtained from
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the computational, parameter variation analyses done
here. Further, in combination with full-scale models such
as that of Bezaire et al. (2016), it may be possible to obtain
an understanding that can fully encompass efficient, ma-
terial, and formal causes in the Aristotelian sense and
could subsequently help in a final cause understanding.

Overall, our models can serve as a backbone on which
other cell types as well as details of particular cell types
(biophysical channels, dendrites, and spatial consider-
ations), modulatory effects, and input from the medial
septum can be incorporated. However, in doing this, it is
important to note that interaction and testing with exper-
iment should be designed accordingly, given the strategy
used in developing our models (Fig. 1), and that a con-
sideration of the different forms of theta is not lost. Mov-
ing forward, it will be important to include biophysical LFP
models to allow direct comparisons between models and
experiments regarding LFPs and provide further con-
straints. Interestingly, it has been shown that active sub-
threshold currents can lead to distinct resonances in the
generation of LFPs (Ness et al., 2016).
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