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A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T
cell-mediated tumor control
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ABSTRACT
The combination of immune-stimulating strategies has the potency to improve immunotherapy of
cancer. Vaccination against neoepitopes derived from patient tumor material can generate tumor-
specific T cell immunity, which could reinforce the efficacy of checkpoint inhibitor therapies such as anti-
PD-1 treatment. DNA vaccination is a versatile platform that allows the inclusion of multiple neoantigen-
coding sequences in a single formulation and therefore represents an ideal platform for neoantigen
vaccination. We developed an anti-tumor vaccine based on a synthetic DNA vector designed to contain
multiple cancer-specific epitopes in tandem. The DNA vector encoded a fusion gene consisting of three
neoepitopes derived from the mouse colorectal tumor MC38 and their natural flanking sequences as 40
amino acid stretches. In addition, we incorporated as reporter epitopes the helper and CTL epitope
sequences of ovalbumin. The poly-neoantigen DNA vaccine elicited T cell responses to all three
neoantigens and induced functional CD8 and CD4 T cell responses to the reporter antigen ovalbumin
after intradermal injection in mice. The DNA vaccine was effective in preventing outgrowth of B16
melanoma expressing ovalbumin in a prophylactic setting. Moreover, the combination of therapeutic
DNA vaccination and anti-PD-1 treatment was synergistic in controlling MC38 tumor growth whereas
individual treatments did not succeed. These data demonstrate the potential of DNA vaccination to
target multiple neoepitopes in a single formulation and highlight the cooperation between vaccine-
based and checkpoint blockade immunotherapies for the successful eradication of established tumors.
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Introduction

Tumor cells accumulate somatic point mutations that can alter
wild-type protein sequences making them immunologically dif-
ferent from healthy cells. T cells can detect these alterations by
virtue of recognition of MHC-presented peptides up to single
amino acid modifications, named antigenic neoepitopes.1

However, the initiation of spontaneous tumor-specific T cell
responses is limited by the lack of proper immune stimulation
and is often dampened by the immune suppressive activity exerted
by the tumor.2 Checkpoint inhibitor therapies unleash theseT cells
and result in the long-term survival of patients with previously
untreatable cancers.3 Still, only aminority of patients benefits from
checkpoint inhibitor therapies, leaving room for complementary
strategies.4 These may include vaccination against neoantigens,
which can not only boost pre-existing responses but also induce de
novo priming of tumor-specific T cells.

The design of personalized cancer vaccines harboring tumor
mutations is still in early stage and needs to meet several
requirements.5 Exact prediction of the neoantigens likely to
generate a peptide epitope that will bind to the relevant MHC
alleles and induce functional T cell responses is still not fully
achievable by the current in silico systems used for epitope

prediction. Therefore, it is required to include a sufficient
number of candidate sequences to increase the chances of
including actual T cell epitopes in the vaccine. Furthermore,
the inclusion of multiple antigens could promote the genera-
tion of a broad immune response, which may enhance vaccine
efficacy and contribute to counteract immune suppression.
Another requisite for patient-tailored cancer vaccines is versa-
tility in synthesis and production of several different sequences,
as the heterogeneous array of antigen sequences varies across
individual patients. This aspect is not trivial in classical peptide-
based systems, as amino acid sequence dictates the physico-
chemical properties of the vaccine, adding complications to the
manufacturing process and formulation.6 In short, an ideal
neoantigen vaccine platform should be flexible enough to be
able to incorporate a multitude of epitopes and allow fast and
reliable production independently of the exact amino acid
sequences of the selected epitopes.

In the last few years, efforts in refining neoantigen identi-
fication and formulation of cancer vaccines for therapeutic
treatment have demonstrated the potential of this approach in
preclinical models for synthetic peptide- and RNA-based
vaccines.7-10 These studies have led the way for the first in-
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human application in two independent pioneering trials in
melanoma patients.11,12 Vaccination with neoepitopes derived
from single amino acid mutations selected upon sequencing
of patients’ material elicited tumor-specific T cell responses
with clinical benefits both with peptide- and RNA-based
vaccines.

Up until recently, DNA-based vaccines targeting neoantigen
have been scarcely explored. DNA represents a versatile platform
that can accommodate any sequence without affecting its stabi-
lity or solubility. In addition, DNA is easily synthesized and
production costs are relatively low. DNA vaccines were first
shown to be immunogenic nearly 30 years ago.13-15 Since then,
numerous studies have explored the potential of gene immuni-
zation. Methods for optimizing administration routes, delivery,
and plasmid design have been central in a variety of preclinical
and clinical studies.16 Several studies demonstrated that immune
responses can be induced by intramuscular, intradermal or
intravenous administration of DNA14,17,18 and original admin-
istration devices such as gene gun,19 electroporation20 and
tattooing21 have been employed to improve transfection effi-
ciency and induction of both humoral and cellular immune
responses. A recent study using electroporation-mediated
DNA delivery of multiple neoantigen constructs showed effec-
tive induction of anti-tumor CD8 T cell responses in mice.22

In this study, we show the efficacy of DNA vectors as
a vaccine carrier for multiple neoantigens based on a string-
of-bead design. Using regular intradermal injection without
the need for specialized equipment or an adjuvant, the DNA
vaccine induced multiple CD8 and CD4 T cell responses
against both reporter epitopes and neoantigens. We demon-
strate that vaccination enables T cell-mediated anti-tumor
control in a prophylactic as well as in a therapeutic setting.
Furthermore, we show that DNA vaccination can synergize
with and improve the efficacy of checkpoint inhibitor therapy.

Methods

Animals: For vaccination and tumor experiments, 6–8 weeks old
female C57BL/6 were purchased from Charles River Laboratories.
The TCR transgenic OT-I andOT-II mouse strains were obtained
from Jackson Laboratory and maintained on CD45.1+ C57BL/6
background. Mice were housed in specific pathogen-free (SPF)
conditions at the LUMC animal facility. All animal experimenta-
tions were approved by and according to guidelines of the Dutch
Animal Ethical Committee.

Cell lines: The B3Z hybridoma cell line was cultured in
IMDM medium (Lonza) supplemented with 8% FCS
(Greiner), penicillin and streptomycin, glutamine (Gibco), β-
mercaptoethanol (Merck), hygromycin B (AG Scientific Inc)
to maintain expression of the beta-galactosidase reporter gene.
B16-OVA and MC38 tumor cell lines were cultured in IMDM
medium supplemented with penicillin/streptomycin, gluta-
mine, and 8% FCS. B16-OVA were cultured in the presence
of G418 (Life Technologies) for maintenance of OVA
expression.23 For ex vivo stimulation of lymphocytes, the
dendritic cell line D1 was used and cultured as previously
described.24

DNA construct and peptides: Codon-optimized antigen
sequences, fuzed by alanine linkers were synthesized and cloned

into a CMV-driven expression vector containing a rabbit beta-
globin poly-A signal and kanamycin resistance marker (ATUM).
As control, DasherGFP was cloned in the same plasmid vector.
Plasmids were propagated in E. coli cultures and purified using
Nucleobond Xtra maxi EF columns (Macherey-Nagel) according
to manufacturer’s instructions. For vaccination, plasmids were
column-purified twice, each time using a fresh column, and dis-
solved at 3 mg/ml in TrisEDTA buffer (1:0.1 mM).

Synthetic long peptides for the five epitopeswere synthetized
by LUMC peptide facility SIIVFNLLELEGDYR (Dpagt),
LFRAAQLANDVVLQIM (Reps1), ELASMTNMELMSSIV
(Adpgk), ISQAVHAAHAEINEAGR (OVA CD4), DEVSG
LEQLESIINFEKLAAAAAK (OVA CD8) and used as peptide
controls for all experiments.

In vitro transfection and antigen recognition assay: 3ʹ000
MC38 cells were seeded overnight in 96-well flat-bottom plates.
Next day, cells were transfected using the SAINT-DNA transfec-
tion kit (SD-2001, kindly provided by Synvolux). In brief,
a solution of plasmids and cationic lipids was mixed in a ratio
1:20 (µg DNA: µl Saint-DNA) in titrating quantities. SIINFEKL
presentation by H2-Kb was detected with 25-D1.16 antibody25

in-house conjugated to Alexa 647. After 48 h, 50ʹ000 B3Z cells
per well were added and incubated with transfected cells over-
night. The following day, TCR activation triggered by recogni-
tion of the SIINFEKL epitope was detected by measurement of
absorbance at 570 nm upon color conversion of chlorophenol
red-β-D-galactopyranoside (Calbiochem®, Merck).

In vivo proliferation of adoptively transferred OT-I and OT-
II cells: Naïve C57BL/6 mice received an intradermal injection
of lipoplexes comprising vaccine or control plasmids com-
plexed to cationic lipid SAINT18 (kindly provided by
Synvolux)26 7, 4, 2 or 0 days prior transfer of ovalbumin-
specific OT-I and OT-II cells. CD8+ cells or CD4+ cells were
isolated from spleens and lymph nodes of CD45.1+ OT-I or
OT-II mice with enrichments sets (BD Biosciences), labeled
with 5 µM CFSE (Invitrogen) and intravenously injected in
vaccinated mice. Three days after transfer, proliferation of
OT-I and OT-II cells was measured in lymph nodes and
spleens by CFSE detection in CD45.1+/CD8+ or CD45.1+/
CD4+ T cells.

Vaccination with peptide mix: Peptide vaccinationwas used as
a positive control for priming and tumor experiments in vivo. It
consisted of a mix of 50 µg of the five long peptides containing
the five epitopes encoded in the DNA vaccine. The formulation
was adjuvanted with 20 µg of poly(I:C) (Invivogen)

Priming of endogenous T cells: Naïve C57BL/6 mice were
injected with plasmid-SAINT18 complexes in a 1:0.75 ratio (µg
DNA: nmole SAINT18) in 0.9% NaCl26 either intradermally (30
µl), subcutaneously (30 µl), intramuscularly (30 µl), intraperito-
neally (100 µl) or intravenously (100 µl) and boosted after 14 and
28 days. The level of SIINFEKL-specific CD8 T cells was mon-
itored in blood with labeled tetramers. Twelve days after second
booster injection, splenocytes were harvested and expanded for 1
week with D1 dendritic cells loaded with long peptide pools.
Intracellular staining was performed upon stimulation with
individual long peptides overnight in presence of 2 µg/ml
Brefeldin A (Sigma Aldrich). T cells and cytokines were detected
by antibody staining and analyzed with FlowJo software. The
following antibody mix was used: eFluor450 anti-CD3, PE-Cy7
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anti-CD4 (eBioscience), BV605 anti-mouse CD8α, APC anti-
IFNγ (Biolegend), FITC anti-TNFα (eBioscience), PE IL-2
(eBioscience).

In vivo specific killing: Naïve C57BL/6 were primed and
boosted after 21 days with 10 or 100 µg of plasmid-SAINT18
complexes. Twenty-one days after boost, vaccinated mice
received peptide-loaded splenocytes to measure the cytotoxic
activity of endogenously primed T cells. To this end, spleno-
cytes were harvested from CD45.1+ or WT C57BL/6 naïve
mice, labeled with 5, 0.25 or 0.0025 µM CFSE and differen-
tially loaded for 1 h at 37ºC with 1µM SIINFEKL, Adpgk or
Reps1 epitopes or an irrelevant peptide epitope derived from
the E6 protein of Human Papilloma Virus (sequence:
RAHYNIVTF). 4ʹ000ʹ000 splenocytes per peptide-loaded
group were injected intravenously in vaccinated mice.
One day after transfer, mice were sacrificed and single-cell
suspension was analyzed by flow cytometry. Specific killing
was calculated according to the following equation:

Specific killing ¼ 100� 100 �
CFSE target peptide
CFSE irrelevant immunized mice

� �

CFSE irrelevant
CFSE target na€1ve mice

� �
2
4

3
5

Prophylactic vaccination and B16-OVA tumor challenge: Naïve
C57BL/6 female mice were vaccinated intradermally with 10
or 90 µg of plasmid-SAINT18 complexes. At day 42 (21 days
after booster injection) 50ʹ000 B16-OVA cells were injected
subcutaneously in the flank and tumor growth was moni-
tored. Mice were sacrificed when the tumor volume surpassed
1000 mm3.

MC38 tumor challenge and therapeutic vaccination: Naïve
C57BL/6 female mice were injected subcutaneously in the
flank with 350ʹ000 MC38 cells and tumor growth was mon-
itored. When tumors reached a palpable size with an esti-
mated volume of 1 to 2 mm3 (day 5), mice were vaccinated
with 10 µg of plasmid-SAINT18 complexes. Three and 7 days
after vaccination, 50 µg of anti-PD-1 (Clone RMP1-14,
InvivoPlus, BioXCell) antibody was injected subcutaneously
next to the tumor mass.27 Mice were sacrificed when the
tumor volume surpassed 1ʹ000 mm3.

Statistical analysis: Results are expressed as mean ± SD.
Statistical significance among groups was determined by mul-
tiple comparisons using the Graphpad software after ANOVA
or non-parametric Kruskal–Wallis test. Cumulative survival
time was calculated by the Kaplan–Meier method, and the
log-rank test was applied to compare survival between two
groups. P-values of ≤0.05 were considered statistically
significant.

Results

Development of a poly-neoantigen DNA vaccine for
in vitro and in vivo antigen presentation to T cells.

We aimed to include multiple antigenic sequences in
a single DNA vaccine construct, and therefore we designed
a plasmid encoding five epitopes in tandem in a single open
reading frame (Figure 1(a)). Three epitopes (Dpagt, Reps1,
Adpgk) are described neoantigens containing specific
point-mutated MHC class I binding sequences present in

the mouse colon carcinoma cell line MC38.7 The other two
epitopes are, respectively, the helper (Help) and the cyto-
toxic T lymphocyte (CTL) epitopes from the model antigen
chicken ovalbumin (OVA), and were included as control
reporter epitopes for CD4 and CD8 T cell responses,
respectively. Every epitope is flanked by its natural amino
acid sequence for a total length of approximately 40 amino
acids, and is linked to the next epitope by a linker encoding
four alanines. Transcription is driven by the strong viral
promoter of the immediate early gene 1 (IE1) of human
cytomegalovirus (HCMV).

We first analyzed whether these five artificially connected
sequences lead to the generation of the expected peptide
epitopes and their presentation on MHC molecules. Upon
transfection of the designed DNA construct, the translated
protein product needs to be processed in such a way that the
T cell epitopes are generated and presented by MHC mole-
cules. MC38 cells, which do not express the ovalbumin gene,
were transfected with the neoantigen construct and the pre-
sentation of the ovalbumin CTL epitope SIINFEKL was
detected by staining the SIINFEKL/H2-Kb complex with the
25-D1.16 antibody (Figure 1(b), upper panel). Transfection
with the poly-neoantigen construct, but not with a control
GFP-encoding construct, displayed positive staining for
SIINFEKL/H2-Kb complexes. Moreover, after transfection
with the neoantigen construct, cells were recognized by the
hybridoma T cell line B3Z, which express a TCR specific for
SIINFEKL/H2-Kb (Figure 1(b), lower panel).

Next, we tested the ability of the neoantigen DNA con-
struct to transfect cells and present the expected reporter
ovalbumin epitopes in vivo. The plasmid was injected intra-
dermally in mice 7, 4, 2, or 0 days prior transfer of CFSE-
labeled OT-I and OT-II T cells, which possess transgenic
TCRs specific, respectively, for the CTL and the helper epi-
topes of ovalbumin. Antigen induced proliferation of these
cells was analyzed 3 days after transfer in draining lymph
nodes and spleen (Figure 1(c,d), Fig. S1 A and B). Injection
of the construct was able to induce both OT-I and, to a lesser
extent, OT-II proliferation, confirming successful transfection
and presentation of the epitopes also in vivo. OT-I and OT-II
proliferation upon DNA vaccine injection exhibited different
kinetics compared to traditional synthetic peptide vaccine
(Figure 1(d)). DNA vaccination presents a slower onset of
T cell proliferation compared to peptide vaccination, with
optimal induction between 5 and 7 days after DNA vaccina-
tion (Figure 1(d), left panel), as opposed to 3 days for peptide
vaccination (Figure 1(d), right panel). Finally, we evaluated
whether the position of the epitopes or the artificial linker
sequence between them could influence the efficiency of anti-
gen presentation in vivo. To test this, we created a variant of
the original neoantigen DNA construct in which the reporter
SIINFEKL epitope was positioned as the first epitope at the
N-terminal end of the polypeptide and additional variants in
which the epitopes were connected via different amino acid
linkers. We evaluated OT-I and OT-II proliferation upon
vaccination in vivo (Figure 1(e)). Overall, we observed no
significant differences in OT-I or OT-II proliferation between
the variants tested. Altogether these results demonstrate effi-
cient MHC surface presentation of the CD8 and CD4 reporter
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epitopes of ovalbumin, irrespective of the position and linker
sequence in the poly-antigen encoding DNA construct. This
shows the feasibility of the string-of-bead design as a method
to target multiple antigens in a single vaccine construct.

The DNA vaccine primes neoantigen-specific t cell
responses in vivo

Next, we evaluated the ability of our DNA vaccine to generate
all five encoded epitopes in vivo and its ability to induce de
novo priming of antigen-specific T cells in wild-type C57BL/6
mice. Previous studies have highlighted an influence on vaccine

efficacy depending on its formulation, methods, and routes of
administration.14,17,18,28 To determine the optimal delivery
route of our designed DNA vaccine, the construct was admi-
nistered to mice via different routes (intradermal, subcuta-
neous, intramuscular, intraperitoneal and intravenous) and
the immune response was boosted twice in intervals of 2
weeks (Fig. S2A). Tetramer staining in blood at several time
points revealed effective priming of SIINFEKL-specific CD8
T cells for the groups that intradermally and intravenously
received the DNA vaccines (Fig. S2B and S2C). In addition,
splenocytes of vaccinated mice restimulated ex vivo with pep-
tide-loaded dendritic cells displayed responses for all five
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Figure 1. The poly-antigen DNA vaccine activates antigen-specific CD8 and CD4 T cells in vivo. (a) Schematic representation of the neoantigen DNA vaccine and the resulting
poly-epitope peptide sequence. Direction of the open reading frame (ORF) is indicated. The individual CD8 and CD4 epitopes in the peptide are encircled in dark or light blue,
respectively. For each of the three neoepitopes, the amino acid (aa) change resulting from somatic mutation is highlighted in red. (b) Upper panel: Quantification of the mean
fluorescence intensity (MFI) using 25-D1.16 antibody of the SIINFEKL peptide presentation on MHC I molecule after transfecting MC38 cells in vitro with either the GFP plasmid
(negative control) or the neoantigen plasmid. Lower panel: Activation of SIINFEKL-specific T cell hybridoma B3Z cells byMC38 cells transfected with the neoantigen DNA vaccine.
The SIINFEKL synthetic peptide (1 µM) was added as a positive control (orange bars), and a plasmid coding for GFP was used as a negative control. Statistical significance was
determined by one-way ANOVA followed bymultiple comparison, *** p< 0.001 (c) Proliferation of adoptively transferredOT-I andOT-II cells, 3 days after intradermal injection of
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transferred OT-I and OT-II cells, 3 days after intradermal injection of 10 µg of different variants of neoantigen DNA vaccine. Error bars indicate mean ± SD, N = 2. Significance in
relation to the GFP plasmid negative control was determined by one-way ANOVA followed by multiple comparisons. * p < 0.05, ** p < 0.01.
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epitopes encoded by the DNA vaccine (Fig. S2D and S2E). We
concluded that intradermal injection of the neoantigen DNA
vaccine was able to induce de novo priming of T cells upon
classical needle-mediated administration in vivo.

To evaluate the cytotoxic function of the DNA vaccine-
induced CD8 T cells, we analyzed the kinetics of the
SIINFEKL-specific CD8 T cells and their capacity to speci-
fically kill target cells presenting the epitopes. We also
explored the dosing of plasmid administration to optimize
the T cell response. C57BL/6 mice were vaccinated and
boosted with two different doses of a DNA vector or with
peptides, and the ability to kill splenocytes loaded with
either SIINFEKL, Adpgk or Reps1 peptide was determined
(Figure 2(a)). The kinetics of DNA vaccination was slower
compared to the synthetic peptide vaccination, as the peak
of the priming response appeared 3 days later (Figure 2(b)).
After the boost, T cell responses to DNA and peptide
vaccination were similar. Considering the dose, 100 µg of
DNA appeared to be more effective mostly in the priming
phase.

CD8 T cells primed by DNA were effective in killing
SIINFEKL and Adpgk peptide-loaded T cells at day 44.
Cytotoxicity against the Reps1 epitope was not detected
upon DNA vaccination (Figure 2(c,d)). Vaccination with
a higher dose of DNA marginally improved the killing

capacity of the SIINFEKL-specific CD8 T cells and corre-
lated with the levels of tetramer-specific cells present in
blood two days before injecting target cells (see Figure 2
(b), day 42). Based on these results we concluded that the
poly-neoantigen DNA vaccine is able to induce functional
CD8 T cells against multiple epitopes and we proceeded to
evaluate its efficacy in immune control of cancer.

Prophylactic and therapeutic DNA vaccination elicits
tumor control

We next investigated whether the T cell responses induced by
DNA vaccination were able to provide immune control of tumors
in vivo for both the OVA reporter epitopes and the neoantigens.

First, we evaluated anti-tumor efficacy for the reporter oval-
bumin epitopes. Mice were prophylactically vaccinated with
DNA or peptides before being challenged with the OVA-
expressing melanoma cell line B16-OVA (Figure 3(a)). To
explore the impact of DNA dosing on the induction of T cell
responses, two different amounts of DNA were tested and the
induction of ovalbumin-specific CD8 responses was monitored
by tetramer staining in blood samples (Fig. S3). Unvaccinated
control mice developed tumors within 20 days from challenge.
Mice vaccinated with DNA developed tumors later than unvac-
cinated controls, and a significant number of mice were fully
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Figure 2. DNA vaccine primed T cells are functional. (a) Schematic representation of the vaccine administration, tetramer staining, target cells injection and specific killing
analysis schedule in C57BL/6 mice. Mice were vaccinated intradermally with 10 or 100 µg of DNA (or a mix of peptides as positive control). SIINFEKL-specific responses were
monitored in blood at different time points. To evaluate the killing capacity of the responses induced after vaccination, mice were injected with CFSE-labeled splenocytes
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protected from this aggressive tumor. A lower dose of vaccine
corresponded to a lower protection but was still effective to
prevent tumor growth in ~40% of the animals (Figure 3(b,c)).
Vaccinationwith a higher dose ofDNA resulted in full protection
of 60% of the mice (Figure 3(b,c)). Hence, DNA vaccines were
effective in inducing protective antitumor T cell responses, com-
parable to or better than the mice that received synthetic peptide
vaccination. Moreover, a higher dose of vaccine corresponded to
stronger protection, and this dose was used for further studies in
a therapeutic setting.

After demonstrating the potential for antitumor activity of
the DNA vaccine in the B16 melanoma model, which expresses
the ovalbumin antigen but not the MC38-specific neoantigens,
we evaluated the therapeutic efficacy of the same DNA vaccine
in the MC38 tumor model. Mice were first inoculated with the
MC38 colon carcinoma cell line, expressing the three neoanti-
gens Dpagt1, Reps1 and Adpgk but not the ovalbumin epitopes.
Mice with established tumors were vaccinated therapeutically
on day 5 followed by a booster vaccination at day 26. AsMC38 is
known to exert a strong immunosuppressive effect,29 we com-
bined the vaccine with the immunomodulatory anti-PD-1 anti-
body treatment on day 8, 12, 22 and 29 (Figure 4(a)). Without
any treatment, tumors progressed rapidly and all mice suc-
cumbed within 21 days from tumor inoculation. Vaccination
with DNA or peptides gave little or no delay and eventually all
mice showed rapid tumor outgrowth, except for one mouse in
the DNA vaccinated group. Anti-PD-1 treatment induced some
delay in tumor growth but was not sufficient to prevent tumor
outgrowth. Remarkably, when anti-PD-1 treatment was com-
bined with DNA vaccination, tumor growth was significantly
delayed and 25% of mice were able to clear the tumor and

survive long term (Figure 4(b,c)). Notably, this effect was only
observed with DNA vaccination but could not be achieved with
the synthetic peptide vaccine.

In addition, a single dose of the DNA vaccine combined
with anti-PD-1 treatment (Figure 4(d)) also resulted in
a substantial delay of tumor outgrowth and complete tumor
clearance was observed in some mice, resulting in a 25% cure
rate. (Figure 4(e,f)). Importantly, this effect was not observed
when vaccination was performed with a GFP-coding plasmid
and was abolished when CD8 T cells were depleted right after
vaccination, indicating the implication of neoantigen-specific
CD8 T cell responses in tumor growth control. Altogether
these data demonstrate that the designed poly-neoantigen
DNA construct is an effective vaccine vector and that this
design holds potential for neoantigen vaccination for specific
immunotherapy of cancer.

Discussion

In this study, we demonstrate that a poly-neoantigen DNA
vaccine not only provides prophylactic protection against
tumor challenge but also synergizes with PD-1 blockade for
tumor control in a therapeutic setting. The versatile DNA
platform presented here allows the inclusion of multiple epi-
topes in tandem derived from multiple antigenic sequences,
increasing the chances of triggering relevant T cell responses
to improve the overall effectiveness of neoantigen-specific
immunotherapy.

Our vaccine vector was able to induce functional responses
without any additional adjuvant. DNA vectors may act as self-
adjuvating vaccines as the innate immune system possesses
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various means to sense foreign or cytoplasmic DNA and
activates an inflammatory response. Low-unmethylated CpG-
rich regions linked to bacterial production of the DNA vac-
cine may contribute to immunogenicity via TLR9
signaling.30,31 Furthermore, cytoplasmic sensors in the
STING axis were also reported to play a role in DNA-
mediated immunization.32 Nevertheless, efforts in optimizing
the immunogenicity of DNA vaccines demonstrated that the
inclusion in the sequence of pro-inflammatory cytokines such
as IL-1233 and GM-CSF34-36 and costimulatory-molecules
such as B7-1, B7-237,38 or CD40L39 have a beneficial effect
in generating effective immune responses. As we report sig-
nificant but partial tumor control, it will be of interest to
improve the cure rate by including such genetic adjuvants,
which can readily be incorporated in the vaccine sequence.

The induction of CD8 as well as CD4 T cell responses is
critical for cancer immunotherapy, as the ability of cytotoxic
CD8 T cells to effectively attack and kill tumor cells depends
on the presence of concomitant help provided by CD4
T cells.40,41 This is especially important given the high fre-
quency of CD4 neoepitopes in tumor cells,9,11,12 and given
recent observations that CD4 T cells can control tumors
independently of CD8 T cells.42,43 In a recent report, applying
neoantigen DNA vaccination with electroporation resulted
preferentially in the induction of CD8 responses.22 In con-
trast, our intradermal DNA vaccination approach efficiently

induced both CD8 and CD4 responses. Our data indicate that
both MHC I and MHC II presentations occur; however
induction of CD8 T cell responses appears more pronounced
than induction of CD4 responses. This may suggest that
antigen presentation is performed mainly by directly trans-
fected cells and consequently cytosolic antigen is more effi-
ciently presented. MHC II presentation occurs mainly on
exogenously acquired antigen by specialized antigen-
presenting cells (APCs). Previous reports investigating the
working mechanism of intradermal DNA vaccination have
highlighted that transfection takes place both in epidermal
cells and, to a lesser extent, directly in professional
APCs.44,45 It is still controversial whether antigen presentation
upon DNA vaccination occurs by directly transfected cells or
antigen is indirectly acquired from transfected cells by
APCs.46We believe that it will be important to elucidate the
mechanism in the context of intradermal DNA vaccination in
order to control and elicit optimal MHC II presentation.

The chosen colon cancer cell line MC38 tumor model
represents a clinically relevant tumor both in light of neoanti-
gen vaccination studies and immunomodulatory treatments.
MC38 is known to induce spontaneous-CD8-mediated
immune responses in mice with growing tumors, but, due to
its highly immunosuppressive microenvironment, these
T cells are apparently inactive and not able to eradicate
tumor cells.29 Treatment of MC38 tumor-bearing mice at
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early stages with immunomodulating antibodies against PD-1
or PD-L1, elicit effector T cell responses which can mediate
tumor regression.27 Here we show that vaccination against the
selected neoantigens7 in combination with anti-PD-1 can
mediate tumor regression in a CD8 T cells-dependent fashion,
while anti-PD-1 antibody by itself could not effectuate tumor
clearance. Physiologically, the PD-1 axis contributes to nega-
tively regulate peripheral-activated CD8 T cells, but malignant
cells exploit this mechanism to shut down spontaneous
tumor-specific T cells responses. Indeed, a recent report by
Xiong and colleagues showed that neo-epitope specific CD8
T cells express a high level of co-inhibitory molecules, includ-
ing PD-1.47 When CD8 T cells are properly activated, by
means of vaccination, for example, they also upregulate PD-
1 and are therefore more susceptible to immune suppression.
Accordingly, integration of anti-PD-1 blockade therapy
resulted in complete response in both RNA- and peptide-
based vaccination clinical studies for, respectively, one11 and
two12 patients that experienced recurrence after vaccination.
Altogether these observations show that specific immunother-
apy can synergize with PD-1 checkpoint therapy most likely
by supporting adequate effector functions of the increased
frequencies of tumor-specific T cells.

Immunization with multiple epitopes in one formulation
may result in reduced responses to individual epitopes. The
occurrence of immune-dominant neoantigens has been
reported in several studies.48-50 Nevertheless, a study identify-
ing neoepitopes in patients with chronic leukemia reports
how immune-dominance plays a role primarily in the induc-
tion of spontaneous responses, while vaccination against mul-
tiple epitopes diversifies the tumor-specific T cell repertoire
and amplifies the heterogeneity of tumor-specific T cell
responses.50 In addition, tumor immunoediting could lead
to antigen loss and the outgrowth of resistant tumor variants
that do not possess one or more of the targeted neoantigens.
The inclusion of multiple epitopes in a vaccine may be impor-
tant to avoid the outgrowth of such resistant clones.
Therefore, the beneficial effects of a more diversified T cell
response are likely to outweigh a potential reduction of indi-
vidual T cell specificities due to immuno-dominance.

Interestingly, we observed that primarily the Adpgk neoepi-
tope appears to induce effector T cells which are able to recog-
nize and eliminate antigen-loaded cells (see Figure2(d)). In
contrast, DNA-induced Reps1-specific T cells were not able to
kill target cells as opposed to the responses induced by peptide
vaccination. Differences in induction of T cell responses
depending on the method of immunization have also been
reported in RNA vaccination studies.9 Why these differences
between peptide and gene immunization occur is as yet not
clear; however, considering the notion that some responses to
tumor neoantigens can still be irrelevant for tumor eradication,
51 these observations support the rationale of including multiple
potential neoantigens in therapeutic cancer vaccines.

Personalized therapy against tumor neoantigens represents
an exciting prospect for clinical translation. A personalized
therapeutic cancer vaccine requires a flexible, cost-effective
vaccine platform. Here, we show a proof of concept of
a DNA vector as a versatile vaccine platform for the inclusion
of multiple tumor neoantigens. Moreover, we show that this

DNA vaccine synergizes with anti-PD-1 treatment in tumor
control. Our data report the potency of stimulating tumor-
specific responses via DNA vaccination in a string-of-bead
design to achieve effective immunotherapy and underline the
importance of combining different immunotherapy strategies
in order to achieve effective clinical responses.
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