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Dynamic causal modeling (DCM) is an analysis technique that has been successfully
used to infer about directed connectivity between brain regions based on imaging data
such as functional magnetic resonance imaging (fMRI). Most variants of DCM for fMRI
rely on a simple bilinear differential equation for neural activation, making it difficult to
interpret the results in terms of local neural dynamics. In this work, we introduce a
modification to DCM for fMRI by replacing the bilinear equation with a non-linear Wilson-
Cowan based equation and use Bayesian Model Comparison (BMC) to show that this
modification improves the model evidences. Improved model evidence of the non-linear
model is shown for our empirical data (imitation of facial expressions) and validated by
synthetic data as well as an empirical test dataset (attention to visual motion) used in
previous foundational papers. For our empirical data, we conduct the analysis for a
group of 42 healthy participants who performed an imitation task, activating regions
putatively containing the human mirror neuron system (MNS). In this regard, we build
540 models as one family for comparing the standard bilinear with the modified Wilson-
Cowan models on the family-level. Using this modification, we can interpret the sigmoid
transfer function as an averaged f-I curve of many neurons in a single region with a
sigmoidal format. In this way, we can make a direct inference from the macroscopic
model to detailed microscopic models. The new DCM variant shows superior model
evidence on all tested data sets.

Keywords: dynamical causal modeling, fMRI, Bayesian model selection, Wilson-Cowan equation, effective
connectivity, mirror neuron system

INTRODUCTION

Since its invention, functional magnetic resonance imaging (fMRI) has been developed into a
powerful and versatile measurement technique. Apart from localizing a wide range of brain
functions, it can now also be used to make statistical inferences about the neural network underlying
these functions. This kind of inference has been made possible by sophisticated analysis techniques
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such as dynamic causal modeling (DCM). DCM is a well-
established method to investigate the causal structure
(effective connectivity) of a system of brain regions. It uses
a Bayesian framework to deduce hidden neuronal states from
time series of observed data measured by fMRI or other
neuroimaging tools such as electroencephalography (EEG) or
magnetoencephalography (MEG). DCM provides posterior
estimates of intrinsic synaptic coupling strengths among
neuronal populations, the inputs that modulate those couplings,
and extrinsic inputs driving the neuronal states (Friston et al.,
2003; David et al., 2006).

The interpretability of DCM is limited by the expressiveness
or complexity of the underlying neural model. This complexity
is constrained by the nature of the data at hand. As we
will see below, the best generalizing models have the most
significant model evidence. Log model evidence is accuracy
minus complexity. This means that there is an optimal model
complexity for any given kind of data. In what follows, we ask
whether typical fMRI data could support more expressive or
complex models that incorporate sigmoid activation functions,
which are characteristic of neuronal dynamics. The most current
versions of DCM for fMRI rely on a relatively simple, completely
linear model of neuronal activity, which is justified as a Taylor
expansion of more complex dynamics near a fixed point (Friston
et al., 2003, 2014; Marreiros et al., 2008a; Stephan et al., 2008;
Daunizeau et al., 2009). This is mainly due to the low temporal
resolution of the fMRI data, making it necessary to estimate
parameters from a very limited number of data points and
restricts the number of parameters that can reasonably be
inferred (David et al., 2008). DCM has also been used in EEG and
MEG with considerably more complex neuronal state equations
than in standard bilinear DCM for fMRI (David et al., 2006;
Kiebel et al., 2008; Moran et al., 2013), as the finer time resolution
allows to constrain a wider range of neuronal processes at
different time scales. Very recently, more complex models have
also been applied to fMRI data, including simulated superficial
and deep pyramidal cells, spiny-stellate excitatory and inhibitory
interneurons, all contributing to the ongoing dynamics (Friston
et al., 2019; Jafarian et al., 2020; Wei et al., 2020) (for a more
detailed comparison of the existing DCM variants, see section
“Comparison to other DCM extensions” in the Discussion).

While the increased complexity of such extended DCMs
opens the possibility to make more detailed inference about
the networks underlying brain functions, it also makes those
models harder to fit the data, as increasing the number of
fitted parameters increases both computational cost and the risk
of obtaining suboptimal fits. Furthermore, it has been shown
in other contexts that complex models with a large number
of parameters can be seriously underconstrained, i.e., several
qualitatively different sets of parameters fit the data equally
well, making it hard to interpret the results (Marder and Prinz,
2002). Thus, fitting of complex models to data with limited
resolution can result in solutions that produce good fits, but
unphysiological parameter regimes. Even worse, fitting may
result in physiologically plausible solutions, which point toward
neural mechanisms that are nevertheless entirely different from
those being used by the brain.

We propose a solution to the dilemma between detailed
inference and underconstrained modeling using a DCM, which is
relatively simple but involves a more realistic, non-linear neuron
model. More precisely, Wilson-Cowan-type equations (Wilson
and Cowan, 1972), which describe the evolution of excitatory and
inhibitory activity in a population of neurons, are implemented
instead of standard bilinear equations for both single and two-
state DCM. In this way, the parameters obtained by DCM can be
directly interpreted physiologically (see “Materials and Methods”
section). In the future, these DCM results can be used to constrain
a spiking network model (Hass et al., 2016) to derive predictions
about physiological details that cannot be obtained from non-
invasive recordings.

We test the new non-linear modification of the DCM
framework based on the Wilson-Cowan model (W-C DCM)
on three different data sets and show its superiority in model
evidences compared with the standard bilinear model. First,
we use an established data set that has been widely used as
a test case for DCM (Christian Büchel and Friston, 1997).
This section compares W-C DCM with the bilinear DCM for
the two best models achieved from previous studies (Penny
et al., 2004a; Ashburner et al., 2014). Second, we investigate
the dynamics of the human mirror neuron system (MNS)
using our own novel data set. Here, W-C DCM is shown to
unravel connections which are overlooked by bilinear DCM.
Finally, we generate synthetic data with different signal-to-noise
ratios (SNRs) based on the novel data to investigate how W-C
DCM performs when the ground truth is known. We show
that W-C DCM provides explanations with more significant
evidence compared to bilinear DCM for low SNRs, which are
typical for fMRI data.

MATERIALS AND METHODS

Wilson-Cowan Equations for DCM
In this section, we briefly review single-state Dynamic Causal
Modeling for fMRI data (Friston et al., 2003) as well
as the Wilson-Cowan model (Wilson and Cowan, 1973,
1972) before introducing the modifications of the neuronal
state equation.

DCM describes a system characterized by m inputs and l
outputs with one output in each brain region. The experimental
manipulations are modeled as changes in the inputs. In each of
these regions, the output is measured, which corresponds to the
observed BOLD signal. Normally these time series are considered
as average or typical values of given brain regions. Each region
is described by five state variables, four of which correspond to
the hemodynamic model, i.e., the dilatation of the blood vessels,
the normalized blood flow, the normalized venous volume, and
the deoxyhemoglobin content of the blood (Friston et al., 2000;
Stephan et al., 2007b). These variables are independent of the state
of other brain regions. The fifth state variable is the neuronal or
synaptic activity in each brain region, modulated by the neuronal
states in other regions.

The effective connectivity of the regions is described at
the neuronal level. This neuronal activity is modeled by a
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multivariate differential equation that has a bilinear form in the
original format (Friston et al., 2003) to describe the dynamics:

żt =

A+
m∑
j=1

ujBj

 zt + Cu (1)

zt denotes the time derivative of neuronal activity (z) and uj is the
j-th of m inputs at time t. Matrix A, also called the connectivity
matrix, describes the interconnections between the brain regions
and the influence that a neural system exerts on another. The
matrices Bj describe the change in connectivity through the j-th
modulatory input uj. Finally, the matrix C embodies the direct
influences of the external inputs u on the neuronal activity. This
equation can be achieved from a Taylor expansion of any non-
linear function, F(z, u, θ), around the system’s resting state (z =
0, u = 0). Such a non-linear function can be thought to describe
both the synaptic transmission between regions and the neural
computations within each region. Thus, when estimating the
connectivity matrices, θ = {A, Bj, C}, the estimated numbers
also reflect neural computations and synaptic transmission
together. Thus, one goal of the presented framework based on the
Wilson-Cowan model is to disentangle local computation (using
a non-linear transmission function S) and transmission between
regions (using the linear connectivity matrices θ = {A, Bj, C},
which thus are to be interpreted differently compared to the
bilinear model).

The Wilson-Cowan model describes the evolution of firing
rates of a large population of densely coupled neurons. Assuming
both excitatory (E) and inhibitory neurons (I) in this population
to be homogeneous, their firing rates RE(t) and RI(t) are
governed by two differential equations:

τEṘE (t) = −RE (t)+ SE (xE)

τIṘI (t) = −RI (t)+ SI (xI)

SE (xE) =
1

1+ exp(−αE ∗ (xE − θE))

SI (xI) =
1

1+ exp(−αI ∗ (xI − θI))

xE = wEE ∗ RE (t)− wEI ∗ RI (t)+ IE

xI = wIE ∗ RE (t)− wII ∗ RI (t)+ II

(2)

τE and τI are the membrane time constants of the two
subpopulations, and S(x) denotes the sigmoidal non-linearity as
an activation or transfer function with slope α and threshold θ,
which are also specific for E and I. wXY is the synaptic weight of
the connection from subpopulation X to Y and IX represents the
external input to each subpopulation, where X and Y can be E or I.
The first differential equation describes an exponential relaxation
of the firing rate RE(t) with time constant τE to its steady-state
value SE (xE), which is determined by a weighted sum xE of both
firing rates RE (t) and RI(t) as well as the external input IE, filtered
by the sigmoid non-linearity SE. The same is true for RI(t) with
its respective variables and parameters. The weights in the sum

can be directly interpreted as synaptic efficiencies between the
subpopulations, while the sigmoid mimics the non-linear input-
output relations of the neurons in the subpopulation (Figure 1).
For large values α, this relation is very steep, so S is zero for inputs
x below the threshold θ and one for input above. The relation
becomes more gradual for lower slopes, but still saturates into
zero and one for very low and very high inputs, respectively.

Wilson and Cowan used phase-plane analysis to show that
the system described by Eq. 2 allows for a variety of dynamic
phenomena that are relevant to the function of the brain (Wilson
and Cowan, 1972), including multiple stable fixed points (a
simple mechanism e.g., for working memory) and oscillations.

We propose to replace the standard bilinear equation
(equation 1) with a Wilson-Cowan-type equation:

żt = −zt + S(x)

S (x) =
1

1+ exp(−α ∗ x)
−

1
2

x =

(
A+

m∑
j=1

ujBj
)
zt + Cu

(3)

In this way, the different components of the model relate to
the underlying biological elements of the brain: The matrices
A, B, and C are the synaptic weights (w) in Eq. 2 (parameters
merge excitatory and inhibitory synaptic weights), and the
sigmoid non-linearity directly relates to the f-I curve of single
neurons (Hass et al., 2016). This contrasts with the bilinear
model, where the matrices intermingle synaptic weights and
Taylor approximations of the non-linearities. Note that this
implementation of the sigmoid function allows for negative
firing rates to ensure the neuronal system has a stable
fixed point when all states are equal to zero and changes
in state variable can be interpreted as deviations from the

-4 -3 -2 -1 0 1 2 3 4

0

0.5

1

slope 8
slope 1

FIGURE 1 | A schematic illustration of two sigmoid functions with different
slopes and the corresponding linear functions.
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fixed point (cf. David et al., 2006). As a negative firing rate
is not physiologically plausible, the model can be interpreted
to capture activity relative to a baseline resting-state rather
than total activity.

In this form, we replace separate excitatory and inhibitory
variables with a single neuronal variable that can be positive or
negative. However, it is possible to consider separate excitatory
and inhibitory variables explicitly, using an extension of the two-
state DCM.

Two-State DCM With Wilson-Cowan
Equations
We also incorporated the Wilson-Cowan model (Eq. 2) into two-
state DCM (Marreiros et al., 2008a) to compare its application
between single- and two-state models and use it in the future to
constrain local spiking neural networks in a more detailed way.
In this version of DCM, each region consists of excitatory and
inhibitory subpopulations, and in this way, it is biologically more
plausible and less constrained than the single state model. This
form of the DCM is more similar to the original Wilson-Cowan
model (equation 2, Wilson and Cowan, 1972, 1973). The standard
bilinear equations of a two-state model are:

ẋE = wEExE − wSExE − wIExI + Cu

ẋI = wEIxE − wSIxI
(4)

Similar to the W-C model, the xE and xI summarize the dynamics
of the excitatory and inhibitory neurons. wEE is the extrinsic
connection between excitatory neurons of different regions (The
connections between the two regions are provided only by the
excitatory neurons), and wIE and wEI are the within region
(intrinsic) connections from excitatory (E) to inhibitory (I)
populations and vice versa. Finally, wSI and wSE represent the
intrinsic inhibitory self-connection on I, and excitatory self-
connection on E, respectively. Due to the difference between
intrinsic and extrinsic connections, xE has two different meanings
in Eq. 4: In the term including wEE, xE represents extrinsic
input from different brain regions, while in all other terms,
intrinsic input from the same region is meant. Furthermore, in
this formulation, the between regions connections (wEE) and
intrinsic inhibitory to excitatory connections (wIE) are split up
into a direct and modulatory part, analogous to the A and B
matrix components for single-state DCM.

For excitatory and inhibitory subpopulations, we modified
these equations as below:

żE = −zE + SE(xE)

żI = −zI + SI(xI)

SE(xE) =
1

1+ exp (−αE ∗ xE)
−

1
2

SI(xI) =
1

1+ exp(−αI ∗ xI)
−

1
2

xE = wEEzE + wSEzE − wIEzI + Cu

xI = wEIzE − wSIzI

(5)

Where αE and αI are the slope of sigmoid function in the
excitatory and inhibitory subpopulations. In the original model
in SPM (Marreiros et al., 2008a), only wEE and wIE are estimated,
but here we estimate all the parameters as well as the sigmoidal
slopes for excitatory and inhibitory neurons.

Bayesian Model Selection
We use Bayesian Model Selection (BMS) for comparing the
Wilson-Cowan-based equations with bilinear DCMs. Bayesian
Model Selection is widely used for finding the model that fits
the data best among several alternatives. Model evidence (the
probability of obtaining observed data given the model) is widely
used in this approach, using the free-energy criterion. This
criterion is composed of two components: the accuracy term
(log-likelihood of data), which computes the data fit, and the
complexity term, which depends on the number of parameters
and also the deviation of posterior densities from their prior. Two
models m1 and m2 are compared using the Bayes Factor (BF12),
which is the ratio of model evidence of two models reported on
a log scale. Its value equals the difference between the free energy
of the models (|F1 − F2|). By convention, if the value of the log-
BF12 is about three or more, it indicates strong evidence in favor
of model 1 over 2 (Kass and Raftery, 1995; Raftery, 1995).

There are two different approaches at the group level for
model inference: Fixed Effects (FFX) and Random Effects (RFX)
analysis. In the FFX, Group Bayes Factors (GBF) (Stephan et al.,
2007a) are widely used for model selection when a common
model is being assumed for each subject, i.e., the most likely
model structure is the same across subjects (Stephan et al., 2009;
Penny et al., 2010). This method is sensitive to outliers and blind
concerning group heterogeneity. Hierarchical Random Effects
analysis (RFX), on the other hand, models inference on the level
of group analysis that allows each subject to have a different
best model and computes the probability of all subjects’ data
given each model. In contrast to FFX, outliers have minimal
effect on RFX results, which accounts for group heterogeneity.
The results of RFX group analyses are reported in terms of
expected, exceedance, and protected exceedance probabilities.
The expected probability is the expected posterior probability of
obtaining the n-th model for any randomly selected subject, and
the exceedance probability is the probability that one model is
more likely than any other model between all models tested. As
the exceedance probability does not consider the null hypothesis
that all model frequencies are due to chance, the protected
exceedance probability is also utilized here (Rigoux et al., 2014),
which considers this null hypothesis. Each of these measures
can be used for finding the best model, and higher expected,
exceedance, or protected exceedance probability independently
means that a model is more probable. However, fixed effects
BMS is also used in this study to show that the modified version
of DCM has a better result in both Random and Fixed effects
analysis. Furthermore, for the established data set (Büchel and
Friston, 1997), as it is only for one subject, FFX BMS usage for
testing our modification is mandatory.

In this study, we performed the BMS on the family-level
(Penny et al., 2010) and grouped all the possible models in
one family to compare the Bilinear and W-C DCMs. The
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implementation was originally developed based on DCM10
(r6313) provided with SPM8 (Statistical Parametric Mapping
8)1, which was the most recent version when this work was
begun. However, we repeated several analyses with DCM12
(r7487) in SPM12 and did not observe any qualitative
differences. Furthermore, we computed the protected exceedance
probabilities with the VBA toolbox as it is not implemented in
the SPM software at the family level (Daunizeau et al., 2014;
Rigoux et al., 2014).

Moreover, to characterize the two models at the microcircuitry
level, we perform Bayesian Model Averaging (BMA). This
method averages each connectivity parameter over all models
within the family or whole model space, weighted by each models’
posterior probabilities. Thus, the most probable models will
contribute the most to the model averaging (Penny et al., 2010).

In order to have a fair comparison between the Bilinear and
W-C DCMs, we used the original format of shrinkage priors and
the identical hyperpriors as the classical DCM (Friston et al.,
2003; Marreiros et al., 2008a) for both single and two-state W-C
DCMs. Furthermore, we also used the same inference Variational
Bayes under the Laplace assumption (VBL) scheme as the original
DCM (Friston et al., 2007).

Data Sets
Established Data Set
We used well-studied data from an experiment on visual
attention-modulated connectivity during visual motion
processing (available from the SPM website: http://www.fil.ion.
ucl.ac.uk/spm, the full description of the experimental paradigm
can be found in Büchel and Friston, 1997). In brief, the
experimental variables were three exogenous inputs: A “photic
stimulation” variable indicated when dots were shown on a
screen, a “motion” variable indicated that the dots were moving,
and the “attention” variable indicated that the subject should
attend to possible velocity changes. These are also the three
input variables that we used in the DCM analyses shown in
Figure 3A. This data set for a single subject has been used several
times to validate DCM for fMRI (Harrison et al., 2003; Penny
et al., 2004a,b; Marreiros et al., 2008a; Stephan et al., 2008;
Friston et al., 2019).

Novel Empirical Data on Imitation
Empirical data were acquired within the framework of a
larger project on the human MNS. Participants underwent a
simultaneous EEG-fMRI measurement. Here data of the fMRI
measurement is presented. The reported analyses are conducted
on a subset of 42 healthy participants out of the total final sample
of 75 participants that were available by the time the analyses were
conducted. The study was approved by the local ethics board at
the Medical Faculty Mannheim, University of Heidelberg (2015-
501N-MA), and participants signed written informed consent
before participating in the study.

The imitation paradigm in Figure 2 consists of three
conditions (Observation, Imitation, Execution) and a motor
control condition (Control). During the observation, participants

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

simply look at emotional faces, expressing anger or fear. During
imitation, participants additionally imitate the facial expression
displayed in the pictures. The words “anger” or “fear” are
presented in the execution condition, and participants have to
mimic the corresponding facial expression. The control condition
requires participants to say out loud the German letters “A”
(pronounced similar to “a” in “car”) or “Ä” (pronounced similar
to “a” in “anger”), which should resemble the facial expressions of
fear and anger, respectively. The experimental trials are presented
in blocks of four pictures. Experimental blocks are alternated
with control blocks, consisting of two control stimuli. Stimuli
within the blocks are presented in pseudo-randomized order
and separated by a jittered inter-stimulus-interval of 1–3 s.
Experimental stimuli are shown for 5 s, and the control stimuli
for 3 s. Before each block, an instruction cue is presented for
2 s, preceded by a jittered inter-block-interval of 4–6 s. In total,
each experimental block is presented 5 times, the control block
15 times, resulting in a total of 20 trials in each experimental
condition, and 30 in the control condition.

fMRI data were acquired with a 3T Siemens Magnetom Trio
Tim with a 12-channel head coil at the Central Institute of
Mental Health in Mannheim, Germany. Echo-planar imaging
was conducted with 32 descending 3 × 3 × 3 mm slices with 1
mm gap, TR = 2,000 ms, TE = 30 ms; flip angle = 80◦, field of
view = 192 mm; matrix = 64 × 64. Prior to the experiments, an
anatomical sequence was recorded (TR= 1570 ms, TE= 2.75 ms;
flip angle = 15◦, field of view = 256 mm; matrix = 256 × 256;
voxel size 1× 1× 1 mm).

Preprocessing consisted of slice time correction, realignment
to the mean image, normalization, and resampling with
3 × 3 × 3 mm voxel size, as well as smoothing with 8 mm
Gaussian kernel. First-level-analyses were achieved by general
linear models with the onsets of the conditions (Imitation,
Observation, Execution, and Control) and the six movement
parameters from the realignment procedure as covariates. First
eigenvariates of the time series of imitation >control were

FIGURE 2 | Imitation paradigm with the timing of trials. A trial for imitation and
a trial for execution is shown exemplarily.
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FIGURE 3 | Results of the FFX Bayesian model comparison of two models of the forward and backward attention modulation (M1 and M2) for the bilinear models,
and the Wilson-Cowan (W-C) models. (A) Illustration of the two best models (see the text). Comparison of the two models in row A for (B) single-state and (C)
two-state DCM with W-C and bilinear neuronal equations (left and middle panel) and comparison of the two equation types with the two models combined in one
family (right panel). The results show strong evidence (both single- and two-state) for the W-C models in all cases (family posterior probability one for W-C models
and zero for standard bilinear).

extracted with p < 0.5 without a cluster size threshold while
adjusting for the activation during imitation from the regions
of interest (ROI’s). The ROI’s were the main regions associated
with the human MNS: BA 44, IPL, and STS. The masks for BA
44 (Brodmann atlas) and IPL (AAL atlas) were taken from the
WFU_pickatlas. The BA44 mask was smoothed with a dilation
factor of 1, to allow a continuous mask. The STS mask was based
on activation in a study on social cognition and has been used as
the region of interest in earlier publications (Mier et al., 2010a,b).

Synthetic Data
To validate the results from the empirical dataset (comprising
42 participants), we generated a synthetic dataset for which the

network architecture and parameter values were known. We
generated the synthetic fMRI data using the standard bilinear
equation (Eq. 1) and the usual hemodynamic equations (Stephan
et al., 2007b). Here we use a typical connectivity model from
a three-area model (Figure 8B). Its network structure consists
of one driving input into the first region and feedforward
connections from the first region to the second and third regions,
as well as a forward connection from the third region to the
second region. There is also a contextual input on the forward
connections from region 1 to region 3 and from region 3 to
region 2. The generating parameters were also sampled from the
estimated posterior values (the mean of expected values) of the
previous section’s empirical data to ensure the synthetic data is
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realistic (reported in Figure 8B). We simulated the BOLD signal
from this model and then generated the synthetic data by adding
10 realizations of normally distributed random noise for each
SNR. In this way, we have simulated 10 artificial time series for
each region with different signal-to-noise ratios. Then we did
the parameter estimation for both Bilinear and W-C DCMs for
these synthetic data with different SNRs. In this way, we could
test the robustness of the analysis for varying levels of noise. We
compare the two estimates using the percentage of the observed
time series variance explained by the time series predicted by
DCM (Zeidman et al., 2019). SNR values range between zero and
0.5, and the repetition time (TR) equals 2 s.

Usually, one uses synthetic data to establish the face validity
of DCM in terms of Bayesian model comparison. In other words,
one would generate data under a variety of models and then assess
the evidence for the different datasets under the models used
to generate the data. This creates a confusion matrix of model
evidences that can be used to establish that the model generating
data was recovered via Bayesian model selection. In one sense,
we have already established face validity at the level of model
comparison (see above).

The use of synthetic data in this section differs slightly and
speaks to the robustness of model inversion instead of validity. In
some circumstances—due to the non-linearity of DCM’s—there
may be a failure of convergence to the global minimum of free
energy. In other words, the scheme gets trapped in local minima;
usually, that random fluctuations can explain all the data. This
means that the predicted data responses “flat-line.” Therefore,
we assessed the ability of the W-C DCM to elude local minima
by showing that inversion under different levels of noise reduces
the instances of “flat-lining”—as scored with the accuracy or
variance explained.

RESULTS

In the following sections, we will test whether the Wilson-Cowan-
based equations can improve the predictions of fMRI data using
both empirical and synthetic data.

Validation of Established Data Set
In a first step, we investigate the validity of the Wilson-Cowan-
based DCM framework (W-C DCM) using a well-studied data
set on visual attention (Büchel and Friston, 1997). As shown
in Figure 3A, activity is modeled in three regions, V1, V5,
and superior parietal cortex (SPC), with sensory input to V1
and motion and attention as modulatory inputs on connections
(Büchel and Friston, 1997). Previous DCM researches have
established a connection scheme between these regions (Penny
et al., 2004a; Marreiros et al., 2008a), so we can use this data set as
a test case of our extended method.

We used the two models that had the most substantial
evidence according to previous research using the Bayesian
model comparison (Figure 3A; Penny et al., 2004a; Ashburner
et al., 2014). The results of this comparison are represented in
Figures 3B,C in terms of the relative log-evidence and posterior
probability for both single- and two-state DCM. As can be

seen, model 2, in which the attention input modulates the
forward connection from V1 to V5, has more robust evidence in
bilinear and non-linear DCM, consistent with previous findings
(Marreiros et al., 2008a; Penny et al., 2004a). Furthermore, there
is much stronger evidence (posterior probability) for both models
in favor of Wilson-Cowan-based DCM. Thus, the modified DCM
framework provides a better explanation for the data while
preserving the original distinction between the two connection
schemes. Please note that the dataset contains only one subject, so
we performed FFX BMS, as RFX analysis can only be performed
in a group analysis.

Validation of Novel Empirical Data
Next, we apply Wilson-Cowan-based DCM to a novel data set
using an imitation task to probe the human mirror neuron system
(MNS), including the three regions BA44, IPL, and STS (see
section “Materials and Methods” for details). For this task, it is
known that the visual input goes to the STS region (Iacoboni
et al., 2001; Kilner et al., 2007), and we use this hypothesis
to build the model space, including 540 different models to
test all the possible combinations of the forward and backward
connections with their modulatory elements. We constructed the
model space accordingly: From STS, the input would propagate
to the IPL and BA44. The effective connectivity between the two
regions can be both feed-forward or reciprocal. So in our case,
we have three nodes, and these nodes can maximally have six
connections in case of mutual connectivity. Furthermore, we have
considered all possible modulatory inputs on the connections. In
this way, each combination of the intrinsic connection between
different regions can have 2n modulatory inputs, n (in our case,
n can be 2, 3, 4, 5, and 6) being the number of endogenous
connections between the regions of interest. In total, for a
network of three nodes and one experimental condition, one
can build 5,832 (all possible models) models (Lohmann et al.,
2012) (to get this number, we used the second equation in the
section “Combinatorial Explosion” in the paper, n = 3, m = 1).
In this way, the experimental condition (imitation in our case)
can integrate into each of three regions (one region, two regions,
or all three regions simultaneously; 3! = 6 different variants)
and modulate the connections. However, with our hypothesis, we
restricted the external input only into the STS region and could
build 540 models.

We have tested all the 540 models in the family-level to
compare the modified DCM to the standard bilinear DCM. As
shown in Figure 4 and Table 1, the result of the Bayesian model
selection for both fixed effect and random effects shows that the
modified version of DCM has a probability of one and zero for
the Bilinear models. For RFX BMS, the results are presented with
expected, exceedance, and protected exceedance probability in
Table 1. We illustrate the exceedance and protected exceedance
probability in Figure 4, together with the posterior probability for
FFX BMX. As can be seen, W-C models have a strong probability
of one in all cases.

To assess the flexibility of the modification introduced above,
we also applied it to two-state DCM. Figure 5 (Table 1) shows
the Bayesian model comparison for two-state DCM with bilinear
and Wilson-Cowan equations. In Figure 5A, by using random
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FIGURE 4 | Results of Bayesian model comparisons for all possible models in the Family-level with standard bilinear equations and Wilson-Cowan (W-C) equations.
This comparison is done with both FFX and RFX BMS.

TABLE 1 | RFX BMS results of the single-state and two-state models for both bilinear and Wilson-Cowan models and also the comparison between the single-state and
the two-state Wilson-Cowan model (Figure 5B).

RFX BMS Single-state model Two-state model Wilson-Cowan model

Bilinear model Wilson-Cowan model Bilinear model Wilson-Cowan model Single-state model Two-state model

Expected probability 0.06 0.94 0.15 0.85 0.57 0.43

Exceedance probability 0 1 0 1 0.80 0.20

Protected exceedance 0 1 0 1 0.82 0.18

probability

effects BMS, we have compared all the models on the family-
level as before for the two-state DCM. As can be seen, it gives
a probability of one for the modified version. In Figure 5B, we
also compare the modified single- and two-state DCM with each
other. In contrast to the original paper (Marreiros et al., 2008a),
the single state has a higher probability with our data and thus
provides a better fit to data than the two-state model. This is
an important result because it shows that the best model is not
necessarily the most complex model. In other words, the simpler
one-state model had more evidence than the more complex two-
state model (that can fit the data more accurately). We will return
to this issue in the discussion.

An additional benefit of our modification is that the Wilson-
Cowan-based model produces meaningful results for participants
with weak activation (e. g. showing activation for the more
lenient threshold p = 0.5, but no activation for the stricter,
standard threshold p = 0.05). We observed convergence to a
local minimum at low activation (i.e., flat-lining) in 18 subjects
out of 42 with the standard DCM, while the Wilson-Cowan-
based model produced non-flat time series for almost all of these
subjects (17 subjects out of 18). Figure 6 shows the differences
between the outputs of DCM analysis for the two kinds of
models of a typical single subject in addition to the connectivity
model used to plot these graphs. Next to each connection,
one can find the estimated parameters (the mean of expected
values) from the Bilinear and W-C DCM. As can be seen, the
W-C model’s estimated connections are much stronger than the
standard bilinear model.

Finally, we investigate how the bilinear and W-C models
inform us about the microcircuitry of the MNS. For this, we
perform a BMA analysis for both Bilinear and W-C single-
state models over all model space, 540 models. Inspection of
Figure 7 and Tables 2, 3 show the parameter estimations for
the two models are very different from each other. In Figure 7,
only the parameters with a posterior probability of greater than
0.95 (P > 0.95) are shown. For both models, the self-inhibitory
connections and the forward connections from STS to BA44 and
IPL are in common; however, the W-C model connections appear
stronger. Regarding the model differences, for the W-C model,
there are reciprocal connections between BA44 and IPL with
modulatory inputs on all significant intrinsic connections except
for IPL→ BA44 (however, its probability is very close to 0.95).
In addition, the bilinear model predicts the BA44→ IPL as weak
inhibitory connection and the W-C model as an excitatory and
robust connection.

Validation of Synthetic Data
Here, we are interested in investigating the robustness of the
modified single-state DCM with a synthetic data set for which
the properties are known. We generated the synthetic fMRI
data using the standard bilinear equation for a three-area model
achieved by analyzing real data and adding random noise
with different signal-to-noise ratios (see section “Materials and
Methods”). In this way, we could check how well the modified
DCM could identify the underlying “ground truth” based on
synthetic data with different noise levels. In this regard, we
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FIGURE 5 | Bayesian model comparison (RFX) for the two-state model at the family-level. (A) comparison between two-state bilinear models and two-state
Wilson-Cowan models, (B) comparison between single and two-state Wilson-Cowan models.

compared the Wilson-Cowan model with the bilinear model by
checking the percentage of variance explained by the model for
different SNRs. As can be seen in Figure 8A, even for very small
values of SNR (zooming portion), the W-C model fits the data
better than the bilinear model in a significant way (P = 0.013).
With increasing the SNR values, W-C models still fit the data
better (but not significantly, P = 0.42) until explained variance
values merge again for larger SNR. This shows how the W-C
model enables an inversion scheme to escape the local minima
in a low to a higher SNR range. In Figure 8A, we also add error
bars to show that the explained variance is actually (significantly)
different for intermediate SNRs. We roughly estimate the SNR
for the novel empirical data used in the previous section to be
0.02 (Hadi, 2014), being at the lower end of the spectrum.

As any sensitive measure can be prone to produce false
positive results, we assess the probabilities for each connection
in the reconstructed model and compare the results with the
“ground truth” network structure that was used to generate
the synthetic data (Figure 8B). In particular, we vary the
threshold p the probability for a connection needs to exceed to
predict that particular connection to exist. If such a predicted
connection does not exist in the generating model, it is counted
as a false positive. Conversely, any missing connection in the
reconstructed model that is present in the generating model
is considered a false negative. Plotting the percentage of true
positives (1 minus false negatives) against the percentage of
false positives yields a receiver operator characteristic (ROC)
curve, and the area under this curve (AUC) is a measure
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FIGURE 6 | Observed and predicted time-series in DCM analysis of bilinear (left) and W-C (right) models for one subject. The left graph shows a flat time series,
while in the right graph, predicted activity reacts to the inputs. The network structures with estimated parameters (the mean of expected values) of each model are
illustrated below of each graph.

of the diagnostic ability of the model independent of the
choice of the threshold. Figure 8C shows the AUC of the
ROC curves for different signal-to-noise ratios. It is apparent
that the W-C model is more efficient in correctly detecting
connections between the areas than the bilinear model for small

SNR values (below 0.3), while the detection performance of
the two models converges for larger SNR values. In particular,
false positive rates are comparable for both models at all SNR
values, while false negative rates are lower for the W-C model
at low SNR values.
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FIGURE 7 | BMA results for Bilinear and W-C models. Here we illustrate only the parameters which are significantly different from zero. The values next to each
connection are the expected value (mean) of each parameter and the values for external inputs (Matrix C). All parameters are in Hz.

DISCUSSION

In this paper, we present a new DCM variant for fMRI on the
level of neuronal states in which the equations have a sigmoidal
form for the latent variables. Using our measurements as well as

TABLE 2 | BMA results (matrix B).

Bilinear from STS IPL BA44

to

STS −0.4772 (1.00) −0.0671 (0.67) −0.1750 (0.88)

IPL 0.3841 (0.99) −0.4731 (1.00) −0.0113 (0.53)

BA44 0.3953 (0.99) 0.0452 (0.62) −0.4776 (1.00)

Wilson-Cowan

STS −0.4919 (1.00) −0.1748 (0.82) −0.1431 (0.77)

IPL 0.9006 (1.00) −0.4795 (1.00) 0.6591 (0.99)

BA44 1.1071 (1.00) 0.5788 (0.99) −0.4798 (1.00)

The expected values (mean) for endogenous connectivity (Matrix A) (in Hz). In
parentheses, the posterior probability is shown for each parameter to be different
from zero.

TABLE 3 | BMA results (matrix B).

Bilinear from STS IPL BA44

to

STS – −0.0005 (0.50) −0.0144 (0.59)

IPL 0.0853 (0.85) – 0.0386 (0.70)

BA44 0.0989 (0.87) 0.0433 (0.73) –

Wilson-Cowan

STS – 0.0094 (0.54) 0.0095 (0.54)

IPL 0.1711 (0.96) – 0.1609 (0.96)

BA44 0.2059 (0.97) 0.1515 (0.947) –

The expected values (mean) for modulatory connectivity (Matrix B). In parentheses,
the posterior probability is shown for each parameter to be different from zero.

synthetic and established real data, we show by Bayesian model
comparison that the modified model explains better with the
observed data than the standard bilinear equation and allows us
to detect smaller effects. Furthermore, our results support current
theories on information flow in the MNS.

In particular, Bayesian Model Selection showed that the
Wilson-Cowan-based models with the sigmoidal form have
more significant expected and exceedance probabilities than
the standard bilinear equation models for single state DCM.
Moreover, at the microcircuitry level, it informs us more
about the network connections responsible for imitation in
the MNS. Thus, we have shown that DCM with a slightly
more complex neuronal model outperforms the simple linear
model, and additionally allows us to make predictions about
local neuronal circuits, namely on the slope of the input-
output relation. Furthermore, 18 participants out of all 42
subjects gave a flatline in the predicted time series with the
bilinear models. With the Wilson-Cowan models, 17 of these
participants could be rescued for analyses. Our significance
threshold (p < 0.5) for time series extraction was untypically
lenient for DCM analyses. The Wilson-Cowan modification
might be a way to fix the limitation of DCM to results
with large effect sizes. While the possibility of false-positive
results due to the more lenient threshold should be considered,
results from synthetic data suggest that false positive rates
are similar for Wilson-Cowan and bilinear DCM at all
levels of noise.

We also implemented the modified model in the two-state
DCM, where each region consists of excitatory (glutamatergic)
and inhibitory (GABAergic) subpopulations (Marreiros et al.,
2008a), just like the model proposed by Wilson and Cowan
(1972). By performing the Bayesian model selection for the
empirical data on imitation and comparing it with a single-
state model, we found that the single-state model fits better
to data, in opposition to the report in the original paper
(Marreiros et al., 2008a). However, in both cases (single- and
two-state), the Wilson-Cowan model reached a higher probability
than the standard bilinear models. One may claim that in our

Frontiers in Neuroscience | www.frontiersin.org 11 November 2020 | Volume 14 | Article 593867

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-593867 November 23, 2020 Time: 15:9 # 12

Sadeghi et al. Wilson-Cowan-Based DCM for fMRI

Network structure

3

1

2

-0.46

-0.45

A B

C

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
SNR

0

5

10

15

20

25
Va

ria
nc

e 
ex

pl
ai

ne
d

Bilinear
W-C

0.001 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
SNR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
O

C
 A

U
C

Bilinear
W-C

FIGURE 8 | Synthetic data result. (A) The mean value of the variance explained by the model with different Signal to Noise Ratios for both W-C and bilinear models
(10 realizations of noise for each SNR). Error bars are standard errors. (B) The underlying model’s network structure, which is used to generate synthetic data with
the estimated parameters (the mean of expected values) from the novel empirical data. (C) Area under the curve (AUC) of the receiver operator characteristic (ROC)
curves of detecting the existence of a connection between two areas as a function of the SNR value.

modification, the number of parameters has increased and so
it would be trivial to have a better fit in the case of higher
complexity. However, as we showed in Figure 5, we received
a worse probability in the two-state analysis. Here the number
of estimated parameters increases, as we also estimate all the
parameters for connecting inhibitory and excitatory neurons in
the two-state model. Thus, increasing the number of parameters
alone does not explain the better model fit in data sets.

Comparison to Other DCM Extensions
Since its introduction in 2003, DCM for fMRI has received
several extensions and methodological refinements (Daunizeau
et al., 2011; Stephan and Roebroeck, 2012; Razi and Friston,
2016). These extensions include (i) two-state DCMs (Marreiros
et al., 2008a), with separate excitatory and inhibitory populations
within each brain region, (ii) non-linear DCMs with a quadratic
state allowing the activity of one region to modulate the
connectivity between two other regions (Stephan et al., 2008),
(iii) stochastic DCMs which account for random endogenous

fluctuations in the neuronal states and inputs (Daunizeau et al.,
2009; Li et al., 2011), and (iv) spectral DCMs for modeling
resting-state fMRI data, which estimate the covariance of the
hidden states instead of the states itself (Friston et al., 2014;
Razi et al., 2015). Furthermore, for the large scale brain regions,
a linear DCM in the frequency domain using regression DCM
(Frässle et al., 2017) has been developed for the task-related fMRI,
and in this way, compute for hundreds of regions is now possible
(Frässle et al., 2018).

There have been some advances in hemodynamic transfer
function (HRF) of the DCM for fMRI that resolves the limitation
for the decoupling of BOLD signal and Cerebral blood volume
(CBV) (Havlicek et al., 2015), which cannot be achieved with
the standard hemodynamic model in DCM (Stephan et al.,
2007b)- and also DCMs with laminar resolution measured
with high-resolution fMRI (Heinzle et al., 2016). However, in
this study, we use the original hemodynamic model (Stephan
et al., 2007b) for consistency with the framework mostly
used in DCM studies.

Frontiers in Neuroscience | www.frontiersin.org 12 November 2020 | Volume 14 | Article 593867

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-593867 November 23, 2020 Time: 15:9 # 13

Sadeghi et al. Wilson-Cowan-Based DCM for fMRI

Common to all these DCM variants for fMRI is the relative
simplicity of the neuronal state equations that utilize parameters
that are far from the underlying biology and difficult to match
with parameters used in other fields of computational modeling
of the brain. On the other end of the spectrum, DCM variants
employed for EEG/MEG (David et al., 2006; Kiebel et al., 2008;
Moran et al., 2013) and very recently also for fMRI (Friston et al.,
2019; Wei et al., 2020) include complex neuronal state equations
consisting of currents and membrane potentials instead of firing
rates (Marreiros et al., 2008b; Friston et al., 2019; Wei et al.,
2020) with up to four interacting subpopulations in each region
representing different cell type (Bastos et al., 2015; Friston et al.,
2019). The purpose of this kind of DCM is to make use of both
EEG and fMRI data by feeding the fMRI inversion with posteriors
estimated from EEG data (Jafarian et al., 2020; Wei et al., 2020).
However, considering these complex models only for fMRI data
may come at the cost that the numerous parameters of these
models are much harder to fit the limited amount of data. While
it has been argued that the limited temporal resolution of fMRI
data can be compensated by spectral information (Friston et al.,
2019), such estimations may also be limited by the strong and
diverse fluctuations in the data that cannot easily be attributed to
neuronal and hemodynamics sources. The present DCM variant
with the Wilson-Cowan equation can compromise between very
simple and very complex neuronal state equations. It is easy
to implement and opens the possibility of inferring the global
input-output properties of the neurons within each region.
These properties can be compared to the f-I curves that are
measured in electrophysiological recordings of single neurons
via data-driven network simulations of a single region (Hass
et al., 2016). Moreover, the Wilson-Cowan form of DCM has
increased the interpretability of the connection matrices (A, B,
and C), and now they can be directly interpreted. Below, we
elaborate on how the DCM results can be used to constrain local
networks, and thus allow inferring about the properties of the
involved neurons.

The Role of Non-linearity
The currently established version of the non-linear DCM
(Stephan et al., 2008) was achieved with the further Taylor
extension of Eq. 1 to the quadradic term and defining an
additional matrix D for the modulatory inputs from regions.
However, the version presented in this study is a formally
motivated approach to non-linearity. Rather than approximating
the non-linear activation function by a Taylor expansion, the
Wilson-Cowan equation assumes a particular form for this
function, namely a sigmoid function shown in Figure 1. This
function is chosen to mimic the input-output relation in
real neurons and cannot be emulated by a quadratic term.
Additionally, the Wilson-Cowan equation adds a dynamic
component in the form of relaxation to a steady-state given by
the output of the sigmoid with a specific time constant. However,
we found that including this time constant did not contribute
much to the model evidence, probably due to the limited time
resolution, so we removed this parameter and concentrated on
the non-linearity.

If the input to a given region is close to zero, the sigmoid
function is almost linear (Figure 1). In this regime, the

extended DCM does not react qualitatively different from the
bilinear model. One could argue that the slope parameter is
redundant in this regime, as any change in excitability could be
compensated by the inverse change in the connection matrix
A. However, as the (absolute) input increases (i.e., during
the experimental conditions), the non-linearity of the sigmoid
function extends its influence, ultimately leveling off the impact
of the input and saturating the output into a limited maximum.
This kind of non-linearity mimics the limited dynamic range
of neurons, physiologically incorporated in the form of a
depolarization block (Dayan and Abbott, 2001). In the model,
the dynamic range of a region is governed by the sigmoid
slope: A large slope implies a narrow range, a smaller slope
widens this range (Figure 1). Introducing a limited dynamic
range adds an important degree of freedom to the DCM: In
a linear neuronal state equation, a large input can lead to
a destabilization of the entire system; thus, the strength of
the connections is strongly constrained. For this reason, the
behavior of the system must be constrained, e.g., by using
shrinkage priors or limitations on the sign of the connectivity
matrix. Furthermore, the limited input strength can potentially
prevent sufficient differentiation between resting and active
states. On the other hand, in a Wilson-Cowan-type model,
the effect of the input is intrinsically limited by the non-
linearity, so even strong inputs will not destabilize the system,
allowing for much more flexibility e.g., choosing priors that
reflect knowledge about the connectivity structure. In summary,
the linear model approximates more complex dynamics close
to a fixed point (given by the resting state) and can thus
be destabilized if it is driven away from this fixed point. In
contrast, in the Wilson-Cowan model, external input creates
a new stable fixed point at the higher activity. In the two-
state DCM, the Wilson-Cowan model exhibits an even richer
dynamic repertoire, including the possibility of persistent activity
and oscillations at various frequencies (Wallace et al., 2011).
Thus, the present extension of DCM considerably extends the
range of dynamic behaviors with only a small increase in
model complexity.

Implications for the Mirror Neuron
System
Mirror neurons have first been found in the monkey brain
and have been repeatedly shown to respond to both executed
and observed actions (di Pellegrino et al., 1992; Rizzolatti
and Fogassi, 2014). The problem that we encounter is that
while mirror neurons are a highly promising candidate to
allow interpersonal understanding, we can hardly measure them
in the human brain. Thus, studies in humans mainly rely
on fMRI or other indirect techniques. For observation and
execution of actions, including imitation of facial expressions
(Iacoboni et al., 2001, 2005; Carr et al., 2003; Mier et al.,
2010a), studies show activity in regions that are homologs of
the primate brain areas linked to mirror neurons, namely in
inferior prefrontal gyrus (IFG), inferior parietal cortex (IPL),
as well as in superior temporal sulcus (STS), a region of
highest importance for action perception, but without own
motor neurons. There is only one study directly measuring
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neurons with such a mirror property (Mukamel et al., 2010), and
the patients examined had surgeries mainly outside those central
regions of the MNS. While the authors showed the activity of
neurons in the temporal lobes and further brain regions that are
active during observation and execution of actions, more studies
are needed to get a deeper understanding of the physiology and
functioning of mirror neurons in the human brain. To date, these
properties of the mirror neurons are missing even in the monkey
literature. Using a two-stage modeling approach (see below) is a
way to get closer to the neuronal activity underlying the BOLD
signal linked to such a mirroring process in humans.

In a first step, we showed through the empirical fMRI data that
the modified model has a higher probability and validate this with
synthetic data based on the real data for different values of the
signal to noise ratio. The empirical fMRI data on the imitation
of emotional facial expressions shows connectivity between STS,
IPL, and BA 44. Based on prior knowledge, the driving input
was fixed to the STS (Iacoboni et al., 2001; Kilner et al., 2007).
The model presented in Figure 7, from the BMA result on W-C
DCM, showed a connection from STS to BA 44 and IPL with
mutual coupling between BA 44 and IPL. It can be assumed that
STS provides visual input, the IPL codes the exact motor action
while BA44 codes the motor goal. In the context of predictive
coding, this feedback from BA 44 to IPL is used for updating the
motor action with the motor goals (Kilner et al., 2007). Thus, our
results are in good agreement with the assumed function of STS,
BA 44, and IPL for motor imitation and add empirical evidence
for effective connectivity between these regions for imitating
facial expressions.

Constraints of Local Neural Networks
While the focus of this paper is the introduction of a non-
linear DCM variant, the ultimate goal of the underlying project
is a two-stage modeling approach which uses the results from
DCM to constrain an existing, completely data-driven spiking
network model (Hass et al., 2016) to construct a computational
model of the human MNS. The spiking network model has
previously been shown to be a statistically accurate description
of rodent neural activity in vivo. However, the parameters of
the model were adjusted exclusively by in vitro anatomical and
electrophysiological data (Hass et al., 2016). In this way, the
non-linear extension of the DCM technique presented here
allows combining local modeling with constraints from animal
experiments and global modeling with constraints from fMRI
data. To account for the potential differences in species and brain
regions, we introduced a number of global scaling parameters
for the neural and synaptic properties, which are being adjusted
to the DCM results (Sadeghi et al., 2017). These adjustments
will lead to a model with unprecedented predictive power about
the physiological properties and the temporal dynamics of the
human MNS, as it accounts both for the global dynamics in

humans obtained from DCM and for the detailed neuronal
machinery on the level of local circuits, which are likely to be
conserved across species. In contrast to existing, more abstract
models of the MNS (Oztop et al., 2006; Triesch et al., 2007;
Caligiore et al., 2010; Sasaki et al., 2012; Thill et al., 2013),
this model holds the promise to capture detailed neuronal
phenomena such as the suppression of the mu rhythm (Moore
et al., 2012; Hobson and Bishop, 2016) or the modulation of
the MNS by neurotransmitters (Durstewitz et al., 2000; Hass and
Durstewitz, 2011; Meyer-Lindenberg et al., 2011).
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