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Abstract

Background: Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of

action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological

concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites.

Objective: We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically

achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1).

Method: Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 mM for their relative effects on sVCAM-1

secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-a). The active metabolites

were further studied for their response at different concentrations (0.01 mM–100 mM), structure-activity relationships, and

effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites

and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 mM.

Results: Of the 20 compounds screened at 1 mM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of

which protocatechuic acid (PCA) was themost active (217.2%, P = 0.05). Investigations into their responses at different concentra-

tions showed that PCA significantly reduced sVCAM-1 15.2–36.5% between 1 and 100 mM, protocatechuic acid-3-sulfate and

isovanillic acid reduced sVCAM-1 levels 12.2–54.7%between10 and100mM,andprotocatechuic acid-4-sulfate and isovanillic acid-3-

glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 mM. PCA demonstrated the strongest protein

response and was therefore explored for its effect on VCAM-1mRNA, where 78.4% inhibition was observed only after treatment

with 100 mM PCA. Mixtures of the metabolites showed no activity toward sVCAM-1, suggesting no additive activity at 1 mM.

Conclusions: The present findings suggest that metabolism of flavonoids increases their vascular efficacy, resulting in a

diversity of structures of varying bioactivity in human endothelial cells. J Nutr 2016;146:465–73.
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Introduction

Epidemiological studies have demonstrated associations be-
tween diets high in flavonoid-rich foods and the reduced risk of

cardiovascular disease (1–3). Furthermore, the protective effects
of dietary flavonoids have been observed in numerous ran-

domized control trials (4–8) and animal feeding studies (9–14).

Unfortunately, the direct mechanisms of action of flavonoids

have been elusive. Much of the focus of previous studies has been

on direct vascular reactivity, affecting blood pressure, blood

flow, heart rate variability, and flow-mediated vasodilation (15,

16); however, low-level chronic inflammation, attributed to the

expression of vascular adhesion molecules on the surface of

the endothelium, has long been implicated as a driving factor in

the early stages of atherosclerosis (17, 18). TNF-a is a cytokine

that serves as a mediator in a number of diseases, such as
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atherosclerosis, and stimulates the production of a number of
pro-inflammatory biomarkers (19), such as circulating levels of
soluble vascular adhesion molecule-1 (sVCAM-1)8, an impor-
tant predictor of risk of death from coronary heart disease (20).
TNF-a–stimulated sVCAM-1 expression therefore provided a
logical target for exploring the potential mechanisms of
action of flavonoid metabolites in the present investigation.
The present study used human umbilical vein endothelial
cells (HUVECs), which are an established model for the
study of endothelial dysfunction, with similar expression
profiles to arterial endothelial cells in response to inflamma-
tory stimuli (21).

Previous studies have demonstrated potentially beneficial
effects of flavonoids on some inflammatory mechanisms in vitro,
including inhibition of the adhesion of leukocytes to endothelial
cells (22–24). Unfortunately again, the mechanisms underlining
these effects are unknown, potentially because previous in vitro
investigations have focused on the activity of unmetabolized
flavonoids, which are found in relatively low abundance in the
circulation compared with their metabolites, and have consid-
erably shorter half-lives (25–28). It has therefore been suggested
that the biological activity observed in human studies results
from the activity of products of bacterial catabolism, absorp-

tion, and further phase II metabolism (29, 30), which were the
focus of the present study. In addition, many past in vitro stud-
ies have used supraphysiological concentrations of precursor/
unmetabolized flavonoids, while only a limited few have re-
ported the activity of free-phenolic acids (31). Until recently (32,
33) few have explored the activity of phase II conjugates of
phenolic acid derivatives (34–37), primarily as a result of the
lack of availability of synthetic standards (29, 38). We hypoth-
esized that phenolic metabolites of flavonoids will have differ-
ential biological activities to their precursor structures and that
metabolites in combination may have additive or synergistic
effects. We therefore screened 6 flavonoids found commonly in
the Western diet (Supplemental Figure 1); 14 human metabo-
lites, as previously reported (25–27, 39); and 25 combinations of
the flavonoids and their metabolites (at equimolar concentra-
tions) (Figure 1), for their ability to reduce sVCAM-1 protein
secretion by TNF-a–stimulated HUVECs. Investigations into
the response to different concentrations of active treatments
were also explored, including 4 physiological (between 0.01 mM
and 10 mM) and 1 supraphysiological (100 mM) concentration.
The most active treatment was further assessed for its activity
on transcription regulation via mRNA expression of vascular
cellular adhesion molecule (VCAM)-1.

Methods

Materials. Early passage HUVECs (cryopreserved, pooled donors),

large vessel endothelial growth medium (containing 2% fetal calf serum,

FIGURE 1 Combination treatments used in

this study. Shaded boxes represent inclusion

of respective compounds in equimolar con-

centrations to a cumulative concentration of

1 mM; for example, a combination comprising

4 constituents would require 0.25 mM of each

to yield a final concentration of 1 mM. PCA,

protocatechuic acid.

8 Abbreviations used: HUVEC, human umbilical vein endothelial cell; IVA,

isovanillic acid; IVA3G, isovanillic acid-3-glucuronide; PCA, protocatechuic acid;

PCA3S, protocatechuic acid-3-sulfate; PCA4S, protocatechuic acid-4-sulfate;

SAR, structure-activity relationship; sVCAM-1, soluble vascular cellular adhesion

molecule 1; VCAM, vascular cellular adhesion molecule.
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human epidermal growth factor, human fibroblast growth factor, 25 mg/mL

gentamycin, 50 mg/L amphotericin, hydrocortisone, and heparin),

and trypsin passage pack were purchased from Caltag Medsystems
(Buckingham, United Kingdom). Human-derived fibronectin, TNF-a,

and BAY 11–7085 were purchased from Sigma Aldrich (Dorset, United

Kingdom). The conjugated metabolites, as listed in Supplemental Figure

1, were synthesized at the University of St. Andrews (United Kingdom)
(40). All flavonoids and unconjugated phenolic acids were obtained

from Sigma Aldrich (Dorset, United Kingdom), with the exception of

peonidin-3-glucoside (Extrasynthase, France).

Preparation of treatment solutions. Stock solutions of all com-

pounds screened were prepared in 100% DMSO at 200 mM and

stored at 280�C with the exception of cyanidin-3-glucoside and
peonidin-3-glucoside, which were prepared at 40 mM, and the sulfate-

conjugated phenolic acids, which were prepared at 25 mM in 50%

DMSO (50% PBS) to maintain stability while reducing final DMSO

concentrations in working solutions. Working solutions of all treatments
were made in supplemented media. Treatments containing mixtures of

compounds (Figure 1) consisted of equimolar concentrations of the

constituent treatment compounds to a cumulative concentration of

1 mM.

Cell culture. HUVECs were maintained in supplemented large ves-

sel endothelial medium on fibronectin-coated cell culture plates
(0.25 mg/cm2) at 37�C, 5% CO2, in a humidified atmosphere, as pre-

viously described (40). Cells were reseeded at 90–95% confluence

using a trypsin passage pack. HUVECs were used at passage 4 in all

experiments.

Cell treatment and stimulation. HUVECs were seeded into fibronectin-

coated 24-well cell culture plates (0.25 mg/cm2) and incubated in sup-

plemented media for 24 h before treatment. Media was then removed and
replaced by 1 mM treatment solutions for the screen of individual com-

pounds and treatment mixtures (1 mM cumulatively) and 0.01–100 mM for

protein and mRNA concentration response experiments. IkBa inhibitor

BAY 11–7085 (41) was included as a negative control for all mRNA
experiments. Cells were incubated with treatment solutions for 30 min

before the addition of TNF-a (10 mg/L) for 18 h, as used in previous studies

(42, 43). A vehicle control of equivalent DMSO concentration was used in

each experiment, where the concentration did not exceed 0.1%, as was the
control for 100 mM solutions, and did not exceed 0.02% for all other

treatments. Cell culture supernatantswere collected and used immediately or

stored at 280�C until required.

sVCAM-1 ELISA. Human sVCAM-1 protein levels in recovered cell cul-

ture supernatants were assayed using a Human VCAM-1/CD106 DuoSet

ELISA kit (R&D Systems; Abingdon, United Kingdom), according to the
manufacturer�s instructions. sVCAM-1 was quantified via colorimetric

assay at 450 nm, corrected for 570 nm, using a BMG (LABTECH) plate

reader. The interassay coefficient of variation was 8.8%.

RNA extraction, reverse transcription, and real-time qPCR. Total
RNA was extracted from HUVECs and reverse transcribed to cDNA

using conditions previously described by this group (32). Real-time qPCR
was carried out using 25 ng of cDNA of each sample, with the addition of

VCAM-1 primers (forward primer, 5#-CAGGCTAAGTTACATATTGAT-

GACAT-3#; reverse primer, 5#-GAGGAAGGGCTGACCAAGAC-3#) and
real time PCR Precision master mix with SYBR green (Primer Design).

FIGURE 2 Effect of 1 mM fla-

vonoids and phenolic acid meta-

bolites on TNF-a–stimulated

sVCAM-1 protein secretion

by HUVECs. Flavonoids (A),

anthocyanin glucosides (B), un-

conjugated phenolic acids (C),

and conjugated phenolic acids

(D) are shown. Data were nor-

malized to a TNF-a control, and

columns represent the mean 6
SD (n = 3 independent mea-

sures). Labeled means without a

common letter differ, P # 0.05

(ANOVA with post hoc LSD).

*Different from DMSO, P #

0.05 (t test). BA4G, benzoic

acid-4-glucuronide; BA4S, ben-

zoic acid-4-sulfate; C3G, cyanidin-

3-glucoside; EPI, (-) epicatechin;

HES, hesperetin; HUVEC, human

umbilical vein endothelial cell; IVA,

isovanillic acid; IVA3G, IVA-3-

glucuronide; IVA3S, IVA-3-sulfate;

LSD, least square difference; NAR,

naringenin; PCA, protocatechuic

acid; PCA3G, PCA-3-glucuronide;

PCA3S, PCA-3-sulfate; PCA4G,

PCA-4-glucuronide; PCA4S,

PCA-4-sulfate; P3G, peonidin-3-

glucoside; QUE, quercetin;

sVCAM-1, soluble vascular cel-

lular adhesion molecule 1; VA,

vanillic acid; VA4G, VA-4-glucu-

ronide; VA4S, VA-4-sulfate;

4HBA, 4-hydroxybenzoic acid.
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Real-time qPCR was carried out using the ABI7500 system, using cycle

methods previously described (32). Relative changes in gene expression

from the TNF-a control were quantified using the comparative Ct method
(44). The difference between recorded Ct values for treatment and positive

control was calculated in the first instance for all genes. VCAM-1 values

were normalized to 2 geNORM housekeeping genes, UBE2D2 and

PRDM4 (Primer Design), selected based on their stability, as established
using qPCR data analysis software qbasePLUS2 (Biogazelle, Belgium),

where the geometric mean of the 2 housekeeping genes was used as the

normalization factor (45).

Data analysis. sVCAM-1 protein (in pg/mL) or mRNA (fold change)

were recorded as the mean of 2 technical duplicates and reported relative

to the TNF-a positive control (containing TNF-a without DMSO),
where data represents the mean6 SD of 3 independent measures (n = 3).

Unequal variances were tested by use of Levene�s test, where the null

hypothesis was rejected at the level of 0.05. Treatments containing

combinations of metabolites were identified as nonparametric, whereas
all other treatments satisfied Levene�s criteria. Where unequal variances

were identified (i.e., treatments containing combinations of metabolites),

between-group differences were established via Kruskal-Wallis ANOVA.

Treatment effects for parametric variables were established by 1-factor
ANOVA with post hoc least square difference. Analysis was conducted

using SPSS for Windows (version 22.0; IBM). Data were considered

significant where P # 0.05. Untreated and negative controls were not

included in the ANOVA for treatment effect but presented graphically,

where a Student�s t test established difference relative to the vehicle

control (DMSO). For screening purposes, treatments displaying nonsig-
nificant values #0.15 were taken forward, for validation in subsequent

concentration analysis.

Results

Effects of flavonoid and flavonoid metabolites on sVCAM-1
secretion. Six flavonoids and 14 phenolic metabolites were
screened at a concentration of 1 mM for their ability to reduce
TNF-a–stimulated sVCAM-1 secretion by HUVECs. Precursor
flavonoids had no significant effect on sVCAM-1 secretion,
although there was a moderate, nonsignificant increase in the
secretion of sVCAM-1 (P = 0.14) following treatment with
(-)-epicatechin (Figure 2). The metabolite protocatechuic acid
(PCA) significantly decreased sVCAM-1 secretion (P = 0.05),
whereas nonsignificant effects were observed for treatments
with sulfate [protocatechuic acid-4-sulfate (PCA4S), P = 0.07;
protocatechuic acid-3-sulfate (PCA3S), P = 0.14] and glucuronide
[isovanillic acid-3-glucuronide (IVA3G), P = 0.15] conjugates of
PCA. Treatments showing the greatest activity (P # 0.15) were

FIGURE 3 Effect of 1 mM mix-

tures of flavonoids and phenolic acid

metabolites on TNF-a stimulated

sVCAM-1 protein secretion by

HUVECs. Flavonoid mixtures (A),

phenolic acid mixtures (B), and

conjugated and unconjugated phe-

nolic metabolite mixtures (C) are

shown. Data were normalized to

a TNF-a control, and columns rep-

resent the mean 6 SD (n = 3

independent measures). *Differ-

ent from DMSO, P # 0.05

(t test). Where unequal variance

was identified (B and C), group

differences were established via

Kruskal-Wallis nonparametric ANOVA.

BA4G, benzoic acid-4-glucuronide;

BA4S, benzoic acid-4-sulfate; C3G,

cyanidin-3-glucoside; EPI, (-) epicate-

chin; HES, hesperetin; HUVEC, hu-

man umbilical vein endothelial cell;

IVA3G, isovanillic acid-3-glucuronide;

IVA3S, isovanillic acid-3-sulfate; NAR,

naringenin; PCA, protocatechuic acid;

PCA3G, PCA-3-glucuronide; PCA3S,

PCA-3-sulfate; PCA4G, PCA-4-

glucuronide; PCA4S, PCA-4-sulfate;

P3G, peonidin-3-glucoside; QUE, quer-

cetin; sVCAM-1, soluble vascular cel-

lular adhesion molecule 1; VA, vanillic

acid; VA4G, VA-4-glucuronide; VA4S,

VA-4-sulfate; 4HBA, 4-hydroxybenzoic

acid.
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taken forward to explore response at different concentrations. Seven
treatments containing mixtures of flavonoids and 18 treatments
containing mixtures of phenolic metabolites were also inves-
tigated for their effect on sVCAM-1 secretion (Figure 3); however,
no activity was observed at a cumulative concentration of 1 mM
of the compounds (P $ 0.27), and therefore no combination
treatments were taken forward for analysis of response to different
concentrations.

Response to different concentrations of active metabolites
on sVCAM-1 secretion. sVCAM-1 secretion was investigated
following treatment with 0.01 mM–100 mM of the most active
treatments PCA, PCA3S, PCA4S, and IVA3G (Figure 4). Isovanillic
acid (IVA), although not active in the sVCAM-1 protein screen, was
also included in order to establish structure-activity relationships
(SARs) with PCA and IVA conjugates. Here, PCA significantly
reduced sVCAM-1 levels in a concentration-dependent manner at
concentrations between 1 mM and 100 mM, whereas PCA3S and
IVAwere active at levels between 10 mMand 100 mM, and PCA4S
and IVA3G were only active at 100 mM.

Response to different concentrations of PCA on VCAM-1
mRNA expression. Because PCA showed the highest activity
on protein secretion, and this effect was amplified with increased

concentration, we further investigated whether this response
was reciprocated in VCAM-1 mRNA expression (Figure 5).
Here, TNF-a significantly induced VCAM-1 mRNA expression
after 4 h (P # 0.01), and this effect was fully inhibited by
treatment with the negative control (IkBa-inhibitor BAY 11–
7085). Treatment with 100 mM PCAwas the only concentration
to significantly inhibit VCAM-1 mRNA expression (78% inhi-
bition; P = 0.05).

Discussion

The consumption of flavonoid-rich foods has been associated
with reduced cardiovascular disease risk (1–3), yet their mech-
anisms of action have yet to be elucidated. It has been suggested
that the beneficial effects of flavonoids are the result of
degradation products (chemical degradation or bacterial catab-
olites) and phase II metabolites (29, 30). We investigated phe-
nolic metabolites commonly reported for berry anthocyanins
(39, 46), cocoa and tea (47–50), and citrus fruits (51), focusing
on metabolites that differed primarily on their 3# and 4#
positions (relative to the precursor B-ring structure) to draw
conclusions regarding SARs. The focus on physiologically
achievable concentrations of metabolites in cell culture studies
is reasonably contemporary (29, 52), whereas investigation of

FIGURE 4 Effect of concentration of phenolic acid metabolites on TNF-a–stimulated sVCAM-1 protein secretion by HUVECs. PCA (A), PCA3S (B),

PCA4S (C), IVA (D), and IVA3G (E) are shown. Data were normalized to a TNF-a control, and columns represent the mean 6 SD (n = 3 independent

measures). Labeled means without a common letter differ, P # 0.05 (ANOVA with post hoc LSD). *Different from DMSO, P # 0.05 (t test). HUVEC,

human umbilical vein endothelial cell; IVA, isovanillic acid; IVA3G, IVA-3-glucuronide; LSD, least square difference; PCA, protocatechuic acid; PCA3S,

PCA-3-sulfate; PCA4S, PCA-4-sulfate; sVCAM-1, soluble vascular cellular adhesion molecule 1.
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the additive activities of conjugated and unconjugated metab-
olites in combination, at concentrations achievable through diet,
is novel. We investigated the differential effects of 20 flavonoids
and common metabolites and 25 combinations thereof. We
found that 4 phenolic metabolites modulated sVCAM-1 secre-
tion, whereas no effects were observed for their precursor struc-
tures. The response to PCA appeared amplified with increasing
concentration, which is suggestive of a dose-dependent response.
Inhibition of VCAM-1mRNAwas observed in response to PCA;
however, this was only at a supraphysiological concentration of
100 mM. Furthermore, mixtures of metabolites and flavonoids
showed no activity toward sVCAM-1, suggesting no additive
activity.

sVCAM-1 was a logical target to investigate the vaso-
protective activity of flavonoids, because it is a clinical predictor
of risk of death from cardiovascular disease (20) and previous
studies have demonstrated beneficial effects of flavonoids on
adhesion of leukocytes to endothelial cells (22–24). These
findings are supported by additional recent studies by our
group, where metabolites were active on IL-6 and sVCAM-1
production following stimulation with CD40 and oxidized LDL
in vascular endothelial cells and TNF-a following LPS stimula-
tion in human monocytes (32, 33).

Five treatments (Figure 4) were further explored for the effect
of increased concentration on sVCAM-1 protein; here, 1 metab-
olite (PCA) significantly inhibited sVCAM-1; 3 (PCA3S, PCA4S,
IVA3G) had moderate, nonsignificant activity; and 1 (IVA) was
selected to draw conclusions regarding SARs between PCA and
IVA conjugates. Of the compounds screened, PCA was most
active across the concentrations tested, which is in line with
previous studies, where it was observed to inhibit the expression

of inflammatory mediators, including adhesion molecules (53,
54). The activity of PCA was comparable to its aldehyde
equivalent (protocatechuic aldehyde), in a study identifying a
concentration-dependent reduction in TNF-a–stimulated sVCAM-1
(42); this supports the premise that the catechol moiety of flavo-
noid metabolites holds significant activity (55). However, given
PCAs reactive catechol moiety is rapidly methylated by catechol-
O-methyltransferase (56), it does not persist in the systemic cir-
culation at any appreciable concentration for significant periods
of time (25, 39, 46), whereas its metabolite, vanillic acid, exists
at much higher concentrations and has a considerably longer
half-life (25, 39, 46, 51). Vanillic acid may therefore make an
appropriate target for future investigation, given that it was
recently shown to have a significant effect on CD40-stimulated
VCAM-1 mRNA (32).

The lack of dietary relevance of contemporary cell culture
studies in the field of nutrition is apparent, given the use of
precursor structures at supraphysiological concentrations, which
may explain why the underlying mechanisms of action are still
unknown (29). It is interesting that we observed significant
inhibition of sVCAM-1 in response to PCA at 1 mM, because
previous studies have identified serum concentrations of PCA
ranging between 0.15 mM (25) and 1.5 mM (46, 57), suggesting
this effect is achievable through diet.

Given the apparent strength and linearity of the concentration
responsiveness of PCA, we sought to explore if this was reflected
in the expression of VCAM-1 mRNA (Figure 5), as advocated
by others (32, 58). Here, PCA was only active at 100 mM, sug-
gesting PCA is not directly active on mRNA transcription at
physiologically achievable concentrations, but likely acting post-
translationally. It is conceivable metabolites could interact with
the cleavage of the protein from the surface of endothelial cells
(59), such as by interaction with TNF-a converting enzyme
ADAM17 (60), an indicated mediator of VCAM-1 shedding
from the surface of endothelial cells. Future studies exploring the
mechanisms of action of PCA should therefore focus on post-
translational or receptor-binding activities.

Investigations of SARs are important for understanding how
metabolism alters phytochemical activity. Because previous
studies have reported the SAR of flavonoids (61, 63), we aimed
to draw conclusions based on relationships between conjugated
and unconjugated phenolic metabolites (Supplemental Figure 2).
Of the 5 metabolites studied, PCA had the greatest effect on
sVCAM-1, with PCA3S, PCA4S, and IVA having equally lesser
activity and IVA3G having no effect, suggesting conjugation of
both the hydroxyl moieties reduces potency on sVCAM-1 secre-
tion. Conjugation has also been shown to reduce the inhibitory
activity of certain flavonoids on monocyte adhesion (52, 55);
however, the opposite has recently been reported in oxidized-
LDL–stimulated HUVECs, where conjugation of PCA increased
the inhibition of sVCAM-1 (32), suggesting the effects of
conjugation are dependent on the inflammatory stimulus, and
thus the upstream signal transduction pathway involved, as
suggested for other flavonoids (63).

After ingestion, flavonoids circulate as complex mixtures of
metabolites at various concentrations (26, 39, 64), thus it is
important that this is reflected in cell culture experiments. Few
studies have explored the effects of flavonoids in combination,
despite indication of differential activities when in combination
relative to isolation (65, 66). The present study examined 25
mixtures of equimolar concentrations of structurally similar
compounds. Treatments were designed in this manner because
plasma concentrations of flavonoid/metabolites vary greatly
between, and indeed within, subjects. Therefore, it was deemed

FIGURE 5 Effect of concentration of PCA on TNF-a–stimulated

VCAM-1 mRNA expression in HUVECs. Data were normalized to a

TNF-a control, and columns represent the mean 6 SD (n = 3

independent measures). Labeled means without a common letter

differ, P # 0.05 (ANOVA with post hoc LSD). *Different from DMSO,

P # 0.05 (t test). HUVEC, human umbilical vein endothelial cell; LSD,

least square difference; PCA, protocatechuic acid; VCAM, vascular

cellular adhesion molecule.
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unrealistic to model treatments mimicking human plasma com-
positions identified in any single feeding study. Here we did not
observe any inhibitory effects on sVCAM-1 secretion from
mixtures totaling 1 mM in concentration (cumulative concen-
tration of analytes present in an equimolar ratio). This repre-
sented concentrations of each analyte between 0.5 and
0.17 mM, and although these concentrations represent physio-
logically relevant levels, it is possible that they were too low to
elicit a quantifiable response. A recent human study identified
total phenolic metabolites as high as 13.3 mM following con-
sumption of orange juice flavanones (51), suggesting greater
cumulative concentrations are indicated in future cell culture
studies. Given that mixtures of phenolic metabolites have shown
differential effects to their constituents in isolation in LPS stim-
ulated THP-1 cells (33), cumulative effects of these metabolites
may be cell-type specific.

Here we provide insight into the differential activity of
flavonoid metabolites and have explored their potential for
additive effects; however, there are certain limitations of this
work. The use of soluble VCAM-1 over membrane-bound
VCAM-1 could be a limitation because it is the membrane-
bound VCAM-1 that binds directly to leukocytes in the pro-
gression of atherosclerosis (18). However, it has been reported
that sVCAM-1 protein levels directly correlate with levels of
surface-bound VCAM-1 (67) and may be a more appropriate
biomarker of endothelial cell activation (59); that said, further
investigation of the relative activity of these metabolites on
surface-bound VCAM-1 would verify such correlations (67).
The concentration of TNF-a used to stimulate sVCAM-1 could
also be viewed as a limitation. The concentration 10 mg/L was
selected because it is commonly reported in the literature (41,
42, 68, 69); however, physiologically, plasma concentrations are
reported at 0.001–0.04 mg/L in patients with coronary artery
disease (70) and can reach 2 mg/L in patients who have suffered
myocardial infarction (71). Future studies could therefore con-
sider using models that more closely reflect in vivo conditions.
The stimulation time used in our pro-inflammatory model could
also be considered a limitation. As previously discussed, the
design of the treatment mixtures used in this investigation was
quite artificial, because equimolar ratios would not mimic se-
rum concentrations observed in human studies; future studies
could therefore use metabolites at a range of concentrations,
based on levels reported in human feeding studies (25–27).
Finally, HUVECs do not originate from the arterial walls, and
therefore their use may be considered a limitation. Verification
was carried out using single donor, human coronary artery
endothelial cells, where induction of VCAM-1 in response to
TNF-a was greater than in HUVECs; however, the response to
increasing concentrations of PCA was similar in both cell types
(data not shown).

The present study supports previous reports that metabolism
of flavonoids to phenolic acids alters their anti-inflammatory
effects (61, 72–74). Our data indicate that the degradation of
flavonoids to phenolic acids, which is believed to be largely
facilitated by microbiota in the colon (25, 64), increases their
overall bioactivity, whereas further conjugation by phase II
enzymes may have differential effects on activity (32, 33).
Therefore, certain flavonoids consumed in our habitual diet may
require prior metabolism before they can exert their maximal
effects and metabolites may possess differential bioactivities as
they are systematically metabolized and eliminated from the
circulation.

In conclusion, the present study provides insight into
the activity of conjugated and unconjugated phenolic metabo-

lites of flavonoids, thus contributing to our understanding of
how these dietary phytochemicals influence cardiovascular
health.

Acknowledgments
We thank the late Nigel Botting (St. Andrews University), who
helped establish this research collaboration, including the
design of the synthesis project objectives. EFW conducted the
cell culture work and collected and graphed the data; EFW,
MAOC, and CDK designed the culture experiments and meth-
odology and contributed to the analysis and interpretation of
the data; EFW and CDK drafted the initial manuscript; QZ and
KSR synthesized the phenolic metabolites; QZ, KSR, and DOH
jointly developed the synthetic strategy; MAOC and CDK con-
ceived and managed the project. All authors reviewed and
approved the final manuscript.

References
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