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Abstract
Because of its low toxicity, low-dose (LD) chemotherapy is ideally suited for combination with
antiangiogenic drugs. We investigated the impact of tumor vascular endothelial growth factor A
(VEGF-A) expression on the efficacy of LD paclitaxel chemotherapy and its interactions with the
tyrosine kinase inhibitor SU5416 in the ID8 and ID8-Vegf models of ovarian cancer. Functional
linear models using weighted penalized least squares were utilized to identify interactions between
Vegf, LD paclitaxel and antiangiogenic therapy. LD paclitaxel yielded additive effects with
antiangiogenic therapy against tumors with low Vegf expression, while it exhibited antagonism to
antiangiogenic therapy in tumors with high Vegf expression. This is the first preclinical study that
models interactions of LD paclitaxel chemotherapy with antiangiogenic therapy and tumor VEGF
expression and offers important lessons for the rational design of clinical trials.

Introduction
Expansion of vasculature is critical for tumor growth.
Tumors cannot grow beyond few millimeters in the
absence of angiogenic support provided by vascular
endothelial growth factor-A (VEGF-A or VEGF) and other
soluble factors [1]. Approaches to block tumor angiogen-
esis have therefore attracted significant attention, and
combination of antiangiogenic therapy targeting VEGF
with standard cytotoxic chemotherapy has provided proof

of principle in the clinic [2-5]. Low-dose (LD) or metro-
nomic chemotherapy was designed to damage tumor
endothelial cells through the close, regular administration
of low, nontoxic doses of chemotherapeutic drugs with
short drug-free intervals [6-8]. Additionally, LD chemo-
therapy suppresses angiogenic factors and inhibits the
recruitment and function of circulating endothelial pro-
genitor cells and/or circulating endothelial cells [9-11].
Based on preclinical studies and early phase clinical trials,
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despite lower cumulative doses, clinical efficacy of LD
chemotherapy may be superior to maximally tolerated
dose regimens [12-18]. Because of its low toxicity, LD
chemotherapy is ideally suited for combination with
other drugs, including antiangiogenic drugs. LD chemo-
therapy enhanced the effects of antiangiogenic therapy in
preclinical models [19] and has yielded encouraging
results in combination with antiangiogenic drugs in the
clinic [6,20,21].

In spite of its obvious promise, translation of LD chemo-
therapy to the clinic faces numerous challenges, including
defining a biologically optimal dose, and identifying the
optimal drug for combination schemes in specific disease
settings, since combination therapy with antiangiogenic
drugs has proven beneficial in some patients but not in
others. To date it is unclear what factors determine the
likelihood of success of LD chemotherapy with antiang-
iogenic therapy.

VEGF is a critical angiogenic factor in advanced ovarian
carcinoma [22]. Expression of VEGF varies considerably
among tumors of similar origin, and VEGF overexpression
at the mRNA level or increased serum levels portend poor
survival [22-24]. Upregulation of VEGF by tumor cells
may be in response to metabolic starvation or hypoxia
[25], but may also be constitutive as a result of oncogene
amplification [26]. To date, the effect of VEGF expression
on tumor response to LD chemotherapy has not been
investigated. Furthermore, it remains unknown whether
tumor VEGF overexpression influences tumor response to
combination of antiangiogenic therapy and LD chemo-
therapy. Yet, these are important questions that may affect
clinical decisions.

We investigated the impact of tumor Vegf on the efficacy
of LD chemotherapy, and examined whether tumor Vegf
affects the interactions of metronomic chemotherapy with
an antiangiogenic drug. As examples of LD chemotherapy
we used paclitaxel, a drug commonly used in ovarian and
other cancers, while as an example of antiangiogenic ther-
apy we used SU5416, a tyrosine kinase inhibitor with
activity against VEGF receptor-2 (VEGFR-2) [27,28],
which has been used in the clinic in combinations [6]. We
used the ID8 and ID8-Vegf mouse models of ovarian can-
cer to address the above questions [29]. ID8 cells express
constitutively low levels of Vegf-A, while ID8-Vegf cells
were retrovirally transduced to express constitutively high
levels of Vegf164 isoform. This model recapitulates closely
human ovarian cancer. We have shown that ID8-Vegf
tumors maintain significantly higher levels of Vegf-A
expression in vivo; exhibit increased angiogenesis and
growth; and are associated with significantly shorter sur-
vival relative to ID8 tumors. Importantly, tumor, ascites
and serum levels of Vegf-A protein in animals bearing

ID8-VEGF tumors were significantly higher (approxi-
mately 28, 13 and 3-fold, respectively) than in animals
bearing control ID8 tumors, but both were within the
range described in human ovarian cancer [29]. To analyze
the interactions between tumor Vegf, LD chemotherapy
and SU5416, we used a novel method of statistical mode-
ling that involves fitting functional linear models using
weighted penalized least squares [30,31]. This approach
enabled us to investigate interactions between LD chemo-
therapy and antiangiogenic therapy through simple exper-
iments.

We found a significant difference in tumor response
depending on Vegf expression. LD chemotherapy yielded
additive effects with antiangiogenic therapy only against
tumors with low Vegf expression, while it exhibited antag-
onism to antiangiogenic therapy in tumors with high Vegf
expression. This is the first preclinical study that models
interactions of LD chemotherapy with antiangiogenic
therapy and tumor Vegf expression and offers important
lessons for the rational design of clinical trials.

Materials and methods
Cell culture and reagents
The development and characterization of ID8-Vegf cell
line was described elsewhere in detail [29]. ID8 and ID8-
Vegf cells were maintained in DMEM media (Invitrogen,
Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS), 100 U/ml penicillin, and 100 μg/ml strepto-
mycin (Roche, Indianapolis, IN) in a 5% CO2 atmosphere
at 37°C.

Mice and treatments
Six to eight week old female C57BL/6 mice (Charles River
Laboratories, Wilmington, MA) were used in protocols
approved by the IACUC of the University of Pennsylvania.
Mice were treated with intraperitoneal (i.p.) bolus injec-
tions of pacitaxel, SU5416 or dimethyl sulfoxide
(DMSO). Paclitaxel (7.5 mg/kg in 0.2 ml 0.9% saline) or
saline alone were given i.p. on days 1 and 4 every week.
This dose is approximately one-fourth of maximally toler-
ated doses (MTD) for mice [32,33] and are within metro-
nomic range. SU5416 (20 mg/kg in 25 μl DMSO, Sigma-
Aldrich, St. Louis, MO) or DMSO (25 μl) alone were given
i.p. on days 1, 3, and 5 every week. This dose of SU5416
and DMSO are MTD for C57BL/6 mice, as were identified
by dose-defining experiments in healthy 6 week old
female C57BL/6 mice (not shown). Higher doses of
SU5416 or DMSO resulted in significant weight loss or
mortality.

Tumor-free Matrigel™ experiments
In some experiments, mice (n = 3 mice/group) were anes-
thetized with 20 μl/gm tribromoethanol/tert-amyl alco-
hol solution (Avertin) and injected with 0.5 ml Matrigel™
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(BD Biosciences, Bedford, MA) containing recombinant
mouse (rm)Vegf164 (100 ng/ml). One day after Matrigel™
injection, mice were treated with i.p. paclitaxel and/or
SU5416 or DMSO at the above doses. Paclitaxel or saline
were given i.p. on days 1 and 4. SU5416 or DMSO were
given on days 1, 3, and 5. Matrigel™ plugs were removed
under anesthesia 7 days later and were snap frozen in liq-
uid nitrogen.

Tumors
Subconfluent ID8 or ID8-VEGF cultures were trypsinized,
washed twice, and cells harvested by centrifugation at
1,000 g for 5 min. A single-cell suspension was prepared
in PBS mixed with an equal volume of cold Matrigel at 10
mg/ml. A total volume of 0.5 ml containing 1 × 106 ID8
or ID8-Vegf cells was injected subcutaneously (s.c.) into
the flank of 6-week old C57BL6 mice (n = 10). Tumors
were detectable two weeks later and tumor size was meas-
ured weekly thereafter using a Vernier caliper. Tumor vol-
umes were calculated by the formula V = 1/2 (L × W)2,
where L is length (longest dimension) and W is width
(shortest dimension) [34]. Treatments were initiated four-
teen days after tumor inoculation and were carried out for
6 weeks. After listed time periods, mice were euthanized,
and tumors were removed and snap frozen in liquid nitro-
gen.

Tumor microvascular density
Snap frozen tumors and Matrigel plugs were stored at -
80°C; embedded in OCT compound (Sakura Finetek, Tor-
rance, CA); frozen in liquid nitrogen; and cut with a cryo-
stat into 8 μm sections. For immunofluorescent staining,
sections were sequentially incubated in 5% horse serum;
biotin-labeled anti-mouse CD31 antibody (1:400, BD
Bioscience); and avidin-FITC or avidin-Cy5 (BD Bio-
science). All sections were imaged using an upright Nikon
(Augusta, GA) E-600 Eclipse microscope equipped with a
Bio-Rad (Hercules, CA) 1024-ES confocal system. Images
were acquired through Cool SNAP Pro® color digital cam-
era (Media Cybernetics). All tumors were viewed at ×200
magnification. For Matrigel plugs, CD31 staining was ana-
lyzed using Image-Pro® Plus 4.1 software (Media Cyber-
netics). For microvessel density measurements, slides
were scanned at low power (x40) to identify areas of high-
est vascularity. Ten high-powered (x200) fields were then
selected randomly within these areas and microvessel
densities were calculated based on the number of CD31-
positive structures. At least three tumors from each group
were examined in three sections. Sections from each
tumor were separated by at least 200 μm.

Statistical methods
A fixed effects analysis of variance was used for between
group comparisons with the in vitro data and with the
ECM data observed after 6 weeks of treatment. Means are

reported with their standard errors. To assess interactions
between LD paclitaxel and antiangiogenic therapy with-
out assuming any specific functional form for tumor vol-
umes over time (such as assuming that the natural
logarithm of tumor volume over time is linear), we fit a
functional linear model via weighted penalized least
squares that included covariates for treatment with paclit-
axel, treatment with SU5416, ID8-Vegf, and all subse-
quent two- and three-way interactions [30,31]. By not a
priori assuming a form for the shape characterizing the
changes in tumor volume over time, this smoothing
spline based approach differs from a standard linear
regression by avoiding the bias induced by deviations of
the data from a nice parametric form and by allowing for
the assessment of interactions over time Smoothing
parameters used in the algorithm to estimate the parame-
ters in the functional linear model were selected using
generalized maximum likelihood, while 95% Bayesian
confidence intervals and likelihood ratio tests were used
to perform inference [35-37].

Results
Low-dose paclitaxel inhibits neovasculature formation in 
tumor-free Matrigel
The tumor-free Matrigel model has been used as a suitable
tool to measure the efficacy of antiangiogenic therapy in
vivo. We tested whether paclitaxel suppress new blood ves-
sel formation at one-fourth of MTD, a dose similar to
those used in the clinic. Healthy mice were inoculated on
day 0 with tumor-free Matrigel containing rmVegf164.
Mice were treated on days 1 and 4 with i.p. paclitaxel at 1/
4 MTD. Control mice were inoculated with tumor-free
Matrigel and treated with SU5416 at MTD or PBS plus
DMSO on days 1, 3, and 5. Matrigel plugs were analyzed
on day 7 for microvascular density. The average microvas-
cular density at 7 days was 42 microvessels per high power
field (200×) in control mice treated with PBS/DMSO (Fig-
ure 1). LD paclitaxel as well as SU5416 at MTD resulted in
significant suppression of vascular development (both, p
< 0.0001). Thus paclitaxel at 1/4 MTD twice per week sup-
pressed vessel formation in vivo.

Therapeutic efficacy of low-dose paclitaxel on ID8 and 
ID8-Vegf tumors
Next, we tested the effects of LD paclitaxel on tumor
growth in the ID8 and ID8-Vegf model (Figure 2). Low-
dose paclitaxel at the above dose and schedule had a sig-
nificant inhibitory effect on the growth of ID8 tumors
(Figure 2, left). The volume of ID8 tumors treated with
paclitaxel (26.6 ± 13.2) was significantly smaller than
control ID8 tumors treated with PBS (88.1 ± 9.6 p =
0.0029). Low-dose paclitaxel had also significant inhibi-
tory effect on the growth of ID8-Vegf tumors (Figure 2,
right). The volume of ID8-Vegf tumors treated with pacli-
taxel was significantly smaller (189.2 ± 20.6 than control
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ID8-Vegf tumors treated with PBS (271.2 ± 27.2 p =
0.026). These results show that both ID8 and ID8-Vegf
tumors respond to paclitaxel.

Interactions of SU5416 with LD paclitaxel in ID8 tumors
To evaluate the interaction between low-dose paclitaxel
and SU5416 on tumor growth, we treated animals bearing
ID8 tumors with LD paclitaxel (plus DMSO), SU5416

(plus saline), or paclitaxel plus SU5416 (Figure 3A). Con-
trol mice were treated with saline plus DMSO. As previ-
ously noted, LD paclitaxel delayed the growth of ID8
tumors (p = 0.003), while SU5416 had a nonsignificant
inhibitory effect on ID8 tumors (p = 0.62). The combina-
tion of paclitaxel and SU5416 resulted in significant sup-
pression of tumor growth where ID8 tumors treated with
LD paclitaxel plus SU5416 were 13-fold smaller than con-
trol tumors (p < 0.001) and tumors became undetectable
in many animals. Thus, LD paclitaxel was more effica-
cious than SU5416 against tumors with low Vegf expres-
sion. Furthermore, combination of SU5416 and paclitaxel
was quite efficacious against ovarian carcinoma that
expressed low levels of Vegf resulting in substantial tumor
regression.

We used the fitted functional linear models to further
characterize the interactions between SU5416 and LD
paclitaxel in ID8 tumors (Figure 3B). The estimate of the
difference between actual effect of combination therapy
and the estimated theoretical additive effect of the two
drugs on ID8 tumor volumes was approximately zero for
all time points (p = 0.81), indicating that SU5416 when
combined with paclitaxel had an additive effect on ID8
tumors.

Effects of LD paclitaxel and SU5416 on microvascular 
density in ID8 tumors
To better understand the interaction of paclitaxel and
SU5416, we sought to define the effects of each drug on
tumor microvasculature in vivo. Microvascular density
(MVD) was assessed by CD31 immunostaining (Figure
4). SU5416 alone resulted in mild but not significant
decrease in MVD in ID8 tumors (p = 0.4 both). Paclitaxel
alone resulted in significant decrease in MVD (p = 0.05).
Importantly, paclitaxel plus SU5416 resulted in marked
(>90%) reduction in MVD (p = 0.03), indicating a potent
drug interaction at the level of the vasculature. These
results are in agreement with the effects of the drugs on
tumor growth described above. Thus, LD paclitaxel alone
suppressed significantly MVD and growth of tumors with
low Vegf expression, and its combination with SU5416
produced more dramatic results on MVD and tumor
growth.

Interactions of SU5416 with LD paclitaxel in ID8-Vegf 
tumors
Paclitaxel alone had a significant inhibitory effect on the
growth of ID8-Vegf tumors (p = 0.026) (Figure 5A).
SU5416 alone was similarly efficacious in inhibiting the
growth of ID8-Vegf tumors (p < 0.001). The combination
of paclitaxel and SU5416 resulted in significant suppres-
sion of ID8 tumor growth (p < 0.001), but was slightly less
effective than SU5416 alone. Thus, the benefit of drug

Effect of low dose paclitaxel on ID8 or ID8-Vegf tumorsFigure 2
Effect of low dose paclitaxel on ID8 or ID8-Vegf tumors. 
Mice were treated for 6 weeks, starting 2 weeks after tumor 
inoculation. Tumor volumes were recorded at completion of 
therapy. * indicates p ≤ 0.05.

Average microvessel count in tumor-free Matrigel plugs in mice treated with phosphate buffered saline and DMSO (control); low dose paclitaxel; or SU5416Figure 1
Average microvessel count in tumor-free Matrigel plugs in 
mice treated with phosphate buffered saline and DMSO 
(control); low dose paclitaxel; or SU5416. Matrigel plugs 
were enriched with recombinant mouse Vegf164 (100 ng/ml). 
* indicates p ≤ 0.05.
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combination was not seen in tumors with high expression
of Vegf.

We used fitted functional linear models to further investi-
gate the interactions between SU5416 and LD paclitaxel
in ID8-Vegf tumors (Figure 5B). In contrast to ID8 tumors,
the difference between the observed effect of combination
therapy on tumor volume and the estimate of the theoret-
ical additive effect was positive for ID8-Vegf tumors after
37 days (p = 0.03). Thus, the combination of SU5416
with paclitaxel was less than additive (antagonistic result-
ing in increased tumor volume) in ID8-Vegf tumors.

Effects of LD paclitaxel and SU5416 on microvascular 
density in ID8-Vegf tumors
We have previously shown that Vegf overexpression
results in increased tumor MVD [29]. SU5416 reduced
MVD (p = 0.05) (Figure 6); LD paclitaxel alone induced a
significant and more pronounced reduction in MVD (p =
0.008). Addition of SU5416 to paclitaxel did not further
suppress MVD compared to paclitaxel alone. These results

are in agreement with the effects of the drugs on tumor
growth described above.

Discussion
To date, the influence of tumor Vegf expression on the
response to LD chemotherapy, anti-Vegf therapy or their
combination has not been investigated. Our study
addresses these interactions for the first time. We found
that SU5416 administered alone reduced MVD and tumor
growth primarily in tumors with high Vegf expression,
while it was not as efficacious against tumors with low
Vegf expression. In keeping with previous evidence [38],
LD paclitaxel administered alone exhibited marked anti-
tumor efficacy. Interestingly, LD paclitaxel was efficacious
also against tumors with low Vegf expression, and in these
tumors outperformed SU5416 used at MTD. Further
investigation is warranted to understand the mechanisms
underlying these differences. It is possible that tumors
with low Vegf expression develop alternate, Vegf-inde-
pendent mechanisms that support tumor growth and thus
are resistant to Vegf inhibition. For example, tumors with

A, Mean tumor volumes and estimated ID8 tumor growth curves in control mice or mice treated with paclitaxel, SU5416 or their combinationFigure 3
A, Mean tumor volumes and estimated ID8 tumor growth curves in control mice or mice treated with paclitaxel, SU5416 or 
their combination. B, Estimated difference between the observed mean tumor volume in animals receiving combined paclitaxel/
SU5416 therapy and a predicted tumor volume assuming additive effects for the two individual drugs with 95% confidence 
intervals.
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mature vessels respond less to Vegf inhibition [39]. Of rel-
evance, we have previously reported that ID8-Vegf tumors
exhibit immature vessels, while ID8 tumors exhibit more
mature vessels surrounded by pericytes [40]. LD paclitaxel
may circumvent this limitation as it may exert toxicity on
tumor vascular cells independently of maturity.

We used a statistical approach that enabled us to first eval-
uate the effect of combinations of therapy on tumor vol-

ume over time with simple experiments and then assess
the difference between the observed effect of combination
therapy and what would be expected if the two drugs had
an additive effect. To the best of our knowledge, this is the
first application of semiparametric functional linear mod-
els in preclinical tumor studies. This approach better
approximates growth curves that do not satisfy assump-
tions inherent in the standard models. The examples pro-
vided in this work illustrate the power inherent in this

A, Examples of microvascular density in ID8 tumors of control mice or mice treated with SU5416, paclitaxel or combinationFigure 4
A, Examples of microvascular density in ID8 tumors of control mice or mice treated with SU5416, paclitaxel or combination. 
Vessels were visualized with CD31 immunostaining. Four tumor microphotographs are combined for each treatment. 200× 
magnification. B, Microvascular density quantification in ID8 tumors of control mice or mice treated with SU5416, paclitaxel or 
combination. * indicates p ≤ 0.05.
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approach in estimating the ability of two therapies to act
additively or not. The additive effect of two therapies
occurs when the difference between the observed effect on
the tumor when both therapies are given and the pre-
dicted effect on the tumor, based on the theoretical addi-
tive effect of the two therapies given alone, approximates
zero. In the case of tumor volume, a positive difference is
evidence for a less-than-additive (negative) interaction or
antagonism, while a negative difference indicates a
greater-than-additive (positive) interaction or synergism.
This analytical model has the potential to proving
extremely useful in preclinical screening of drug combina-
tions and dose optimization of metronomic chemother-
apy when characteristics of the tumor microenvironment
are important factors in therapeutic outcome.

Our findings indicate that combination of antiangiogenic
drugs with LD paclitaxel provides therapeutic advantage
in tumors expressing low levels of Vegf, while in tumors
with high Vegf expression the combination did not pro-
vide any benefit or was rather antagonistic. Lack of addi-

tive effect between two drugs in tumors with high Vegf
expression may signify that both drugs act through the
same pathways, thus their concomitant use cannot pro-
duce more effects than either one alone. Why is however
this lack of cooperation seen only in tumors with high
Vegf expression and not in tumors with low Vegf expres-
sion? It is possible that only in tumors with high Vegf
expression the action of each drug can be maximized. It is
interesting that antiangiogenic therapy alone performed
similar to LD paclitaxel in tumors with high Vegf expres-
sion. Thus, clinically either therapeutic approach could be
chosen based on the desired toxicity profile.

The present results suggest that clinical investigators test-
ing combinations of LD chemotherapy and antiang-
iogenic therapy should make an attempt to measure
pretreatment tumor Vegf expression. However, the best
way to measure VEGF in the clinic is unclear. Tissue levels
of VEGF-A protein would be ideal, but this requires inva-
sive procedures. Plasma VEGF might be a reasonable sur-
rogate. Results from xenograft studies have indicated that

A, Mean tumor volumes and estimated ID8-Vegf tumor growth curves in control mice or mice treated with paclitaxel, SU5416 or combinationFigure 5
A, Mean tumor volumes and estimated ID8-Vegf tumor growth curves in control mice or mice treated with paclitaxel, SU5416 
or combination. B, Estimated difference between the observed mean tumor volume in animals receiving combined paclitaxel/
SU5416 therapy and a predicted tumor volume assuming additive effects to the two individual drugs with 95% confidence inter-
vals.
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plasma VEGF levels following therapy can predict out-
come [41,42], while in the clinic pretreatment or post-
treatment levels of serum or plasma VEGF have been cor-
related with outcome [22-24,42]. However, no study has
yet examined plasma and tumor levels of VEGF in the
human, and in a retrospective subset analysis, pretreat-
ment tumor mRNA levels or plasma protein levels of
VEGF did not correlate with benefit from the addition of
bevacizumab to standard chemotherapy in pancreatic or
colorectal cancer [43,44]. Further testing is required to val-
idate our findings in the human.

The present study has specific strengths and limitations.
For example, we employed a syngeneic mouse model,
which allows capturing the effects of complex tumor-host
interactions in an immunocompetent host. Thus, it can
closely recapitulate events that may take place in ovarian
cancer in the human. Future investigation in this model
could help us understand whether any of the interactions
observed might also involve immune mechanisms, as
Vegf blockade is known to restore antitumor immune
response while paclitaxel may activate immune mecha-
nisms through Toll receptor 4 [45-47]. On the other hand,

A, Examples of microvascular density in ID8-Vegf tumors of control mice or mice treated with SU5416, paclitaxel or combina-tionFigure 6
A, Examples of microvascular density in ID8-Vegf tumors of control mice or mice treated with SU5416, paclitaxel or combina-
tion. Vessels were visualized with CD31 immunostaining. Four tumor microphotographs are combined for each treatment. 
200× magnification. B, Microvascular density quantification in ID8-Vegf tumors of control mice or mice treated with SU5416, 
paclitaxel or combination. * indicates p ≤ 0.05.
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in this study we used a flank model rather than an ortho-
topic tumor model. This was mainly because we sought to
evaluate drug interactions on microvascular density,
which can be reliably interpreted only in this model, and
we sought to report observations that are possibly appli-
cable to many other solid tumor models. Future studies
will address the effect of drugs on the intraperitoneal
model.

Conclusion
Our work provides the first evidence that tumor Vegf
expression influences the interactions between LD chem-
otherapy and antiangiogenic therapy. Our results suggest
that tumor Vegf expression should be measured in clinical
trials testing the above approaches. LD paclitaxel is best
combined with antiangiogenic therapy targeting Vegf
against tumors with low Vegf expression, where such com-
bination could achieve dramatic responses without major
toxicity. Tumors with high Vegf expression, on the other
hand, may likely benefit from antiangiogenic therapy as
much as from LD chemotherapy, and alternate combina-
tions need to be evaluated, including high dose chemo-
therapy.
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