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Abstract

Targeting specific brain regions of interest by the accurate positioning of optodes

(emission and detection probes) on the scalp remains a challenge for functional near-

infrared spectroscopy (fNIRS). Since fNIRS data does not provide any anatomical

information on the brain cortex, establishing the scalp-cortex correlation (SCC)

between emission-detection probe pairs on the scalp and the underlying brain

regions in fNIRS measurements is extremely important. A conventional SCC is

obtained by a geometrical point-to-point manner and ignores the effect of light scat-

tering in the head tissue that occurs in actual fNIRS measurements. Here, we devel-

oped a sensitivity-based matching (SBM) method that incorporated the broad spatial

sensitivity of the probe pair due to light scattering into the SCC for fNIRS. The SCC

was analyzed between head surface fiducial points determined by the international

10–10 system and automated anatomical labeling brain regions for 45 subject-

specific head models. The performance of the SBM method was compared with that

of three conventional geometrical matching (GM) methods. We reveal that the light

scattering and individual anatomical differences in the head affect the SCC, which

indicates that the SBM method is compulsory to obtain the precise SCC. The SBM

method enables us to evaluate the activity of cortical regions that are overlooked in

the SCC obtained by conventional GM methods. Together, the SBM method could

be a promising approach to guide fNIRS users in designing their probe arrangements

and in explaining their measurement data.
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1 | INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuro-

imaging technique that uses near-infrared light to estimate regional

neural activity indirectly by measuring local changes in the optical

absorption of hemoglobin in tissue driven by blood oxygenation level

changes in response to neural metabolic demand (Boas, Elwell, Fer-

rari, & Taga, 2014; Lloyd-Fox, Blasi, & Elwell, 2010; Quaresima,

Bisconti, & Ferrari, 2012; Scholkmann et al., 2014). Multiple pairs of

emission and detection probes, which illuminate and receive near-

infrared light, respectively, are fixed to a subject's scalp, forming mea-

surement channels that record hemodynamic activity occurring in the

cortex below the channels. fNIRS offers a good balance between tem-

poral and spatial resolution and is less restrictive for subjects com-

pared to functional magnetic resonance imaging (fMRI). Therefore, it

serves as a valuable neuroimaging tool for examining brain activation

or functional connectivity during special tasks or specific patient

populations, such as motor control (Vitorio, Stuart, Rochester,

Alcock, & Pantall, 2017), person-to-person social interactions

(Minagawa, Xu, & Morimoto, 2018) as well as patients with magnetic

implants (Saliba, Bortfeld, Levitin, & Oghalai, 2016).

Since the function and structure of the human brain are insepara-

bly intertwined, it is important to establish the scalp-cortex correlation

(SCC) between the scalp surface positions and the underlying cortical

regions for fNIRS, which only provide information that is functional,

not structural. Once the SCC is available, researchers will be able to

interpret fNIRS data from a spatial perspective. Furthermore, the

identification of brain regions where the fNIRS signal originates from

is very useful in comparing fNIRS findings with those derived from

neuroscience and neuroimaging techniques, for example, fMRI of the

anatomical structure.

In most fNIRS studies, fNIRS data and cortical regions are linked

in a geometrical manner. A traditional approach is to attach MRI-

visible markers to the probes and/or channel positions on the sub-

ject's scalp and obtain their positions through structural information

from MRI. Subsequently, the most probable cortical region

corresponding to each probe pair is identified by projecting each

marker position to the cortical surface (Cai, Dong, & Niu, 2018; Cai,

Dong, Wang, & Niu, 2019; Kovelman et al., 2009). Another widely

accepted approach employs the electrode placement system that

defines fiducial points on the scalp according to anatomical landmarks

on the head surface, that is, the international 10–20 system. Several

studies have demonstrated that there is a reasonable positional corre-

lation between the fiducial points and the anatomical structure of the

cerebral cortex (Blume, Buza, & Okazaki, 1974; Homan, Herman, &

Purdy, 1987; Koessler et al., 2009; Okamoto et al., 2004). In addition,

the fiducial points can be used as reference points to transfer the

positions of fNIRS measurement channels to a space where a

population-averaged standard brain template is in place (Tsuzuki &

Dan, 2014; Tsuzuki et al., 2007). Practically, the channel position is

projected to the cortical point of the standard brain template by a

geometrical algorithm (Okamoto & Dan, 2005; Singh, Okamoto, Dan,

Jurcak, & Dan, 2005), which is then linked to the cortical regions that

are labeled on the brain atlas (Tzourio-Mazoyer et al., 2002). As a dif-

ferent approach to link the scalp surface positions and cortical regions,

a transcranial brain atlas that presents the label of the cortical regions

transferred to the scalp surface has been proposed (Xiao et al., 2018).

In the process of constructing a transcranial brain atlas, the point on

the scalp was geometrically projected onto the cortical surface at the

subject head structure. In sum, all of the above approaches provide a

correlation between the position on the scalp and the cerebral region

based on a geometric point-to-point relationship. These methods

assume that the absorption change, of the fNIRS measurement, in

which the probe pair measures is located at the cortical projection

point below the midpoint between the probe pair on the scalp.

Since near-infrared light is strongly scattered in biological tissue,

a probe pair of fNIRS can indicate broad areas, not a single point in

the cerebral cortex. However, some studies have begun to analyze

the SCC by estimating the penetration of near-infrared light into the

subject's head (Machado et al., 2018; Morais, Balardin, &

Sato, 2018). Notably, the propagation of near-infrared light in head

tissues has also been investigated in detail using computer simula-

tion. To characterize the sensitivity of the fNIRS signal to the

absorption change in the volume of sampled tissue, a spatial sensi-

tivity profile (SSP) on the surface of the gray matter for one probe

pair is usually obtained by the Monte Carlo simulation or the diffu-

sion theory (Quaresima & Ferrari, 2019). The SSP on the surface of

the gray matter shows the greatest value at just below the midpoint

of the pair of emission and detection probes, and the probe pair

detects the absorption change in a broad region of the gray matter

(Kawaguchi, Hayashi, Kato, & Okada, 2004; Sakakibara, Kurihara, &

Okada, 2016). Such light propagation within a tissue is influenced by

factors such as optical properties of tissue and the anatomical struc-

ture of the brain and extracerebral tissues (M. Firbank, Okada, &

Delpy, 1998; Koyama, Iwasaki, Ogoshi, & Okada, 2005; Okada

et al., 1997; Strangman, Franceschini, & Boas, 2003). The structural

variations in terms of cortical folding, head size and skull thickness

also influence fNIRS sensitivity to brain activity. Several studies

have shown that the anatomical structure affects the sensitivity of

the fNIRS signal by using realistic 3D head models (Custo, Wells,

Barnett, Hillman, & Boas, 2006; Fukui, Ajichi, & Okada, 2003; Hoshi,

Shimada, Sato, & Iguchi, 2005; Strangman et al., 2003). In particular,

by constructing subject-specific head models, Nakamura et al. found

that variability of the partial optical pathlength in the brain was very

high between subjects and between fiducial points, and that partial

optical pathlength was strongly associated with the depth of the

brain surface (Nakamura et al., 2016). Moreover, the partial optical

pathlength of the fNIRS probe pair depends not only on the individ-

ual's head structure, but also on the local head structure to which

the probe is attached, even for the same individual subject. There-

fore, the SCC should be elucidated based on light propagation with

consideration given to individual differences in head structure. In

addition, the orientation in which the probe pair is attached around

the fiducial point, for example, the vertical or circumferential direc-

tion with the fiducial point as the center, can influence the analysis

of brain regions where the probe pair is sensitive.
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In the current study, we analyzed the impact of light scattering in

the adult human head on the correlation between scalp fiducial points

and cortical regions. Forty-five adult subject-specific head models for

light propagation analysis were constructed from structural MRI

images. The whole-brain volumes of the models were parcellated into

116 cortical regions according to the brain atlas. The sensitivity to

cortical regions was obtained for each fNIRS probe pair placed at the

fiducial point on the scalp by solving the diffusion equation. We also

analyzed the effect of inter-subject anatomical variability and probe-

pair orientation around the fiducial points on the sensitivity-based

correlation. In addition, the sensitivity-based correlation at each fidu-

cial point was compared with the SCC obtained with conventional

geometrical methods.

2 | MATERIALS AND METHODS

2.1 | Light propagation analysis of the subject-
specific models

2.1.1 | MRI acquisition

Structural MRI scans were performed to analyze the SCC based on

the individual head structure of the subjects and the optical heteroge-

neity of the tissue. Forty-five healthy mongoloid adults (23 males and

22 females, aged 21–58 years, mean and standard deviation of

37.7 ± 11.5) participated in this study after providing written

informed consent. All MRI data in this study were from our previous

study (Kurihara, Kawaguchi, Obata, Ito, & Okada, 2015). The study

protocol was approved by the Ethics and Radiation Safety Commit-

tees of the National Institute of Radiological Sciences, Chiba, Japan.

This study adheres to the declaration of Helsinki. All participants in

this study gave their written informed consent before MRI acquisition.

(Clinical trial registration: UMIN Clinical Trials Registry [ID:

UMIN000004588]).

All the MR experiments were performed using a 3.0-T clinical

MR system (SignaHDx 3.0; GE Healthcare, Milwaukee, WI) to

acquire T1-weighted (TIW), fat-saturated proton density weighted

(FS-PDW) and fast imaging employing steady-state acquisition

(FIESTA) images. The detailed scan parameters of the three contrast

variant images were as follows: (a) T1W, 3-dimensional spoiled gra-

dient echo (3D-SPGR) with inversion pulse and array spatial sensitiv-

ity encoding technique (ASSET), repetition time (TR)/echo time (TE)/

inversion time (TI) = 6.8/1.9/450 ms, flip angle (FA) = 12�,

matrix = 256 × 256, number of excitation (NEX) = 1; (b) FS-PDW,

3D-SPGR with ASSET and tailored radiofrequency pulse for FS,

TR/TE = 13.8/1.9 ms, FA = 6�, matrix = 256 × 256, NEX = 1;

(c) FIESTA, TR/TE = 13.8/1.9, FA = 45�, matrix = 256 × 256,

NEX = 1. ASSET factor of 2 was applied to all sequences using

ASSET. The field of view and slice thickness of all the images was

26.0 cm and 1.0 mm, respectively. All the image data were

anonymized prior to the segmentation process.

2.1.2 | Construction of subject-specific head
models

The procedure for constructing the head model was based on our pre-

vious work (Kurihara et al., 2015). T1W images have a good contrast,

which enables segmentation of the intracranial regions, that is, cere-

brospinal fluid (CSF), gray matter, and white matter. However, it has

no contrast between the skull and CSF. FS-PDW and FIESTA images

provide good contrast to segment superficial layers such as the scalp,

skull, and CSF. The FS-PDW image has a low signal intensity at the

skull and a high signal intensity from the scalp and CSF. It provides a

good contrast between the scalp and skull, and between the skull and

CSF (Keller, Hunter Jr, & Schmalbrock, 1987). Thus, the air/scalp,

scalp/skull, and skull/CSF boundaries were extracted from the FS-

PDW images. Since the CSF has a higher signal intensity than other

tissue types in the FIESTA image, the CSF/brain boundaries could be

easily distinguished using the image contrast (Schmitz, Hagen, &

Reith, 2003). The brain region was extracted from the FIESTA image

and then segmented into the gray matter and white matter regions

using the T1W image by the FMRIB's Automated Segmentation Tool

(FAST; Zhang, Brady, & Smith, 2001). The extra-cerebral regions were

segmented by binarization and morphological operations (For more

details, see Kurihara et al., 2015). The anatomical structure of the rep-

resentative 5-layered subject-specific model is shown in Figure 1.

2.1.3 | Light propagation analysis

The volumetric tetrahedral mesh for each segmented 3D head model

was generated by the iso2mesh toolbox (Fang & Boas, 2009) for light

propagation analysis by the diffusion equation using the finite element

method. The light propagation in the head models was calculated by

Nirfast, a finite element-based package that uses a diffusion approxi-

mation for modeling near-infrared light transport in tissue (Dehghani

et al., 2009; Jermyn et al., 2013). Optical properties in every tissue

layer of head models were specified from the reported data for each

type of tissue, that is, scalp (Torricelli, Pifferi, Taroni, Giambattistelli, &

Cubeddu, 2001); skull (Bevilacqua et al., 1999; Firbank, 1994); CSF

(Hale & Querry, 1973; Okada & Delpy, 2003a); gray matter; and white

matter (Bevilacqua et al., 1999; Gebhart, Lin, & Mahadevan-

Jansen, 2006) at an 800-nm wavelength as shown in Table 1.

2.2 | Definition of scalp positions and cortical
regions

2.2.1 | Scalp fiducial points and probe-pair
orientation

Numerous researchers in the fNIRS community have adopted the

10–10 or 10–20 system to position their probe pairs to detect

targeted brain regions (Anderson, Wiggins, Kitterick, & Hartley, 2017;
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Jiang et al., 2015; Minagawa-Kawai, Mori, Naoi, & Kojima, 2007;

Moriguchi & Hiraki, 2009). As such, we analyzed the SCC at the fidu-

cial points of the 10–10 system. Specifically, we firstly identified the

coordinates of anatomical landmarks corresponding to the inion,

nasion, and left and right periauricular points manually in each

subject-specific head model. Then we set all of 61 fiducial points on

the scalp of the head model according to the unambiguously illus-

trated 10–10 system developed by Dan's group (Jurcak, Tsuzuki, &

Dan, 2007) as shown in Figure 2a. To examine whether the probe-pair

orientation influenced the SCC, two probe pairs were placed in a cir-

cumferential and vertical orientation at each fiducial point. The dis-

tance between the emission and detection probes was set as 30 mm

which has been identified as the optimal probe spacing for adult fNIRS

studies (Strangman, Li, & Zhang, 2013), and the midpoint of the pro-

bes was set on the fiducial points. The probe positions as rendered in

a head model with different views are shown in Figure 2b–f.

2.2.2 | Individual brain parcellation

To compute the SCC at the individual level, we needed to parcellate

the brain into different multiple nonoverlapping brain regions for

every subject. Because it is time-consuming to parcellate each individ-

ual brain by manual delineation, we developed a semi-automatic pipe-

line to parcellate the brain of 45 subjects. Herein, the automated

anatomical labeling (AAL) atlas that parcellates a human brain

according to the macro-anatomical structure (Rolls, Joliot, & Tzourio-

Mazoyer, 2015; Tzourio-Mazoyer et al., 2002) was transferred onto

the brain of each individual subject (Figure 3). Given that the AAL

atlas was generated using a single subject brain in MNI space, Colin27,

we chose the ICBM-152 brain template defined in the MNI

F IGURE 1 The five-layered subject-specific realistic head model for the light propagation calculation. MR images were segmented into the
scalp, skull, cerebrospinal fluid, gray matter, and white matter to construct the model. (a) Three-dimensional segmented geometry of a realistic
head model for one representative subject. (b–d) The segmented images for different slice views from the same subject

TABLE 1 The optical properties of light propagation in various
tissues using head models

Absorption
coefficient (mm−1)

Transport scattering
coefficient (mm−1)

Scalp .016 1.35

Skull .01 .98

CSF .004 .30

Gray matter .019 .86

White matter .011 4.16

F IGURE 2 The arrangement of probe pairs according to the
10–10 system. (a) 61 fiducial points of the 10–10 system, in which
10–20 positions were filled with yellow color. (b–f) the arrangement
of two orientational probe pairs at 10–20 fiducial points (yellow dots)
superposed on the surface of one subject's scalp for different views.
The emission and detection probes are indicated by red and blue
circles, respectively. Black dotted lines are used for displaying
circumferential and vertical probe pairs. Note that probe pairs were
also attached on the 10–10 fiducial points (white dots), but were not

shown to avoid complications
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coordinates as a reference brain to parcellate the individual brain. The

ICBM-152 has been demonstrated to be the best template for the

description of scalp positions and their correlation to MNI coordinates

of the underlying cerebral structures by combining both high spatial

resolution and signal-to-noise while avoiding the “single brain” criti-

cism subject to the vagaries of any single brain (Cutini, Scatturin, &

Zorzi, 2011; Huang, Parra, & Haufe, 2016). Since the AAL atlas is

based on gyri and sulci, we first extracted the 17 major sulci as land-

marks from both the ICBM-152 brain template (Figure 3a) and the

individual brains (Figure 3b). Here, the 17 sulci were longitudinal fis-

sure, bilateral central sulcus, bilateral precentral sulcus, bilateral post-

central sulcus, bilateral superior frontal sulcus, bilateral inferior frontal

sulcus, bilateral sylvian fissure, bilateral superior temporal sulcus, and

bilateral intraparietal sulcus. Next, we transformed the brain template

with 17 sulci to align with the individual brain with 17 sulci by SPM

DARTEL (Ashburner, 2007). However, the sulci of the transformed

brain template misaligned slightly with those of the individual brain.

Hence, we applied a radial basis functional transform (RBFT) algorithm

(Pighin, Hecker, Lischinski, Szeliski, & Salesin, 2006), which uses sulcal

positions as anchor points to further reshape the transformed brain

template to align with the individual brain, so that the AAL brain

regions on the brain template were transferred onto the structure of

the individual brain. The combination of DARTEL with a transforma-

tion based on the shape of the sulci improved the consistency and

accuracy of the alignment performance (Auzias et al., 2011). Finally,

116 brain regions on the AAL atlas (Table S1) were transferred from

the brain template (Figure 3c) to the individual brain (Figure 3d) using

transformation functions obtained by SPM DARTEL and RBFT. The

above pipeline was repeated for the brain structures of the 45 sub-

jects. That is, the brains of 45 subjects were parcellated according to

the macroanatomical definition of the AAL atlas. Using the 45 sub-

ject-specific head models, we could analyze the effect of inter-subject

anatomical variability on the correlation between scalp surface fiducial

points and brain regions. Each node of the tetrahedral mesh was

labeled as a specific AAL region for each subject.

2.3 | Methodologies to analyze the SCC

The correlation between scalp fiducial points and brain regions was

analyzed by a method based on light propagation in an adult head and

three geometrical methods (Figure 4). The SCC was analyzed in two

steps for either matching method. Sensitivity-based matching (SBM)

provides the SCC based on the SSP of the probe-pair at each scalp

fiducial point. In geometrical matching (GM), SCC was obtained geo-

metrically by using an approximated perpendicular line from the scalp

surface at each fiducial point. There are three types of GM methods

according to the space in which each step is executed. Details of each

matching method are described below.

2.3.1 | Sensitivity-based matching

SBM was defined as a methodology to analyze the SCC based on a

light propagation analysis of the adult head (Figure 4a). At first, the

photon measurement density function (PMDF) was calculated at each

node of the mesh model based on the results obtained from a light

propagation analysis (Arridge, 1995). Under the conditions in the light

propagation analysis of this study, the PMDF had the same spatial dis-

tribution as the SSP (Oki, Kawaguchi, & Okada, 2009). Since the SSP

can be considered the partial optical pathlength in a small volume, the

sum of the SSP in a brain region is equivalent to the partial optical pat-

hlength of the same region. In other words, the sum of PMDF in a

brain region is linearly related to the partial optical pathlength within

the same region. We then calculated the proportion of partial optical

pathlengths for a given brain region M in all 116 brain regions (LM)

using the following equation as a metric of the sensitivity-based

correlation,

LM =
lM

ΣN
j=1lj

,

where lM and lj is the sum of PMDF of all nodes within the brain

regions M and j, respectively. N is the number of brain regions within

the whole brain tissue. As PMDF is a probability density function

(Arridge & Schweiger, 1995), the LM is regarded as the probability that

the fNIRS signal is affected by the brain activation of the region M.

The LM was calculated for circumferential and vertical probe-pair ori-

entations at every fiducial point for all 45 subjects. Note that the

F IGURE 3 Parcellation of individual brains according to the
automated anatomical labeling (AAL) atlas. The 17 major sulci were
identified on the structures of the ICBM-152 brain template (a) and
the brains of the 45 individual subjects. The brain structure and sulci

of a representative subject are shown in (b). The sulcal positions were
used to accurately transform the ICBM-152 brain template into each
individual brain. The AAL regions on the ICBM-152 brain template
(c) were transferred to the individual brain by applying the
transformation functions based on the brain structure and sulcal
positions. The AAL regions of a representative subject are shown
in (d)
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45 subject-specific individual head models with unique individual

brain parcellation were used to obtain the LM.

2.3.2 | Geometrical matchings

GM, which assumes the fNIRS signal is mainly contributed from the

midpoint between the emission and detection probes, has been

widely adopted to analyze the SCC in fNIRS studies. GM consists of

two steps to analyze the SCC (Figure 4b–d). Initially, the scalp position

is projected onto the cortical surface location (Figure 4b–d, left panel).

Next, the brain region to which the cortical location belongs is

determined according to the brain atlas (Figure 4b–d, right panel).

Based on whether these two steps were executed in the subject-

specific spaces or the template space, we defined three GMs: GM

(S,S), GM (S,T) and GM (T,T), in which S and T indicate subject-specific

spaces and the template spaces, respectively. GM (S,S) corresponds to

a traditional approach in which markers attached to probes are imaged

with an MRI scan and then each marker position is projected onto the

cortical surface along with the individual brain structure. GM (S,T) is

included in the procedure to construct the transcranial brain atlas

(Xiao et al., 2018). According to the definition of GM (T,T), it is

assumed that GM (T,T) is a probabilistic registration (Singh

et al., 2005; Tsuzuki & Dan, 2014).

GM (S,S) and GM (S,T) projected the 10–10 fiducial points on the

scalp surface of each individual subject to the cortical surface points

in the individual space (Figure 4b,c, left panels) by the balloon-

inflation algorithm (Okamoto & Dan, 2005). For GM (S,S), the AAL

brain region closest to the projected cortical surface point in the indi-

vidual space was determined as the corresponding brain region for

each fiducial point (Figure 4b, right panel). For GM (S,T), however, we

used a spatial normalization process to transfer the coordinates of

cortical surface points to a MNI space by SPM DARTEL (Figure 4c,

right panel), which was similar to the approach taken in a recent study

(Xiao et al., 2018). Subsequently, the AAL brain region closest to the

transferred point was searched in the ICBM-152 brain template.

Finally, the closest region in the template was assigned as the cor-

responded brain region for each fiducial point. GM (S,S) and GM (S,T)

make each fiducial point of individual subject correspond to a single

brain region. In other words, the probability that the fNIRS signal is

affected by brain activation in that single region is 1. We employed

these probabilities as a metric of the SCC for GM (S,S) and GM (S,T).

We repeated the above steps for all 45 subjects to obtain the proba-

bility of the corresponding brain region at every fiducial point for GM

(S,S) and GM (S,T), independently.

The SCC of GM (T,T) was analyzed using an NFRI toolbox

(Okamoto et al., 2004; Okamoto & Dan, 2005; Singh et al., 2005). At

the individual level, the coordinates of all 10–10 fiducial points were

firstly affine-transformed to the corresponding coordinates on the

scalp in the MNI space using the MRI database, which consists of

17 reference brains. Next, those transferred points were projected

onto the cortical surfaces of those reference brains (Figure 4d, left

panel) by the balloon-inflation method (Okamoto & Dan, 2005). The

spatial distribution of the projected cortical points was then quantified

by the average and standard deviation from the 17 reference brains.

Finally, the proportion of each brain region covered by the spatial dis-

tribution as a metric of the SCC for GM(T,T) was provided using an

AAL atlas (Figure 4d, right panel).

Three GMs can be clearly ordered according to methodological

differences from SBM (Figure 4). As the PMDF of each brain region is

calculated using SBM in the subject-specific model, the methodologi-

cal dissociation for SBM and GM (S, S) was the difference in consider-

ation of the light scattering (Figure 4a,b). In addition the light

scattering was not considered, GM (S,T) was different from SBM at

the point that the brain labeling of the cortical location was

F IGURE 4 Methods to analyze the scalp-cortex correlation (SCC).
(a) sensitivity-based matching (SBM), (b) geometrical matching
(GM) (S,S), (c) GM (S,T), and (d) GM (T,T). In (a), the spatial sensitivity
profile of the probe pair was represented by magnification of the gray
matter surface. The colors in descending order of sensitivity are black,
red and yellow. The first and second character in the brackets of GM
corresponds to the space in which the first and second steps of the

SCC were executed, that is, S and T denote the subject space and
template space, respectively
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determined using the template (Figure 4a,c). In addition to the differ-

ences between SBM and GM (S,T), GM (T,T) differed from SBM at the

point that the scalp position was projected onto the cortical surface in

the template brain (Figure 4a,d). Thus, the methodological dissociation

between SBM and GMs increased in the order of GM (S,S), GM (S,T),

and GM (T,T).

2.4 | Comparisons of the SCC between SBM
and GMs

2.4.1 | Comparison at the individual level

The measures of the SCC obtained by SBM and GMs can be regarded as

a probability showing which brain region the fNIRS signal derives from.

That is, they can be compared directly at the individual level. In addition,

it would be interesting for fNIRS users to know which brain region is the

most likely source of the signal. The most likely corresponding brain

region (MLCBR) was defined for each matching method; that is the brain

region with the largest LM for SBM, the brain region obtained by the

methods themselves for GM (S,S) and GM (S,T), and the brain region with

the highest volumetric occupancy in the sphere centered on the centroid

of the projected cortical points for GM (T,T).

2.4.2 | Comparison at the group level

The group-level SCC indices were calculated at each fiducial point for

the group-level comparisons of matching methods. One of the group-

level SCC indices used was the group-wise probability of corresponding

brain region for each matching method, that is, the average of the LM

across all subjects for SBM, the number of subjects corresponding to a

specific brain region divided by the total number of subjects for GM (S,S)

and GM (S,T) and the score calculated by the group analysis of NFRI

toolbox for GM (T,T). The group-wise probability of GM (T,T) was

obtained from a multi-subject spatial distribution of cortical points

corresponding to a given fiducial point by using spatial distribution

results from all individual subjects. To statistically compare the group-

wise probability between SBM and each GM, that is, SBM versus GM

(S,S), SBM versus GM (S,T), and SBM versus GM (T,T), we used the chi-

square test of independence, which is often used to determine if there is

a significant relationship between two nominal variables. In this study,

the null hypothesis was that there would be no relationship between the

group-wise probability between SBM and those from GMs. On the con-

trary, the alternative hypothesis was that there would be an association

between the group-wise probabilities from different methods. The rejec-

tion of the null hypothesis meant that the proportion distribution of a

series of corresponding AAL brain regions was distinct between SBM

and GM at a fiducial point. Dunnett's test was adopted to hold the

familywise error rate at or below alpha significant level (i.e., .05, .01,

.001) when performing multiple comparisons of SBM with each GM

(Dunnett, 1955). Moreover, in order to examine the effect of the probe-

pair orientation on the sensitivity-based correlation, we also performed

the chi-square test of independence between the group-wise probabili-

ties from circumferential and vertical orientations for SBM.

The group-wise MLCBR was also obtained as another group-level

SCC index. The group-wise MLCBR was the AAL region corresponding

to the maximum group-wise probability of each matching method. In

addition, we defined the concordance rate Q representing the extent of

consistency of the MLCBR between SBM and each GM;

Q=
n
N
×100,

where n was the number of subjects that had the same MLCBR

between SBM and GMs and N was the total number of subjects.

3 | RESULTS

3.1 | Impact of the light scattering and probe-pair
orientation on the SCC

For an arbitrarily chosen subject, the PMDF of two probe-pair orien-

tations, which were set at the fiducial point T4, are shown in

Figure 5a. T4 corresponded to three brain regions (MTG_R: 0.689;

ITG_R: 0.228; STG_R: 0.082) for circumferential orientation

(Figure 5A, upper panel). Similarly, the same brain regions with slightly

different LM (MTG_R: 0.692; ITG_R: 0.242; STG_R: 0.065) were cor-

responded when examining vertical orientation (Figure 5a, lower

panel). Importantly, even for the same fiducial point T4, the brain

regions with sensitivity varied across subjects (Figure 5b). Similar spa-

tial patterns of PMDF for one specific subject (Figure 5a) and LM dis-

tribution for all subjects (each column of matrix indicating the LM

distribution of one subject, Figure 5b) showed that the sensitivity-

based correlation seemed independent of the probe-pair orientations.

Moreover, results from other fiducial points, F8 and O1, also showed

that two LM matrices of two different orientations were highly similar

by visual examination (Figure 5c,d). Further chi-square test of inde-

pendence at the group level showed that the probe-pair orientation

had no significant differences on the LM distribution at all fiducial

points, that is, all p-values were greater than .05. In addition, the inter-

class correlation coefficient (ICC(2,1)) between the LM of the MLCBR

for circumferential and vertical orientations at all fiducial points was

.964 (Figure 5e). The LM of the MLCBR at most fiducial points was

approximately 50% or less, in particular, those fiducial points along

the Nz-Cz-Iz midline of the brain. In contrast, the LM of the MLCBR

was relatively high (>0.790) at fiducial points PO7, F3, F4, and FC3.

3.2 | A systematic comparison of sensitivity-based
correlation and geometrical correlations

3.2.1 | Comparison at the individual level

Due to no significant differences between two probe-pair orientations

(Section 3.1), we only chose sensitivity-based correlation from the
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circumferential orientation to make the comparisons with geometrical

correlations in the following sections.

To illustrate the distinction between SBM and GMs at the individ-

ual level, we selected the SCC results from three representative par-

ticipants for a given fiducial point T3. The PMDF for the three

subjects are shown in Figure 6a–c, respectively. Based on the LM in

brain regions, results from SBM showed that T3 corresponded to two

brain regions (MTG_L: 0.757 and STG_L: 0.237) for subject 01. How-

ever, T3 had four corresponding brain regions for subject 16 (MTG_L:

0.517; STG_L: 0.445; PoCG_L: 0.019 and ROL_L: 0.012) and three

corresponding brain regions for subject 44 (STG_L: 0.558; MTG_L:

0.353 and PoCG_L: 0.071), respectively. Of note, despite the probe

pair being placed at the same fiducial point T3, the MLCBR was not

the same among the three subjects, that is, MTG_L for subject 01 and

subject 16, but STG_L for subject 44. Moreover, T3 of subject 16 had

almost equivalent sensitivity for the two brain regions, but one brain

region dominated for the other two subjects. The cortical positions

indicating the corresponding brain region of GM (S,S) were located in

the regions with the high PMDF (the green dots in Figure 6 A, B and

C). Moreover, the corresponding brain region from GM (S,S) was the

same as that with the largest LM obtained by SBM for subject 01 and

subject 44, except for subject 16. Nevertheless, once the spatial

F IGURE 5 The effect of light scattering and probe-pair orientation on the scalp-cortex correlation (SCC) obtained using sensitivity-based
matching (SBM). (a) The photon measurement density function (PMDF) of two probe pairs attached according to circumferential and vertical
orientations at the fiducial point T4 are shown for arbitrarily chosen subject 06. Dashed lines in different colors indicate the boundaries of brain
regions (i.e., red: ITG_R; green: MTG_R; black: STG_R). Two-column panels of LM matrices at three fiducial points (b) T4, (c) F8, and (d) O1 display
the LM distribution for circumferential and vertical probe-pair orientations, respectively. The digits and characters in each LM matrix represent the

identification number of subjects and brain regions, respectively. (e) LM of the MLCBR at all fiducial points for circumferential and vertical
orientations
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normalization was incorporated into the calculation of the SCC, as in

GM (S,T), only the corresponding brain region of subject 01 was the

same as that of the largest LM (Figure 6d). As shown in results from

GM (T,T) (Figure 6e), T3 corresponded to the same brain region

MTG_L for the three subjects, in which corresponding brain regions of

subject 01 and subject 16 were congruent with those with the largest

LM. Figure 6f summarized the results of MLCBR for each matching

method and subject.

To investigate the SCC systematically at fiducial points of each

matching method across all 45 subjects, we selected three fiducial

points (T3, Fpz, and Cz) that have widely been used as reference

points to attach probes in cognitive neuroscience studies using fNIRS.

For the fiducial point T3, the number of the corresponding brain

regions was different between subjects when SBM was used (max:

7 regions; min: 2 regions, see Figure 7a upper panel). GM (S,S) and

GM (S,T) provided the single corresponding region since these

methods were based on the point-to-point correlation at the individ-

ual level. GM (T,T) showed that T3 focused on one or two specific

brain regions, for example, MTG_L, 0.847; ITG_L, 0.153 for subject

13; MTG_L, 1.000 for subject 18. The SCC at Fpz and Cz displayed a

large discrepancy compared to T3. Specifically, the number of brain

regions that Fpz and Cz corresponded to was much larger than that of

T3 using SBM. In addition, the LM of Fpz and Cz was not exclusively

high in one region, but it was broadly distributed across several

regions (Figure 7b,c, upper panel). The corresponding brain region of

GM (S,S) and GM (S,T) varied across subjects and the inter-subject

variability differed at fiducial points (Figure 7b,c, upper panel). GM

(T,T) showed that corresponding brain regions had more relatively lim-

ited and focused distribution across subjects (Figure 7b,c, upper

panel).

The MLCBR at T3 between SBM and each GM was distinct only

in a few subjects. (Figure 7a, lower panel). In contrast, the MLCBR at

Fpz or Cz was inconsistent between SBM and all GMs for most sub-

jects (Figure 7 B and C, lower panel). Furthermore, the inconsistency

of the MLCBR at each fiducial point increased with larger methodo-

logical dissociation between SBM and GMs. For instance, the number

of subjects for whom the MLCBR was consistent between SBM and

GMs (the number of yellow blocks in the lower panel of Figure 7)

decreased at T3, that is, 44, 41, and 39 for SBM versus GM (S,S), SBM

versus GM (S,T), and SBM versus GM(T,T), respectively. On the other

hand, the consistency of the MLCBR between SBM and each GM was

different at chosen fiducial points, as indicated by the decrease in yel-

low blocks from T3, Fpz to Cz (Figure 7a–c, lower panel).

3.2.2 | Comparison at the group level

To examine the differences among SBM and GMs at the group level,

we calculated group-level SCC indices across 45 subjects at three

fiducial points T3, Fpz, and Cz (Table 2). We found T3 had three

F IGURE 6 The scalp-cortex correlation (SCC) for a given fiducial point T3 of three representative subjects. Dashed lines in different colors
indicate the boundaries of AAL brain regions. The photon measurement density function (PMDF) superimposed on three subject-brain structures
are shown in (a–c) when the probe pair was attached in a circumferential orientation. The PMDF was normalized by the maximum value for each
subject. The position identified by geometrical matching (GM) (S,S) is indicated by a green dot in (a–c). (d) Cortical surface points identified by GM
(S,T) are shown as small dots on the ICBM-152 brain with different colors for three subjects. (e) The corresponding brain region obtained by GM
(T,T) was displayed on the averaged reference brain. (f) The MLCBR of T3 was shown as a table for each matching method and subject. Centers
and radii of circles indicate the mean values and one standard deviation of the most likely coordinates
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corresponding brain regions using SBM, that is, MTG_L: 0.693; STG_L:

0.274; PoCG_L: 0.018. GM (S,S) and GM (S,T) displayed two cortical

regions corresponding to T3, that is, MTG_L: 0.844 and 0.822; STG_L:

0.156 and 0.178, for GM (S,S) and GM (S,T), respectively, but we

found T3 mapped to MTG_L for any subject by GM (T,T). For Fpz and

Cz, the number of corresponding brain regions obtained by SBM was

greater than that obtained by GMs. At Fpz, the probabilities of a few

brain regions were much greater than those of others when GMs

were used. In contrast, the probabilities were relatively even across

the corresponding brain regions when SBM was used (see Table 2).

F IGURE 7 The matrices
indicating the scalp-cortex
correlation (SCC) obtained by
sensitivity-based matching (SBM)
and three geometrical matchings
(GMs) at three representative
fiducial points (a) T3, (b) Fpz, and
(c) Cz for 45 subjects. The digits
and characters in each matrix

represent the identification
number of subjects and brain
regions, respectively. The color of
the matrices in the upper panel of
each subfigure for SBM and GMs
indicates LM and probability,
respectively. The lower panel of
each subfigure shows the
difference in MLCBR between
SBM and GMs. Red and green
blocks indicate the MLCBR of
SBM and GMs, respectively.
When the MLCBR was consistent
between SBM and GMs, the block
turns yellow due to the additive
color of green and red
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TABLE 2 The group-wise
probabilities of the scalp-cortex
correlation

Fiducial point AAL region

SBM

GM (S,S) GM (S,T) GM (T,T)

(circumferential orientation)

Mean SD

T3 MTG-L .693 .208 .844 .822 1.000

STG-L .274 .181 .156 .178 .000

PoCG-L .018 .028 .000 .000 .000

Fpz ORBmed-R .291 .109 .578 .489 .478

ORBmed-L .203 .073 .289 .156 .357

SFGmed-R .122 .078 .067 .244 .122

SFGmed-L .102 .068 .044 .111 .026

ORBsup-L .102 .065 .000 .000 .000

ORBsup-R .098 .067 .000 .000 .017

SFGdor-L .025 .022 .000 .000 .000

SFGdor-R .024 .023 .000 .000 .000

REC-R .011 .017 .000 .000 .000

REC-L .000 .000 .022 .000 .000

Cz SMA-R .240 .121 .222 .200 .367

PCL-R .168 .121 .178 .267 .114

SFGdor-L .155 .121 .200 .044 .000

PCL-L .153 .102 .178 .244 .359

SMA-L .115 .082 .178 .200 .159

PreCG-L .060 .073 .022 .000 .000

PreCG-R .046 .059 .022 .022 .000

SFGdor-R .038 .046 .000 .022 .000

PoCG-L .000 .000 .000 .000 .000

Note: The maximum value obtained by each matching method at each fiducial point is shown in bold. The

group-wise MLCBR is the AAL region corresponding to the maximum value of each matching method.

Abbreviation: SD, standard deviation.

F IGURE 8 The differences for the group-wise probability between sensitivity-based matching (SBM) and each geometrical matching (GM) for
all 10–10 fiducial points. (a) SBM versus GM (S,S); (b) SBM versus GM (S,T); (c) SBM versus GM (T,T). The color indicates the significant level of
the chi-square test of independence after Dunnett's multiple comparison procedure. White circles indicate p ≥.05/3
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The group-wise probabilities of all 10–10 fiducial points at the group

level could be found in Table S2. The group-wise MLCBR at T3 and

Fpz was kept consistent whichever method was adopted. In contrast,

the group-wise MLCBR of GM (S,T) at Cz was different from that of

the other three methods.

To assess the differences for the SCC quantitatively at all fiducial

points at the group level, we performed a chi-square test of indepen-

dence to examine whether group-wise probability for a given fiducial

point derived from SBM and each GM was independent. When com-

paring results obtained from SBM and GM (S,S), we found that the

group-wise probability was significantly different for 9 of 61 fiducial

points (Figure 8a, fiducial points filled with color), which were mainly

located in the anterior regions of the head. Furthermore, we found

that 23 fiducial points mainly in anterior and posterior regions dis-

played a significant difference between SBM and GM (S,T) (Figure 8b).

Intriguingly, the comparison between SBM and GM (T,T) showed that

the group-wise probability was significantly different for 44 of 61 fidu-

cial points, covering almost the whole head (Figure 8c).

For all fiducial points, the consistency of the MLCBR between

SBM and each GM was assessed by the concordance rate Q. As

shown in Figure 9, the MLCBR was moderately or highly consistent

between SBM and GMs for most fiducial points. Importantly, the

greater the methodological disassociation between SBM and GMs,

the lower concordance rate Q was at almost all fiducial points. The

mean and standard deviation of the concordance rate Q for all 10–10

fiducial points were 85.9 ± 11.2%, 74.0 ± 18.0%, and 65.5 ± 22.4%

for SBM versus GM (S,S), SBM versus GM (S,T), and SBM versus GM

(T,T), respectively. The concordance rate Q showed characteristic spa-

tial distribution. The values were relatively low at frontal, central, and

posterior fiducial points, particularly in SBM versus GM (S,T) and SBM

versus GM (T,T).

4 | DISCUSSION

To date, most efforts to specify the cortical region under the scalp

position in fNIRS studies have been based on a simple assumption

that the signal originates from the brain region just below the mid-

point of the emission and detection probes. Additionally, few studies

investigated the role of inter-subject variations in the anatomical

structure of the head and brain when in the SCC analysis. In the cur-

rent study, we established a precise correlation between the sensitiv-

ity of probe pairs at 10–10 system positions on the head surface and

brain regions contributing to the detected hemodynamic changes by

analyzing light propagation in 45 subject-specific head models. We

found that fNIRS sensitivity obtained by SBM was broadly distributed

in several adjacent brain regions for all fiducial points on the scalp sur-

face, and the sensitivity-based correlation was independent of probe-

pair orientations but varied across subjects for the same fiducial point.

The comparisons between sensitivity-based correlation and geometri-

cal correlations demonstrated that matching methods had a significant

influence on the SCC and that the level of influence was different for

each fiducial point. In particular, the methodological dissociations

between SBM and each GM determined the level of difference of the

SCC. All of these findings demonstrated that it is necessary to con-

sider both light scattering in head tissues and individual anatomical

differences when estimating the brain region in which fNIRS signals

originate.

4.1 | Methodological verification

We calculated the sensitivity-based correlation based on the diffusion

equation. The diffusion equation has the advantage of reduced

F IGURE 9 The consistency for the MLCBR at all fiducial points between sensitivity-based matching (SBM) and each geometrical matching
(GM). (a) SBM versus GM (S,S), (b) SBM versus GM (S,T), and (c) SBM versus GM (T,T). A higher concordance rate Q correlated to a larger the
number of subjects in which the most likely corresponding brain region (MLCBR) was the same between SBM and each GM

1980 CAI ET AL.



computation time compared to the Monte Carlo method, which is an

essential component of the current study containing many subjects

and a large number of scalp positions. Although the diffusion approxi-

mation cannot rigorously model light propagation in low-level scatter-

ing regions such as the CSF, previous studies have shown that there is

no significant difference between the deterministic approach with the

diffusion equation and the stochastic Monte Carlo method when the

transport scattering coefficient of the CSF layer is more than .3 mm−1

(Koyama et al., 2005; Oki et al., 2009). We used a transport scattering

coefficient of CSF at .3 mm−1 for light propagation calculations

according to the precise optical modeling of the subarachnoid space

(Okada & Delpy, 2003a). Therefore, the PMDF and the LM obtained

by our calculations must be similar to those obtained by the Monte

Carlo method.

The accuracy of the LM is also affected by the parcellation accu-

racy of the gray matter in the brain regions. Since the AAL atlas uses

the sulcus as a boundary to parcellate brain regions, the accuracy of

the parcellation on the individual brain can be easily evaluated by

visual assessment. It should be noted that the AAL atlas is based on

the Colin27 average brain, created by scanning a single subject

27 times (Holmes et al., 1998). Previous studies have demonstrated

that the single-subject AAL atlas does not adequately represent the

partition pattern of the human brain because it cannot capture the

neuroanatomical variability across individuals (Devlin &

Poldrack, 2007) and does not match the cytoarchitectonic borders

well in most cases (Amunts, Schleicher, & Zilles, 2007). Despite these

limitations, we still utilized the AAL atlas to calculate the SCC for the

purpose of direct comparison between SBM and GMs, for which the

AAL atlas is usually employed. Given that the AAL atlas is represented

on standard brain structures, we tried to parcellate individual gray

matter by transforming a standard brain structure into an individual

brain structure using the DARTEL method. However, upon applying

this method by itself, a brain region located in a certain sulcus in the

standard brain was incorrectly transferred into several gyri in the indi-

vidual brain (data not shown). To improve parcellation, the RBFT was

applied after using the DARTEL method to accurately align the

17 major cerebral sulci on the standard and individual brain structures.

The application of DARTEL followed by RBFT provided accurate

parcellation of the individual gray matter into the AAL brain regions.

Therefore, the LM is accurate for the current brain region parcellation.

Importantly, SBM is not restricted to the AAL atlas; other atlases such

as the Brodmann atlas (Brodmann, 2006) or the HCP-MMP1.0 atlas

(Glasser et al., 2016) could also be applied when calculating the SCC

using the SBM method. Thus, future work could consider establishing

a sensitivity-based correlation using other atlases to help understand

human brain function.

4.2 | Impact of light propagation in tissue on SCC

The SCC obtained from SBM always displayed multiple corresponding

brain regions for a fiducial point. Particularly, a certain single brain

region dominated the LM for some fiducial points such as T3 and T4,

while several brain regions possessed the equivalent LM at other fidu-

cial points above the longitudinal fissure such as Fpz and Cz. Thus, the

source of the fNIRS signal could be estimated exactly based on the

scalp position when the probe pair is attached around the former fidu-

cial points, whereas such estimation is difficult when the probe pair is

attached around the latter fiducial points. For the interpretation of

fNIRS data measured around at the latter points, meticulous attention

should be paid to the brain region in which activity occurs.

Interestingly, the probe-pair orientation had no significant influ-

ence on the distribution of LM over 10–10 positions, which was con-

sistent with findings from photon propagation in the Colin27 brain

template (Strangman, Zhang, & Li, 2014). Regardless of the probe-pair

orientation, the PMDF value in the gray matter showed the local max-

imum at just below the midpoint of the emission and detection probes

and decreased with increasing distance from the maximum point. In

addition, the contour lines of the PMDF on the gray matter surface

resembled concentric circles centered at the maximum point. These

spatial features of the PMDF explain the fact that the SCC is indepen-

dent of the orientation of the probe pairs. It is a welcome relief for

fNIRS users that the orientation of the probe pair has little effect on

the sensitivity-based correlation. On the other hand, the spatial fea-

tures of the PMDF depend on the distance between the emission and

detection probes. Thus, it is uncertain whether such spatial features

of the PMDF would change when the emission-detection spacings

were not 30 mm. Previous studies have suggested that the optimal

emission-detection spacing should be narrowed down to 30–35 mm

(Chuang, Chen, Hsieh, Liu, & Sun, 2013; T. Li, Gong, & Luo, 2011;

Strangman et al., 2013), while different adult brains had their own

optimal emission-detection spacing (Chuang et al., 2013). How the

interaction between individual brain structure and emission-detection

spacing affects SCC might be an interesting future research question.

In addition to the emission-detection spacing, the SSP of fNIRS is

sensitive to individual anatomical differences associated with varia-

tions in head size, depth of the brain from the scalp, among other fac-

tors. Such individual anatomical difference is illustrated by evidence

that each individual subject exhibits unique scalp and skull thickness,

CSF distributions and cortical folding patterns (Hasan et al., 2007;

H. Li, Ruan, Xie, Wang, & Liu, 2007). Moreover, a recent study pro-

vided direct evidence supporting our findings, because the partial

optical pathlength in the brain decreases with an increase in the scalp-

brain distance varying with individuals and across brain regions

(Nakamura et al., 2016).

In particular, nonbrain superficial head tissues, such as scalp, skull

or CSF, could have a considerable influence on the SSP. Evidence

from light propagation analysis in the adult head revealed that a low-

scattering CSF layer could significantly broaden the SSP and confine

the SSP of the sampling areas to the shallow regions of the gray mat-

ter (Firbank et al., 1998; Okada et al., 1997). In addition, the SSP is sig-

nificantly affected by the thickness of the CSF layer (Okada &

Delpy, 2003b). In older adults, changes in the thickness of the CSF

layer due to brain atrophy could result in a decrease in sensitivity as

the scalp-brain distance increases. Similarly, Beauchamp et al. docu-

mented changes in the scalp-brain distance with age in 71 children
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aged 0–12 years old (Beauchamp et al., 2011). These age-related ana-

tomical changes had an effect on the optical path in tissue and the

fraction of the signal coming from the actual brain compared to the

superficial layers (Whiteman, Santosa, Chen, Perlman, &

Huppert, 2018). Since the age range of subjects in this study was

21–58 years, the sensitivity-based correlation in the other age groups

should also be considered.

In recent years, the short channel regression technique has been

applied in fNIRS studies to isolate the cortical functional response by

regressing the noise from superficial tissues, such as the scalp and

skull, from the standard fNIRS signal (Brigadoi & Cooper, 2015;

Saager & Berger, 2005). Notably, short channel regression has been

demonstrated as an effective method for the removal of systemic

physiological artifacts in fNIRS data analysis (Santosa, Zhai, Fishburn,

Sparto, & Huppert, 2020; Wyser et al., 2020; Yücel et al., 2015). The

short channel regression assumes that the signal received at the short

separation detector is mostly representative of the superficial layers,

while the signal received at the long separation detector is sensitive

to both the brain and superficial layers. Thus, regression of the short

separation signal from the long separation signal effectively filters out

the superficial component, whereas it has no influence on the signal

from the brain. In addition, the SBM-derived SCC was only from the

sensitivity in the gray matter. These facts indicate that short channel

regression does not affect the SCC obtained by SBM. Sensitivity-

based correlation is useful for fNIRS studies, regardless of the use of

short distance regression.

4.3 | Comparison of SCCs between matching
methods

In the present study, we compared the SCC of three GMs with that of

SBM. Remarkably, we found that the smaller the methodological dis-

sociation between SBM and GMs, the smaller the number of fiducial

points that displayed significantly different group-wise probability of

the SCC between SBM and GM, and the larger the number of subjects

in which the MLCBR was consistent between SBM and GM. As per

the description in Section 2.3.2, GM (S,S) is completely the same as

SBM except for ignoring light scattering. There were the smallest dif-

ferences between GM(S,S) and SBM in terms of the group-wise prob-

ability and the MLCBR. We found the group-wise probability showed

statistically significant differences between SBM and GM (S,S) at

14.8% of all fiducial points. At such fiducial points, the influence of

light propagation cannot be ignored to obtain the SCC accurately. On

the other hand, the MLCBR of SBM and GM (S,S) showed relatively

high consistency across almost all fiducial points and individual sub-

jects. If we accept the assumption that brain activation is confined to

a single brain region, GM (S,S) could provide a reasonable signal

source for fNIRS.

GM (S,T) had a greater deviation from SBM than GM (S,S) with

regards to the SCC. GM (S,T) is methodologically different from GM

(S,S) at the point that assigning brain regions in the template space

after the spatial normalization, which indicates that the accuracy of

spatial normalization strongly affects the SCC. Similar spatial normali-

zation was included in the process to construct the transcranial brain

atlas (Xiao et al., 2018). A more sophisticated transcranial brain atlas

could be constructed by either replacing the spatial normalization with

other more accurate techniques such as DARTEL followed by RBFT,

or using the SCC from GM (S,S).

GM (T,T) displayed the largest discrepancy with SBM. There were

statistically significant differences in the group-wise probabilities

between SBM and GM (T,T) at 72.1% of all fiducial points. Character-

istically, GM (T,T) showed fewer individual differences on the SCC

than the other matching methods (Figure 7). In other words, GM (T,T)

eliminates the individual differences of the SCC that actually exist. In

GM (T,T), a point on the scalp of the individual subject was transferred

to the template space by the affine transformation that aligns the

fiducial points in the individual space with those of the template

space. Then, the transferred point was projected onto the cortical sur-

face in the template space. Noticeably, the head structures of the

same 17 subjects are always used in GM (T,T), which indicates the

positional relationship between the scalp and cortical surface is sta-

tionary on the SCC analysis by GM (T,T) for any subjects.

4.4 | Consideration of appropriate SCC for fNIRS

The SCC aims to identify cortical activation regions caused by changes

in absorbance measured at the probe pairs attached to the scalp.

Essentially, the SCC should be analyzed on the subject-specific ana-

tomical structure because it is influenced by individual differences.

However, the anatomical structures of individual subjects are not

available in most fNIRS experiments. Techniques such as probabilistic

registration and the transcranial brain atlas have been developed to

estimate the activation region in such cases. Probabilistic registration

is GM (T,T) itself, and a method equivalent to GM (S,T) was used to

construct the transcranial brain atlas. We revealed the SCC of these

two methods was significantly different from that of SBM at a consid-

erable number of fiducial points. Therefore, at those fiducial points,

the reliability of the SCC obtained by GM (T,T) or GM (S,T) should be

evaluated with great care.

The group-wise probability of the SCC obtained by SBM and GM

(S,S) could be a promising alternative to the SCC on the individual sub-

ject. The group-wise probability of SBM consists of individual SCCs

considering the effects of light propagation in the head of 45 subjects.

The full list of brain regions where the group-wise probability was

greater than zero encompassed the brain regions that are potential

sources of the fNIRS signal at each fiducial point. Thus, the possibility

of ignoring the activation region must be extremely small by referring

to the group-wise probability of SBM. In addition to SBM, GM (S,S) is

also useful for estimating a brain region that is most likely to be acti-

vated for a fiducial point because the MLCBR obtained by SBM and

GM (S,S) was almost identical.

As we discussed previously, the group-wise probability of the

SCC obtained by SBM (Table S2) could be used as a lookup table to

guide fNIRS users to design their probe geometry for targeting
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specific brain regions and thus help to more precisely explain fNIRS

data obtained according to the 10–10 system. Although the group-

wise probability of the SCC from SBM was greater than 0 in all brain

regions adjacent to the skull, except for subcortical regions of the

brain, the spatial density of the 10–10 fiducial points for analyzing the

sensitivity-based correlation would be relatively sparse because a few

brain regions had only a small chance of being corresponded. The

sensitivity-based correlation calculated over all fiducial points of a

denser placement system (Oostenveld & Praamstra, 2001) can keep

all brain regions with a high probability of being corresponded. The

group-wise probability obtained by SBM with a denser placement sys-

tem can provide the corresponding brain regions of fNIRS probes

placed anywhere on the scalp.

The currently proposed SBM method can be implemented into

fNIRS and diffuse optical tomography (DOT). In some fNIRS measure-

ments, the 3D coordinates of optodes on the scalp can be determined

by instruments such as a 3D digitizer. By virtual positioning of the

optodes on the heads of 45 subjects, SBM could be utilized to calcu-

late the SCC based on light propagation from 45 subject-specific head

models to approximately reach the required accuracy using the sub-

ject's own MRI. That is, it is possible to obtain a fairly accurate SCC

even without the subject's head structure. Notably, the SBM method

is useful not only for fNIRS measurements, but also for DOT, which

utilizes a large number of densely placed emission-detection probe

arrangements and allows the reconstruction of 3D images of brain

activation by solving the inverse problem (Culver, Siegel, Stott, &

Boas, 2003). Specifically, SBM will help correlate the reconstruction

image of brain function by DOT and the underlying brain regions for a

given probe arrangement. In addition, SBM could also contribute to

the probe arrangement design for targeting specific brain regions in

DOT, as well as to obtain the underlying brain regions for the long

measurement channels.

5 | CONCLUSION

In this article, we provided compelling evidence demonstrating that

light scattering and individual anatomical differences in the adult head

affect the SCC in fNIRS, while the orientation of the probe pair has lit-

tle effect. Importantly, the proposed SBM method could be used to

obtain the precise SCC by considering both the light scattering in

head tissues and individual anatomical differences, compared to the

conventional GM methods, which may overlook brain regions that

should have been essential candidates for the fNIRS signal source. For

practical application, we recommend using group-wise probability,

consisting of individual SCCs over 10–10 system positions obtained

by the SBM method, to design probe arrangements to targeted brain

regions of interest and explain fNIRS measurement data, since this

index considers the effects of light propagation in the head of 45 sub-

jects. Once the coordinates of optodes on the scalp are available,

fNIRS users will be able to adopt the SBM method to estimate the

underlying brain regions for any probe pair without the subject's

own MRI.
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