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Abstract

Introduction

Risk factors for life-threatening cardiovascular events were evaluated in an experimental

model of epilepsy, the Wistar Audiogenic Rat (WAR) strain.

Methods

We used long-term ECG recordings in conscious, one year old, WAR andWistar control

counterparts to evaluate spontaneous arrhythmias and heart rate variability, a tool to assess

autonomic cardiac control. Ventricular function was also evaluated using the pressure-vol-

ume conductance system in anesthetized rats.

Results

Basal RR interval (RRi) was similar between WAR andWistar rats (188±5 vs 199±6 ms).

RRi variability strongly suggests that WAR present an autonomic imbalance with sympa-

thetic overactivity, which is an isolated risk factor for cardiovascular events. Anesthetized

WAR showed lower arterial pressure (92±3 vs 115±5 mmHg) and exhibited indices of sys-

tolic dysfunction, such as higher ventricle end-diastolic pressure (9.2±0.6 vs 5.6±1 mmHg)

and volume (137±9 vs 68±9 μL) as well as lower rate of increase in ventricular pressure

(5266±602 vs 7320±538 mmHg.s-1). Indices of diastolic cardiac function, such as lower

rate of decrease in ventricular pressure (-5014±780 vs -7766±998 mmHg.s-1) and a higher

slope of the linear relationship between end-diastolic pressure and volume (0.078±0.011 vs

0.036±0.011 mmHg.μL), were also found in WAR as compared to Wistar control rats. More-

over, Wistar rats had 3 to 6 ventricular ectopic beats, whereas WAR showed 15 to 30 ectop-

ic beats out of the 20,000 beats analyzed in each rat.

Conclusions

The autonomic imbalance observed previously at younger age is also present in agedWAR

and, additionally, a cardiac dysfunction was also observed in the rats. These findings make
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this experimental model of epilepsy a valuable tool to study risk factors for cardiovascular

events in epilepsy.

Introduction
Epidemiological studies have established that the incidence of premature death among epilep-
tic patients is markedly higher than in the general population [1,2,3]. There has been growing
awareness of sudden unexpected death in epilepsy (SUDEP), which is now acknowledged as a
serious problem for epileptic patients [2,3]. Evidence from epidemiological, clinical, and patho-
logical studies indicates that in most cases SUDEP occurs after a seizure, although deaths not
preceded by seizure have been reported anecdotally [3].

Even though the pathophysiology of SUDEP is unknown in most cases, it is important to
consider that sudden death is often attributed to cardiac events. Heart dysfunction and distur-
bances in neural control of the cardiovascular system are always associated with morbidity and
mortality in epileptic patients [3,4,5,6]. In fact, QT dispersion, reflecting regional heterogeneity
of cardiac repolarization and important risk factors for ventricular arrhythmias, have been
seen in up to one third of people with epilepsy [7,8]. Moreover, few studies with electrocar-
diographic (ECG) recordings during or near to sudden deaths in epileptic patients suggest that
cardiac arrhythmias are crucial determinants of some of them [9,10].

Clinical and experimental studies provide evidences that epileptic seizures are accompanied
by autonomic cardiovascular imbalance with sympathetic overactivity, resulting in hyperten-
sion, tachycardia and electrical instability in the heart [10,11,12]. Although changes in sympa-
thetic discharges are known to occur during epileptic seizures, autonomic disturbances, mostly
showing enhanced sympathetic cardiovascular tone, were also found in inter-ictal periods in ei-
ther epileptic patients [13, 14,15,16,17] or experimental models of epilepsy [18].

It has long been recognized that increased sympathetic activity has a profound influence on
the electrical and contractile functions of the heart [19]. There is wide evidence that excessive
catecholamine release, due to sympathetic activation, produces severe toxic cardiac effects,
such as intra-cellular Ca2+ overload, high-energy phosphate depletion, life threatening ventric-
ular arrhythmias, and sudden cardiac death [19,20,21,22]. Moreover, long-lasting sympathetic
overactivity, known to promote myocardial apoptosis [23] and cardiac hypertrophy with
chamber remodeling [24,25] is thought to be a major determinant of progressive heart failure.

Remarkable advances in the understanding of autonomic function have been made due to
the development of methods to evaluate short-term changes in heart rate (HR) and/or blood
pressure (BP). The notion that, in addition to cardiac cycle, other rhythms related to sympa-
thetic and parasympathetic drives to the heart are present in BP and HR series stimulated great
interest in using measures of cardiovascular variability as diagnostic tools [26]. Analysis of
spontaneous rhythmic fluctuations in HR by spectral analysis offers remarkable insight into
the physiological mechanisms of autonomic cardiovascular control [27,28,29,30,31].

Various experimental animal models of epilepsy have been used to examine the pathophysi-
ological mechanisms of this syndrome. For example, Wistar audiogenic rats (WAR) [32,33],
which are an inbred strain prone to audiogenic epileptic seizures derived fromWistar rats,
have been used extensively as an experimental model of epilepsy. A recent study from our labo-
ratory [18] showed that young adult WAR are slightly hypertensive, have higher basal HR and
a 2-fold higher cardiac sympathetic tone compared with Wistar control rats with no experience
of audiogenic epileptic seizures.
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It is well established that high BP and chronic cardiac sympathetic overactivity are leading
causes of life-threatening cardiovascular events, such as ventricular arrhythmias and are also
major determinates of heart failure [23,24,25]. In this context we hypothesize that WAR are at
higher cardiovascular risk, especially during aging. Therefore, the aim of this study was to iden-
tify spontaneous arrhythmias, as well as to evaluate HR and BP variability as an approach to
characterize autonomic modulation of the cardiovascular system in aged, conscious freely-
movingWAR. Moreover, cardiac function was also evaluated by analyzing left ventricular pres-
sure-volume relationships in anesthetized rats from the WAR strain.

Methods

Ethics Statement
All procedures were performed in accordance with institutional polices and guidelines for ethi-
cal use of animals and following the recommendations from the Brazilian Society for Neurosci-
ence and Behavior. At the end of the ventricular pressure recordings, with the animals still
under the effect of anesthesia (see below), by mean of large laparotomy, they were killed by
ample diaphragm opening. Specific protocols for the current experiments were approved by
the Commission for Animal Experimentation (CETEA; 117/2011 and 16/2013-1) of the Ribei-
rão Preto School of Medicine.

The experiments were conducted on male WAR and their Wistar counterparts (control,
n = 9 in each group) at 11 to 12 months of age with no prior induction of audiogenic epileptic
seizure (WAR) and sound stimulation (Wistar). The animals were housed individually with
free access to food and water and were maintained on a 12/12 h light/dark cycle at 22°C.

Surgery and Recording of Electrocardiogram
The animals were anesthetized with tribromoethanol (250 mg/kg i.p.) and implanted with sub-
cutaneous ECG electrodes two days prior to recording. The electrodes tips were suture-fixed
subcutaneously and the wires exteriorized at the back of the neck and the rats were allowed to
recover for 2 days. The animals were taken to the recording room, where the electrodes were
connected to an ECG amplifier (6600 series ECG/Biothac. Amplifier, Gould Instrument Sys-
tems In, Valley View, OH, USA) coupled to an A/D interface (DI720 Dataq Instruments
Akron, OH, USA) at least 30 min before beginning the recordings. The room was kept at 22
±1°C, and silence was maintained to minimize environmental stress. After the adaptation peri-
od the ECG was digitally recorded (2 kHz) for 60 min.

ECG segments with 20,000 beats were analyzed using the computer software ECGmodule
for LabChart 7.2 (ADInstruments, Mountain View, CA, USA) that automatically detected nor-
mal and ventricular premature beats (VPB).

Cardiac Function
At the end of the ECG recording, the animals were anesthetized with sodium pentobarbital (40
mg/kg, ip) and placed on a controlled heating pad to maintain the core body temperature at
37°C. A microtip pressure-volume catheter (SPR-838, Millar Instruments, Houston, TX, USA)
was placed into the left ventricle through right carotid artery as described elsewhere [34]. After
stabilization, the ventricular pressure and volume signals were continuously recorded using the
pressure-volume conductance system (MPVS, Millar Instruments, Houston, TX, USA) coupled
to a PowerLab/4SP (AD Instruments, Mountain View, CA, USA). The HR, ventricular end-di-
astolic pressure (EDP), maximal slopes of the systolic pressure increment (+dP/dt_max) and
diastolic pressure decrement (-dP/dt_max), relaxation time constant (), ejection fraction (EF),
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end-systolic and end-diastolic volumes (ESV and EDV) as well as cardiac output (CO) were
calculated using a cardiac pressure-volume analysis software (PVAN Ultra v3.2, Millar Instru-
ments, Houston, TX, USA) [34]. The total peripheral resistance (TPR) was also calculated as
the ratio between MBP and CO. A range of left ventricle pressure-volume curves at different
pre-load status was assessed by transiently compressing the inferior vena cava. Pre-load inde-
pendent indices of heart contractility and stiffness {preload recruitable stroke work (PRSW),
+dP/dt vs. end-diastolic volume relationship (+dP/dt-EDV), slopes of end-systolic and end-di-
astolic pressure-volume relations [ESPVR and EDPVR]} as well as the efficiency of left ventri-
cle work [pressure-volume area] were calculated using PVAN v3.2. Good quality recordings of
ventricular pressure and volume were obtained in only 7 WAR and 8Wistar rats.

Heart Rate Variability
Files with ECG recordings were analyzed off line using the computer software LabChart 7.2
(AD Instruments, Mountain View, CA, USA). R waves were identified every cardiac beat and
series of successive RR intervals (RRi) were generated for each animal. Over 5 to 10 stationary
RRi series of 500±100 beats were selected by visual inspection of the entire recording.

After calculation of standard deviation of successive normal RRi (SDNN), an index of over-
all HRV (time domain) each segment spectral analysis using an autoregressive algorithm with
the model order chosen according to Akaike’s criterion to obtain the frequency spectrum of
HRV [28,31]. The oscillations of RRi were quantified in 3 frequency bands according to the
central frequency of each component modeled by autoregressive algorithm: very low (VLF,
below 0.2 Hz), low (LF, 0.2–0.8 Hz) and high frequency (HF, 0.8–2.0 Hz). The LF and HF oscil-
latory components were expressed in absolute (ms2) and normalized units as well as a ratio of
low to high frequency (LF/HF). Normalization consisted of dividing the power of a given spec-
tral component by the total power minus the power below 0.2 Hz and multiplying the ratio by
100 [29,35].

Table 1. Mean values of RR interval (RRi) and RRi variability in time and frequency domain in one-
year old conscious freely movingWAR andWistar control rats.

Control (Wistar) WAR P

RRi (ms) 199 ± 6 188 ± 5 0.1199

SDNN (ms) 4.8 ± 0.5 9.6 ± 1.2 * 0.0013

VLF (ms2) 20.7 ± 2.8 56.2 ± 9.9 * 0.0019

LF (ms2) 0.9 ± 0.3 10.5 ± 1.6 * <0.001

HF (ms2) 11.0 ± 3.5 42.5 ± 6.9 * 0.0067

LF (nu) 7 ± 1 20 ± 1 * <0.001

HF (nu) 93 ± 1 80 ± 1 * <0.001

LF (Hz) 0.43 ± 0.07 0.45 ± 0.02 0.8048

HF (Hz) 1.67 ± 0.06 1.57 ± 0.04 0.2239

LF/HF 0.076±0.013 0.245±0.013 * <0.001

*P<0.05 compared with Wistar control rats.

RRi: interval between successive R waves, SDNN: standard deviation of normal RRi, VLF, LF and HF:

power of oscillatory components of RRi series at very low (<0.2 Hz), low (0.2–0.8 Hz) and high (0.8–3.0

Hz) frequency bands. nu: normalized units. LF and HF (Hz): central frequency of the main oscillatory

component modeled at low- and high-frequency bands.

Values are mean ± SEM.

doi:10.1371/journal.pone.0129574.t001
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Statistical Analysis
Each parameter, i.e. heart rate variability and cardiac function indexes, was firstly tested for
normality of the distribution by modified Kolmogorov-Smirnov test (goodness of fit test) Fol-
lowing, they were compared between WAR and Wistar control counterparts by 2-tail unpaired
Student t test or Mann-Whitney test, accordingly. A value of p< 0.05 was considered statisti-
cally significant. The data are presented as the mean±SEM.

Results
The basal RR interval (RRi) was similar betweenWAR (188±5 ms) andWistar control counter-
parts (199±6 ms).

The mean levels, SDNN and power of oscillatory components (autoregressive spectral anal-
ysis) of RRi during baseline recordings from both groups of rats are shown in Table 1. While
the mean RRi (SDNN) did not differ between the groups, WAR showed higher overall RRi var-
iability. Moreover, the normalized LF and the LF/HF ratio were markedly increased in WAR
compared to Wistar counterparts.

Hemodynamic parameters and indices of cardiac function derived from the left ventricle
pressure-volume relationship in pentobarbital-anesthetized rats are shown in Table 2. HR did
not differ between the groups while mean BP (MBP) and ventricular systolic pressure (LVSP,
mmHg) were lower in WAR than in Wistar control rats. WAR also showed indices of systolic
dysfunction, such as higher ventricular end-diastolic pressure (LVEDP, mmHg), lower +dP/
dt_max (mmHg.s-1). Indices of diastolic cardiac function were also altered in WAR compared
with Wistar control rats.-dP/dt_max (mmHg.s-1) was smaller in WAR, while time constant of
ventricular diastolic pressure decay (tau, ms) and slope of the linear relationship between end-
diastolic pressure and end-diastolic volume (EDPVR, mmHg.μL) were both higher in WAR as
compared to Wistar rats.

Only 3 out of 9 Wistar control rats exhibited VPB in a range of 3 to 6 premature beats
among the 20,000 beats analyzed in each rat (0.1±0.003 ectopic beats/1,000 normal beats). On
the other hand, 6 out of 8 WAR showed arrhythmic beats ranging from 15 to 32 VPB out of
the 20,000 beats evaluated (0.41±0.2 ectopic beats/1,000 normal beats; P<0.001, compared
with Wistar counterparts). All VPB observed for Wistar control rats came from a single ectopic
ventricular origin, whereas 4 of 9 WAR studied showed VPB from multiple ventricular origins.
Moreover, a short period (approximately 1.5 s) of bigeminy was observed in one WAR, as illus-
trated in Fig 1.

Discussion
We evaluated highly relevant parameters commonly used to determine risk for life-threatening
cardiovascular events and sudden death, such as autonomic cardiac modulation, arrhythmias
and cardiac function. The study was performed in aged WAR, which is a well-established ex-
perimental model of epileptic seizures. HR variability was performed in conscious freely mov-
ing animals instrumented with ECG electrodes. Surgical stress for subcutaneous implant of
electrodes is minimal and since both groups were treated similarly no bias due to surgical re-
covery should affect the results. A recent study from our laboratory [18] showed that young
adult WAR (70 days) present with mild hypertension and an autonomic cardiac imbalance,
with sympathetic predominance. Moreover, the hypothalamus-pituitary-adrenal axis of WAR
was previously found to be altered [36], which is consistent with the higher sympathetic drive
of these animals and with the anxious profile of WAR in the elevated plus maze and in the
open field [37]. These findings led to the use of older rats (11–12 months) in the present study,
once it is widely accepted that the incidence of cardiovascular disorders associated with
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sympathetic imbalance, markedly increases with aging [38,39,40]. In addition, chronic sympa-
thetic overactivity is highly recognized as one of the most important determinants in the devel-
opment of age-related heart failure, which is an isolated risk factor for cardiovascular events,
including sudden death [23,24,25].

Differently to our previous study [18], resting HR was found similar between WAR and
aged match Wistar control rats. Two striking differences in the protocols used in both studies
can be highlighted and are certainly involved in this discrepancy. First, the age of the rats evalu-
ated in both studies. The function of sinoatrial node, the pacemaker of the heart, is known to
decline during the ageing process, [41]. Moreover, a loss of autonomic influence to the heart is
also associated with ageing [42]. Therefore, the use of aged animals in the present study might
explain the similar HR between WAR and Wistar control rats. Second, in our previous study
[18] HR was calculated from pulsatile BP recorded from a catheter placed in the femoral artery
24 h prior to the experiment. In the present study, subcutaneous ECG electrodes, placed 48 h
before recordings, were used to calculate HR.

WAR exhibited greater overall RRi variability compared with aged-matched control Wistar
rats. The spectra of RRi, when calculated in absolute units (ms2), also revealed higher power at
both, LF and HF bands in WAR. These findings support the idea of a higher cardiac autonomic

Table 2. Hemodynamic parameters and indices of systolic and diastolic function derived from left
ventricle pressure-volume relationship in one-year old pentobarbital anesthetizedWAR andWistar
control rats.

Control (Wistar) WAR P

Parameters
HR (bpm) 322±14 292±15 0.1829

MBP(mmHg) 115±5 92±3 * 0.0008

LVSP (mmHg) 135±4 103±4 * 0.0001

ESV (μL) 68±9 137±9 * 0.0002

EDP (mmHg) 5.6±1.0 9.2±0.6 * 0.0161

EDV (μL) 154±11 210±11 0.0030

CO (mL.min-1) 28.2±4.3 21.4±2.3 0.1764

TPR (mmHg.mL-1) 4.5±0.6 4.6±0.4 0.8955

Systolic Indexes

EF (%) 56±5 35±2 * 0.0016

+dP/dt_max (mmHg.s-1. min) 7320±538 5266±620 * 0.0283

ESPVR slope (mmHg.μL-1) 2.6±0.4 1.9±0.1 0.1179

PRSW (mmHg) 49±6 36±4 0.0765

Diastolic Indexes
-dP/dt_max (mmHg.s-1) -7766±998 -5014±780 * 0.0463

τ (ms) 15.1±0.5 21.8±2.9 0.0531

EDPVR slope (mmHg.μL-1) 0.036±0.011 0.078±0.011 * 0.0186

*P<0.05 compared with Wistar control rats.

HR: heart rate, MAP: mean arterial pressure, LVSP: left ventricular systolic pressure, ESV: end-systolic

volume, EDP: end-diastolic pressure, EDV: end-diastolic volume, CO: cardiac output, TPR: total peripheral

resistance, EF: ejection fraction, dP/dt_max maximal slopes of the systolic pressure increment (+dP/

dt_max) and diastolic pressure decrement (-dP/dt_max), ESPVR and EDPVR: slope of end-systolic and

end-diastolic pressure-volume relationships, τ: relaxation time constant, PRSW: preload recruitable

stroke work.

Values are mean ± SEM.

doi:10.1371/journal.pone.0129574.t002
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drive in WAR, i.e. greater sympathetic and vagal cardiac modulation. Nevertheless, LF power
of RRi spectra was remarkably higher in WAR (10-fold) as compared to Wistar counterparts,
leading to a higher LF and lower HF power of RRi spectra when expressed in normalized units.
Thence, the LF/HF ratio, a well-accepted index of sympatho-vagal balance [28,29,35,43] was
notably higher in WAR when compared with control rats. Power of PI spectra at LF band is
widely accepted as an index of sympathetic modulation, while HF band power is associated
with parasympathetic modulation [28,29,31]. Nevertheless, there is evidence that the LF power
of HR spectra also correlates with parasympathetic modulation [43]. Thus, the powers of LF
and HF bands more accurately represent autonomic modulation when presented in normal-
ized units or as an LF/HF ratio [28,29,35].

Therefore, RRi variability evaluated in the present study in aged WAR strongly suggests an
autonomic imbalance with sympathetic overactivity in this strain of aged rats. Substantial clini-
cal and experimental evidence links sustained sympathetic activation to increased risk of life-
threatening cardiovascular events, especially ventricular arrhythmias [38,44]. Furthermore,
there is evidence that the most significant and widely-accepted mechanism of SUDEP involves
cardiac arrhythmia induced by seizure discharges acting through the autonomic nervous sys-
tem [3,45]. In line with our findings in WAR, there are evidences that epileptic patients also
present interictal abnormalities in the autonomic modulation of cardiac activity, with high
sympathetic and impaired vagal tone to the heart [14,15,16]. Changes in parasympathetic HR
modulation have been noticed in either temporal lobe [13,46] or generalized epilepsies [47,48].
Moreover, anti-epileptic therapy, specifically with carbamezapine may also alter autonomic
functions, increasing cardiovascular risk in epileptic patients [13,49].

The balance between sympathetic and vagal influences on the heart is a major regulator of
cardiac function and can be a major cause of cardiac dysfunction. Diseases such as myocardial
infarction, congestive heart failure and coronary disease are commonly associated with alter-
ations in the normal sympatho-vagal balance [50].

Fig 1. ECG recordings illustrating ectopic beats (arrows) in 3 different WAR studied at 1 year of age.
(A) One isolated ectopic beat, (B) two ectopic beats from distinct ventricular origins and (C) a period
of bigeminy.

doi:10.1371/journal.pone.0129574.g001
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To our knowledge, this is the first study to evaluate cardiac function in an experimental epi-
lepsy model using a pressure-volume conductance system, a unique and powerful approach to
evaluating systolic and diastolic function in vivo [34]. Young (70 days) WAR recorded in con-
scious freely moving state showed a mild hypertension [18] while aged (1 one year old) WAR,
recorded under pentobarbital anesthesia, presented lower levels of basal BP as compared to
Wistar control counterparts. The age of the animals, but mainly the effect of anesthesia should
explain the difference in BP between these two studies. Aged WAR showed impaired systolic
performance accompanied by delayed relaxation and increased diastolic stiffness of the left
ventricle.

We found a lower +dP/dt_max and EF in aged WAR. Although +dP/dt_max has historical-
ly been used as a cardiac contractile index, this parameter is known to be load-dependent (es-
pecially preload-dependent) [51,52,53]. EF is also acknowledged to be influenced by both
preload and afterload and cannot be used reliably to assess systolic function in models with
changes in preload and/or afterload. The slope of ESPVR was proposed as a relatively load-in-
sensitive index of ventricle contractility [51,54]. In the present study, ESPVR was decreased in
WAR compared with Wistar rats. TPRI did not differ between the groups.

The data for the end-diastolic and end-systolic pressure volume relationships are presented
in Table 2. The ESPVR slope was steeper in Wistar control rats than in WAR, suggesting de-
creased systolic performance in WAR. Moreover, EDPVR was increased in WAR compared to
controls, indicating increased myocardial stiffness in WAR.

Impaired ventricular relaxation and increased end-diastolic stiffness were also observed in
WAR, as reflected in the decreased-dP/dt_max, prolonged Tau, and increased LVEDP and
EDPVR seen in these animals. Relaxation is an active process, depending mostly on calcium
uptake during the diastole. End-diastolic stiffness is predominantly affected by changes in
myocardial structural components [55].

A recent review article from Finsterer andWahbi [56] regarding neurological diseases af-
fecting the heart, describes that epilepsy is rarely directly associated with heart failure. Never-
theless, since this disease in either humans or experimental animals is often associated with
high blood pressure and autonomic disturbances, the risk of the development of heart failure
during aging is expected to be markedly higher in subjects with epilepsy.

Further studies will be extremely important for understanding the mechanisms of autonom-
ic imbalance in WAR, for identifying risk factors and triggers of cardiovascular events related
to epileptic seizures, and for critically assessing potential strategies to minimize those risks.
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