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The effect of pyroptosis-related genes (PRGs) on the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains
unclear. Thus, this study is aimed at evaluating the prognostic value of PRGs in patients with LUAD and to elucidate their role in
the TME and their effect on immunotherapy. Transcriptomic and clinical data were obtained from the Cancer Genome Atlas and
the Gene Expression Omnibus databases (GSE3141, GSE31210). Patients with LUAD were classified using consistent clustering,
and the differences in the TME for each type were determined using the ESTIMATE and CIBERSORT algorithms. PRGs were
screened using univariate regression analysis, and a prognostic risk model was constructed using LASSO regression analysis. The
tumor mutational burden and the tumor immune dysfunction and exclusion algorithms were used to predict therapeutic
sensitivity in LUAD patients. Then, we evaluated the potential therapeutic interventions using the GDSC database. LUAD patients
in cluster 2 had significantly shorter overall survival and progression-free survival rates, lower immune scores, and higher
infiltration of T follicular helper cells than those in cluster 1. We used five PRGs to classify patients with LUAD into different risks
groups and found that the high-risk group is sensitive to immunotherapy; however, its immune-related pathways were inhibited,
which may be related to tumor metabolic reprogramming. Lastly, we identified several potential therapeutic drugs for application
in low-risk patients who were less sensitive to immunotherapy. Overall, our findings showed that PRGs can be used to predict
prognosis and may aid in the development of personalized therapeutic strategies in LUAD patients.

1. Introduction

The incidence of lung adenocarcinoma (LUAD) continues to
increase, and surgical resection, chemotherapy, and radiother-
apy remain the primary methods of clinical intervention in
this disease [1]. Recent reports have highlighted the potential
of immunotherapies in lung cancer, specifically immune
checkpoint inhibitors; however its application is not always

warranted [2]. Tumor immunotherapy primarily works via
the activation of the host immune cells which enhances the
body’s natural antitumor immune response allowing for the
specific eradication of minimal residual tumor lesions and
the targeted inhibition of tumor growth [3]. Targeted immune
checkpoint inhibitors provide a suitable treatment strategy for
patients with advanced LUAD and greatly improve their prog-
nosis [4]. In addition, these immunotherapies can be
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combined with other interventions to improve clinical out-
comes depending on the stage of the disease and the condition
of the patients. However, different LUAD patients present
with different immunotherapy effects [5]. These differences
may be related to differences in the tumor microenvironment
(TME) making it necessary to determine the degree of
immuno-sensitivity in these patients.

Pyroptosis is a form of immunological cell death (ICD)
strictly regulated by inflammatory factors which can be
divided into both classical and noncanonical pathways [6].
Classical pyroptosis is mediated by inflammasomes, such as
NOD-like receptor protein 3 (NLRP3), which directly acti-
vates caspase-1, cleaves gasdermin D (GSDMD) to form pore
membranes and induces downstream proinflammatory cyto-
kine maturation and release of pro-IL-1β and pro-IL-18 [7].
Noncanonical pyroptosis is triggered by caspase-4/5/11 which
cleaves GSDMD to form -NT fragments which promote local-
ized cell death [8]. Finally, pyroptosis causes cells to swell, rup-
ture, and release their intracellular inflammatory substances
which then trigger an inflammatory response [9]. Dead tumor
cells release ATP activating the NLRP3 inflammasomes in
dendritic cells, stimulate CD8+ T cells to produce interferon-
γ (IFN-γ), and enhance IL-1β-dependent antitumor immu-
nity [10]. Pyroptosis inhibits tumor proliferation and metasta-
sis by altering the permeability of cell membranes, promoting
tumor cell lysis and death, and releasing cellular contents.
GSDMD enhances the cytotoxic T lymphocyte killing effect
in LUAD [10]. Wang et al. suggest that the application of a
bio-orthogonal splicing system targeting the gasdermin pro-
tein could activate apoptosis, reshaping the tumor immune
microenvironment, activating T cell-mediated antitumor
immune responses, and facilitating a strong antitumor effect
[11]. Pyroptosis mediates the function of various immune cells
and regulates the TME [12]. Currently, immune checkpoint
inhibitors (ICIs) have been shown to be effective in LUAD
[13]. However, the underlying mechanisms resulting in
reduced efficacy in some cases of LUAD remain unknown.
Despite this, we believe that the application of pyroptosis
inducing therapies may help to overcome the limitations of
ICIs. Therefore, we further evaluate the effect of pyroptosis
on TME in patients with LUAD based on the relevant
methods of bioinformatics [14–16].

In this study, we integrated data from TCGA and GEO
databases to comprehensively analyze the effect of pyropto-
sis on the TME in LUAD; interpret the impact of the TME
on the survival of patients with LUAD; and provide ideas
for investigating the mechanisms involved. Additionally, a
new model was developed to predict the prognosis of LUAD
patients, screen immunotherapy-sensitive patients, and pro-
vide individualized treatment plans. This study demon-
strates that pyroptosis acts on the TME of LUAD and
affects patient prognosis and treatment.

2. Materials and Methods

2.1. Data Source. We downloaded the transcriptome and
clinical data of 54 healthy patients and 497 LUAD patients
from the TCGA database (https://tcga-data.nci.nih.gov/
tcga/). We then combined this with the available clinical

data to produce a master data set comprising of 468 patients
with complete survival time and survival status and then
divided these into training and validation sets. The training
set was used to construct the model, which was then vali-
dated using the validation set. Microarray data were down-
loaded from the GEO database (GSE3141, GSE31210)
(https://www.ncbi.nlm.nih.gov/geo/) and batch correction
was performed before this data was used to further validate
our novel prognostic model.

2.2. Acquisition and Analysis of Pyroptosis-Related Genes
(PRGs). Based on previous studies, 43 PRGs were identified
[17–20] (Table S1). Differentially expressed genes (DEGs)
were identified using the “limma” software package and
depicted using heat maps. A network diagram was
constructed through correlation analysis.

2.3. Subtypes of LUAD Defined by Pyroptosis. A consensus
clustering algorithm was used to identify optimal subtypes
based on a matrix composed of PRGs. We classified LUAD
subgroups according to the expression of PRGs. Increase
the clustering variable (K) from 2 to 9, and further find the
appropriate K value to determine the appropriate subtypes.
The above analysis is performed in the R package “Consen-
susClusterPlus” The classification was repeated 1000 times
to ensure stability [21]. Further, principal component analy-
sis (PCA) was performed to prove that cluster1 and cluster2
can be divided into two groups.

2.4. Immunocorrelation Analysis of the Two Subtypes. The
ESTIMATE, stromal, and immune scores were assessed for
LUAD samples using the ESTIMATE algorithm [22]
(Table S2). Further, the proportion of 22 immune cell types
in LUAD was assessed using the Cell Type Identification by
Estimating Relative Subsets of RNA Transcripts samples
(CIBERSORT) algorithm to determine cell types (Table S3).
The random sampling algorithm consists of 1000
permutations. Only CIBERSORT (P < 0:05) were included.

2.5. Gene Set Enrichment Analysis. We further analyzed the
biological differences among different risk groups through
GSEA and NES (P < 0:05) and FDR (q < 0:25) were used to
identify significantly enriched gene sets. The GSEA4.1.0 tool
was used to detect the KEGG pathways.

2.6. Construction of a Prognostic Risk Model. We performed
univariate regression analysis and calculated the P value.
When P < 0:5, it was included in further analysis to con-
struct a LASSO regression model. The R language package
“glemnet” returns a series of lambdas (λs) values and risk
models. Further, the “cv.glmnet” function in the “glmnet”
package was used to perform ten-fold cross-validation, and
the λ value with the smallest average cross-validation error
was selected, and the LASSO model corresponding to this
value was the ideal prognostic risk model constructed.
Finally, five best candidate PRGs for building risk prediction
models were screened out (BAK1, CYCS, NLRC4, NLRP1,
and NOD1). Risk score was calculated according to the fol-
lowing formula: RiskScore = ðexprgene1 × Coefgene1Þ + ð
exprgene2 × Coefgene2Þ +⋯ + ðexprgene n × Coefgene nÞ
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Figure 1: Expression of PRGs in LUAD samples. (a) Heat maps were used to show the differential expression of PRGs. Blue represents
downregulated PRGs, red represents upregulated PRGs. (b) The interaction network of PRGs, negative correlation in blue, positive
correlation in red.

3BioMed Research International



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++
++++ + +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++ ++++ +++ ++ ++

+ + + + +
p = 0.010

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Pr
og

re
ss

io
n 

fre
e s

ur
vi

va
l

Cluster
+ C1
+ C2

264 200 87 55 32 20 15 6 2 1 1 1 1 1 0 0 0 0 0 0 0

204 125 64 38 20 15 11 11 8 5 4 3 3 3 3 3 3 3 3 2 0C2

C1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Cl
us

te
r

Number at risk

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++

+ +
++ ++ +

+

+++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++ +++ + ++++++
+ + + + +p < 0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Cluster
+ C1
+ C2

264 220 113 68 44 31 22 14 9 6 5 3 3 3 0 0 0 0 0 0 0
204 146 92 56 29 19 14 12 8 6 4 3 3 3 3 3 3 3 3 2 0C2

C1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Cl
us

te
r

Number at risk

(a)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

p = 0.448

p = 0.402

p = 0.035

p = 0.310

p = 0.798

p < 0.001

p = 0.072

p = 0.006

p = 0.152

p = 0.019

p = 0.850
p = 0.401

p = 0.004

p = 0.236

p = 0.318

p = 0.109

p < 0.001

p = 0.034

p < 0.001

p = 0.109

p = 0.308

p = 0.063

Cluster1

Cluster2

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 g

am
m

a d
el

ta

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es
M

ac
ro

ph
ag

es
 M

0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

(b)

Figure 2: Continued.
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(Table S4). Based on the median risk score, the patient sample
was divided into high-risk and low-risk groups. The Kaplan-
Meier curve and ROC curve were used to further evaluate
the prognostic value of the prognostic risk model. We
performed univariate and multivariate analyses of
clinicopathological characteristics and risk scores, confirming
that the model can act as an independent predictor of
clinical outcome. In addition, in order to verify the clinical
application value of the constructed model in LUAD, the
relationship between the model and clinicopathological
characteristics was analyzed using chi-square test.

2.7. Immunotherapy Effect Analysis of the Prognostic Risk
Models. Tumor mutation load in patients was calculated
using the R package, “maftools” [23], and the likelihood of
an immunotherapy response was predicted using the TIDE
algorithm [24].

2.8. GDSC Database. Drug sensitivity data were downloaded
from the GDSC website (http://www.cancerrxgene.org/).
The IC50 values of compounds obtained from the GDSC
website were predicted using the R package, “pRophetic”.

2.9. Statistical Analysis. Statistical analysis was done using R
(version 4.0.3). The Wilcoxon test is used to extract the
PRGs difference genes between normal samples and LUAD
samples. The Kaplan-Meier method performed survival
analysis and a log-rank test was used to determine the signif-
icance of the difference. The distribution of clinical patho-
logic features between the two groups, the classification
variable was chi-square tested, and the continuous variable
was the Student’s t-test. The Mann–Whitney test was used
to compare immune cell infiltration and immune-related
pathways between the two groups. Correlation between
high- and low-risk groups identified using spearman corre-
lation analysis and the infiltration of immune cells. P <
0:05 is statistically significant for the difference.

3. Results

3.1. Upregulation of PRGs Expression in LUAD Samples. Sig-
nificant differences were found in the expression levels of
PRGs between LUAD and normal samples (Figure 1(a))
(P < 0:05). Further, 26 risk genes (ELANE, GZMB, CHMP7,
TIRAP, CHMP2A, PLCG1, GSDMD, CASP4, BAX, GPX4,
CHMP4A, CASP8, CHMP4B, TP53, GSDME, PJVK, CYCS,
CASP3, BAK1, CASP6, GSDMA, CHMP4C, GSDMB, NLRP7,
GSDMC, and AIM2) (log FC>0) and 17 safety genes (IL6,
NLRC4, CASP5, IL1A, IL1B, CASP1, NLRP3, IRF1, CHMP3,
NLRP1, PYCARD, IL18, PRKACA, TNF, NOD1, HMGB1,
and IRF2) (log FC<0) were identified (Table S5). The
interaction of PRGs was further investigated by constructing a
correlation network (cutoff = 0:18) (Figure 1(b)), which
revealed that pyroptosismay regulate the development of LUAD.

3.2. The Survival Status, Immune Score, and Immune Cell
Infiltration in Different Subtypes of LUAD Samples. We
found that when K = 2, based on 43 PRGs, 468 LUAD sam-
ples were divided into appropriate clusters (cluster 1 and
cluster 2), with low inter-group correlation and highest
intra-group correlation (Figure S1). PCA analysis further
demonstrated that patients can be well divided into two
subtypes (Figure S2). PFS (P = 0:01) and OS (P < 0:001)
were shorter in patients with LUAD in cluster 2 than those
in cluster 1 (Figure 2(a)). Herein, the relationship between
the clinical features and the different subtypes of LUAD
was also discussed. Our results suggest that the subtype
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Figure 2: The clinical features, survival status, immune score, and immune cell infiltration of different subtypes of LUAD. (a) OS and PFS
curves of two groups of LUAD patients were obtained from TCGA database. (b) There were differences in immune cell infiltration between
the two subtypes. (c) Immune score, ESTIMATE score, and stromal score of subtypes in both groups.

Table 1: 5 prognostic genes associated with pyroptosis.

GENE HR HR.95 L HR.95H P value

BAK1 1.027687 1.007991 1.047769 0.005672

CYCS 1.011209 1.002994 1.019492 0.007396

NLRC4 0.759973 0.621575 0.929186 0.007449

NLRP1 0.892924 0.814924 0.978389 0.015164

NOD1 0.911358 0.85142 0.975515 0.007491

5BioMed Research International

http://www.cancerrxgene.org/


+++++++++++++
++++++++++++++++++++++++++++++++++++

++++++ + +
++ ++ + +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++ +

++ +++++

+ + +
p = 0.007

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

+ High risk

+ Low risk

118 87 49 29 15 9 6 4 2 2 1 1 1 1 1 1 1 1 1 0 0
118 96 48 29 18 14 9 6 4 3 2 1 1 1 0 0 0 0 0 0 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Ri
sk

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1−Specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.703

AUC at 2 years: 0.651

AUC at 3 years: 0.618

(b)

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Patients (increasing risk socre)

Ri
sk

 sc
or

e

High risk

Low Risk

(c)

Figure 3: Continued.
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defined according to PRGs expression is closely associated
with the heterogeneity of patients with LUAD.
Furthermore, the ESTIMATE score, immune score, and
stromal score (Figure 2(c)) of LUAD patients in cluster 1
were found to be higher than those of patients in cluster 2.
Compared with that in cluster 2, higher proportion of
resting mast cells, monocytes, and T cells and resting
dendritic cells was found in cluster 1, while higher
proportion of plasma cells, T cells follicular helper
infiltration, and dendritic cells was found in cluster 2
(Figure 2(b) and S3). These results suggest that the
aggregation subsets based on PRGs are closely related to
the immune microenvironment.

3.3. Construction of the Prognostic Risk Models Based on
TCGA Training Cohort. To better predict the prognosis
of patients with LUAD, a prognostic model was con-
structed. Firstly, we screened out the PRGs associated
with prognosis by univariate regression analysis, of which
BAK1 and CYCS had relatively higher risks and were
associated with poor survival rates (Table 1). LUAD
patients were randomly divided into two cohorts accord-
ing to a ratio of 5 : 5 for the training cohort (n = 236)
and the testing cohort (n= 232). Lasso regression analysis
was performed to construct a prognostic risk model
based on the expression values of five PRGs associated
with prognosis in the training cohort (Figure S4). The
risk score was calculated as follows: RiskScore = ð0:0128 ×
BAK1 expression levelÞ + ð0:0015 × CYCS expression levelÞ
+ ð−0:0660 × NLRC4 expression levelÞ + ð−0:0443 × NLRP1
expression levelÞ + ð−0:0517 × NOD1 expression levÞ. All
LUAD patients were divided into low-risk or high-risk
groups based on the median risk score calculated by

the above formula (Figure 3(c)). Kaplan-Meier curves
showed that patients had a shorter OS time in the
high-risk group (Figure 3(a)) than in the low-risk
group. This is further verified in the test queue and
GEO dataset (Figure S6). In addition, the ROC curve
further demonstrated that PRGs have good prediction
performance in the training cohort (Figure 3(b)). An
increase in the risk score was found to be associated
with an increase in patient deaths (Figure 3(d)). Similar
results were observed in the testing cohort (Figure S5).

3.4. Independent Prognostic Analysis of the Risk Model. The
clinical stage, T stage, N stage, and risk score of patients with
LUAD were found to be closely correlated with OS through
univariate regression analysis (Figure 4(a)). Further, risk
score could be used as an independent prognostic factor
for patient survival in the multivariate Cox regression anal-
ysis (Figure 4(b)). These results suggest that this model is
an independent prognostic factor.

3.5. Relationship between Risk Model and Clinical Features,
and Clustering and Risk Scores. The heat map revealed sig-
nificant differences in LUAD clustering and immunity
scores between the high-risk and low-risk groups. Further,
the expression levels of BAK1 and CYCS were found to be
significantly increased in the high-risk group compared with
those in the low-risk group. In contrast, the expression of
NLRC4, NLRP1, and NOD1 was higher in the low-risk
group than in the high-risk group (Figure 5(a)). More specif-
ically, compared with those in cluster 2, the risk scores in
cluster 1 were significantly lower and more patients were
alive (Figure 5(b)), which is consistent with the finding that
the OS of cluster 1 is greater than that of 2, thereby further
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Figure 3: Construction of the prognostic risk models based on TCGA training cohort. (a) Survival probability in the low-risk/high-risk
group. (b) Prognostic value evaluation of model using time-specific ROC curves and dynamic AUC lines. (c) Survival status of patients
with LUAD (High-risk group: right of dotted line; low-risk group: left of dotted line). (d) Survival status scatters plots.
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verifying the reliability of clustering. Patients with high
immune scores had significantly lower risk scores, and the
risk score of pathological stage I-II was lower than that of
III-IV (Figure 5(c)).

3.6. Evaluation of Tumor Immune Microenvironment and
Tumor Immunotherapy Response Using Prognostic Risk
Models. Immune checkpoint inhibitors were demonstrated
to have different therapeutic effects on patients with LUAD
in the high- and low-risk groups; the TIDE of the high-risk
group was lower (P < 0:001). In addition, by calculating
TMB, we found that it was higher in patients with a high-
risk score than in those with a low-risk score (P = 4:8e − 05
) (Figure 6(a)). Our results suggest that immune checkpoint
blockade (ICB) treatment may be effective in patients with
high-risk subtypes of LUAD. A follow-up analysis was also
performed in this study. The risk score was found to have
a weak positive correlation trend with the infiltration of four
immune cells: M0 cells (r = 0:11, P< 0.02), M1 cells (r = 0:18
, P = 0:00014), CD4+T memory cells (r = 0:18, P = 0:0012),
and CD8+T cells (r = 0:11, P = 0:019) (Figure 6(d)). How-
ever, the immune response was suppressed in cluster2
(Figure 6(b)). By performing GSEA, we found that various
metabolic reactions were significantly enriched in the high-

risk group. KEGG signaling showed that the expression
levels of arginine and proline metabolism, citrate cycle
(TCA cycle), glutathione metabolism, oxidative phosphory-
lation, pentose phosphate pathway, pyrimidine metabolism,
and pyruvate metabolism were high (Figure 6(c)).

3.7. Screening Potential Drugs. To identify potential drugs
that could be included in our pyroptosis model as treatment
for LUAD patients, we selected 34 drugs closely related to
LUAD. Figure 7 shows four drugs, including axitinib, with
the potential to treat low-risk patients.

4. Discussion

Pyroptosis is caspase-dependent cell death pathway closely
associated with the immune response which may induce
tumor cell lysis and the inflammatory response [25]. In con-
trast, many antitumor effects are also enhanced following
tumor cell death and the subsequent modulation of the
TME [26]. Pyroptosis stimulates the immune system
influencing the TME and the efficacy of tumor immunother-
apy by increasing the number of immune cells and immune
regulators within the tumor niche and while immunother-
apy is largely effective in LUAD there are still limitations
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Figure 4: Univariate and multivariate regression analyses were performed to assess the prognostic value of risk scores and other clinical
features. (a) The results of univariate regression analysis(Training Cohort: On the left side of the Figure 4(a); Testing Cohort: On the
right side of the Figure 4(a)). (b) The results of multivariate regression analysis (Training Cohort: On the left side of the Figure 4(b);
Testing Cohort: On the right side of the Figure 4(b)).

8 BioMed Research International



BAK1

CYCS

NLRC4

NLRP1

NOD1

risk
Cluster⁎⁎⁎
ImmuneScore⁎⁎⁎
Age
Gender
Stage⁎

Stage⁎

Stage I
Stage II
Stage III
Stage IV
unknow

Gender
FEMALE
MALE

Age
<=65
>65
unknow

ImmuneScore⁎⁎⁎

High
Low

Cluster⁎⁎⁎

Cluster C1
Cluster C2

risk
high
low

−6

−4

−2

0

2

4

6

(a)

Figure 5: Continued.

9BioMed Research International



[27]. In addition, since most studies mostly focus on the
intrinsic oncogenic pathways of LUAD, it is still necessary
to clarify the impact of pyroptosis on the TME and immu-
notherapeutic response of LUAD.

Here, we explored the expression of PRGs in LUAD,
their prognostic and therapeutic value, and their impact on
the TME. We analyzed the expression of 43 PRGs in LUAD
and found that these genes were upregulated or downregu-
lated in both tumor and control samples, suggesting that
PRGs play an important role in the occurrence and develop-
ment of LUAD. LUAD samples were then further divided

into clusters 1 and 2 based on any similarities in their PRG
expression profile. In addition, both clusters presented with
different prognostic and clinical features, with cluster 2 pre-
senting with significantly different immune scores and
immune cell infiltration patterns from cluster 1, suggesting
distinct differences in their TMEs. These differences in
microenvironment may lead to differences in OS and PFS.
These evaluations also revealed an increase in the proportion
of quiescent dendritic cells, quiescent mast cells, monocytes,
and quiescent CD4+ T memory cells in cluster1 and an
increase in follicular helper T cells in cluster2. Tamminga
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Figure 5: Relationship between risk model and clinical features, and clustering and risk scores. (a) The differences in immune score,
subtype, and gene expression between high and low risk groups were demonstrated by heat map. (b) The Sankey diagram shows the
relationship between the LUAD subtype and the high and low risk groups. (c) The differences in cluster, immune score, and clinical
stage in high/low risk groups.
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et al. and Qiu et al. suggested that this suggests that the nor-
mal function of the follicular helper T cell subpopulation, as
described in NSCLC, may be impaired in these tissues result-
ing in decreased differentiation of specific B cells, indirectly
impairing the humoral immune response and promoting
tumor growth [28, 29]. It is also worth noting that LUAD

patients with higher immune scores exhibited a higher sur-
vival rate than those with lower immune score [30]. There-
fore, the survival time for cluster2 patients was shorter
than that of cluster1 patients. Thus, we concluded that
pyroptosis may play an important role in determining sur-
vival and establishing the TME in LUAD patients.
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Figure 6: Evaluation of tumor immune microenvironment and tumor immunotherapy response using prognostic risk models. (a) The
differences in TMB score and TIDE score between high- and low-risk groups. (b) Heat map of the distribution of 13 immune-related
genes between the low-and high-risk groups. (c) GSEA showed high enrichment of KEGG. (d) Associations between the risk score and
infiltration levels of nine immune cell types.
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Given this, we went on to evaluate the prognostic value
of five PRGs, BAK1, CYCS, NLRC4, NLRP1, and NOD1 in
LUAD patients. BAK1 is a member of the Bcl-2 family
known to interact with the mitochondria to induce apoptosis
[31]. BAK1 is transferred to the mitochondria after receiving
a stimulatory signal that induces apoptosis where it induces
pore creation in the outer mitochondrial membrane (MOM)
through oligomerization increasing permeability and dys-
regulation of the electron transport chain [32]. This induces
the release of various apoptotic factors, including cyto-
chrome c, into the cytoplasm where they activate caspase-
9, which is then processed and activated by the caspase-3
[33]. Activated caspase-3 cleaves gasdermin-E (GSDME) to
form GSDME-NT fragments, resulting in cell membrane
perforation and inducing pyroptosis [34]. Notably, we also
found that BAK1 expression was closely associated with a
poor prognosis in LUAD. The CYCS gene encodes cyto-
chrome c, which is closely related to the synthesis of ATP
and the survival of tumor cells [35]. The binding of the apo-
ptotic factor CYCS to Apaf-1 triggers the activation of cas-
pase-9, which then activates caspase-3 which cleaves
GSDME activating pyroptosis [36]. Our results suggest that
CYCS is highly expressed in LUAD tissues and is associated
with poor prognosis in LUAD patients. This is supported by
Jamsheed et al. who found that serum cytochrome c levels in
patients with LUAD were more likely to experience severe
disease and present with a poor prognosis [37]. This inflam-
masome is a multiprotein complex consisting of an N-
terminal caspase recruitment domain (CARD), an interme-
diate nucleotide binding oligomerization domain (NOD),
and a leucine-rich repeat (LRR) that cleaves procaspase-1,
promoting the cleavage and secretion of mature IL-1β and
IL-18, inducing pyroptosis [38]. NLRC4 is less well estab-
lished in tumors. However, Tenthorey et al. found that
NLRC4 and caspase-1 are involved in tumor progression
and promote breast and colon cancer metastasis in obese
mice [39]. Despite this, evaluations of NLRC4 in LUAD

are still lacking. Our study found that high expression levels
of NLRC4 in the low-risk group were associated with better
prognosis, but the specific mechanism underlying this effect
requires further evaluation. NLRP1 regulates innate and
adaptive immune responses via the inflammasome and Shen
et al. also found that NLRP1 may improve the prognosis of
patients with LUAD, which is consistent with our findings.
Since the expression of NLRP1 is positively correlated with
the infiltration of tumor immune cells, this may provide
clues into its underlying mechanism [40]. NOD1, is a mem-
ber of the nod-like receptor (NLR) family and recognizes
pathogenic microorganisms often facilitating the activation
of the innate immune system [41]. Its activation promotes
the maturation and secretion of IL-1β and IL-18, cleavage
of GSDMD, and ultimately leads to pyroptosis [42]. In addi-
tion, our data suggests that NOD1 may act as a tumor sup-
pressor gene (HR< 1) in LUAD. Similarly, Liu et al. found
that NOD1 knockout mice were more sensitive to inflamma-
tory colon tumors than nonknockout mice [43].

Based on the prognostic risk model constructed using
these five PRGs, patients with LUAD were divided into dif-
ferent risk groups. The OS of patients in the high-risk group
was significantly lower than that of patients in the low-risk
group, and where primarily distributed within cluster 2, pre-
senting with a lower immune score. We then used this
model to predict the sensitivity of different risk groups to
immunotherapy by evaluating changes in their TMB and
TIDE expression levels. The high-risk group had a signifi-
cantly higher TMB than the low-risk group, supporting
our hypothesis of better immune response to ICIs. The TIDE
algorithm is widely used in LUAD research and Jiang et al.
demonstrated that tumor immune escape can be simulated
using the TIDE algorithm, which integrates features of T cell
dysfunction and rejection, and can predict the clinical
response of tumor patients to ICB based on pretreatment
tumor conditions [44]. This means that the lower the TIDE
algorithm, the better the patient’s response to
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Figure 7: Potential therapeutic drugs for high-risk and low-risk groups.

13BioMed Research International



immunotherapy. When we combined the TIDE and TMB
expression levels, we found that the high-risk group was
likely to respond better to immunotherapy than the low-
risk group, which suggests that our prognostic model may
also serve to predict immunotherapy response, helping to
personalize LUAD treatment.

This prompted us to further explore the reasons for these
differences in susceptibility. These assessments showed a
trend toward increased infiltration of M0 macrophages,
M1 macrophages, CD4+ T memory, and CD8+ T cells in
the high-risk group. Subsequent immune pathway analysis
revealed that this facilitated an increase in the inhibition of
many immune pathways in these high-risk populations. In
addition, these evaluations revealed that there were also a
significant number of metabolism-related pathways that
were highly expressed in the high-risk group suggesting that
while the high degree of immune infiltration was likely to
prevent tumor growth extensive metabolic reprogramming
may allow these tissue to circumvent these protective mech-
anisms [45]. Tumor metabolic reprogramming plays an
important role in promoting tumor growth, proliferation,
invasion, metastasis, and immunosuppression [46, 47].
Therefore, we suggest that the combined use of metabolic
pathway inhibitors and immunotherapy may be beneficial
for these patients. It is worth noting that, we also went on
to screen a series of potential drugs, including Axitinib, Bex-
arotene, and DMOG, for patients who are less sensitive to
immunotherapy.

Pyroptosis-related genes are rarely studied in LUAD
patients and have certain research significance. This study
innovatively used a consistent clustering method to subclas-
sify LUAD and explored the mechanisms underlying the dif-
ferences in patient survival from an immunological
perspective. Our study provided a new approach to explain
tumor heterogeneity. Furthermore, we constructed a prog-
nostic model for clinical application. In addition,
immunotherapy-sensitive LUAD patients were screened
according to TMB and more consistent and actual condi-
tions and scientific TIDE scores, providing potential drug
choices for patients who were less sensitive to immunother-
apy. However, our study has some limitations, and further
experiments are needed to verify the biological significance
of PRGs in LUAD.

5. Conclusions

In summary, our study demonstrates that pyroptosis affects
the outcome of LUAD and the efficacy of immunotherapy
by acting on the TME. Using five PRGs to construct a prog-
nostic risk model we showed that pyroptosis is an indepen-
dent risk factor; this finding provides a new realistic
approach for evaluating patients’ prognosis, predicting their
sensitivity to immunotherapy, and exploring potential ther-
apeutic agents.
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