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Background: Although depression is one of the most common neuropsychiatric

symptoms in essential tremor (ET), the diagnosis biomarker and intrinsic brain activity

remain unclear. We aimed to combine multivariate pattern analysis (MVPA) with local

brain functional connectivity to identify depressed ET.

Methods: Based on individual voxel-level local brain functional connectivity (regional

homogeneity, ReHo) mapping from 41 depressed ET, 43 non-depressed ET, and 45

healthy controls (HCs), the binary support vector machine (BSVM) and multiclass

Gaussian Process Classification (MGPC) algorithms were used to identify depressed ET

patients from non-depressed ET and HCs, the accuracy and permutations test were

used to assess the classification performance.

Results: The MGPC algorithm was able to classify the three groups (depressed ET,

non-depressed ET, and HCs) with a total accuracy of 84.5%. The BSVM algorithm

achieved a better classification performance with total accuracy of 90.7, 88.64, and

90.48% for depressed ET vs. HCs, non-depressed ET vs. HCs, and depressed ET vs.

non-depressed ET, and the sensitivity for them at 80.49, 76.64, and 80.49%, respectively.

The significant discriminative features of depressed ET vs. HCs were primarily located

in the cerebellar-motor-prefrontal gyrus-anterior cingulate cortex pathway, and for

depressed ET vs. non-depressed ET located in the cerebellar-prefrontal gyrus-anterior

cingulate cortex circuits. The partial correlation showed that the ReHo values in the

bilateral middle prefrontal gyrus (positive) and the bilateral cerebellum XI (negative) were

significantly correlated with clinical depression severity.

Conclusion: Our findings suggested that combined individual ReHo maps with MVPA

not only could be used to identify depressed ET but also help to reveal the intrinsic

brain activity changes and further act as the potential diagnosis biomarker in depressed

ET patients.

Keywords: essential tremor, depression, regional homogeneity, resting-state functional magnetic resonance

imaging, machine learning
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INTRODUCTION

Depression is one of the most common non-motor disorders in
essential tremor (ET) patients, and approximately 25–50% of the
ET patients have mild to severe depressive symptoms. Growing
evidence (1–4) suggested that depression may be a pre-motor
marker for the development of ET, and depressive symptoms
in ET may reflect the disease process itself. The 2018 consensus
statement of the Movement Disorder Society redefined ET with
depression as a new entity “ET plus” (5). However, the new
diagnosis criterion of ET plus is only based on clinical features,
and it is still unclear whether ET with depression is associated
with underlying identifiable brain activity changes, especially the
absence of the objective diagnosis biomarker.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a non-invasive technology based on blood-oxygen-
level-dependent (BOLD) (6), and it has been considered one of
the most promising approaches for revealing the intrinsic brain
activity changes and further establishing diagnosis biomarkers.
Using local brain connectivity (7), seed-based brain connectivity
(8), and independent component analysis (9) of rs-fMRI, our
previous studies had demonstrated that the cerebello-thalamo-
cortical pathway dysfunction is associated with tremor and
cognitive impairment in ET patients. Among the above rs-
fMRI metrics, regional homogeneity (ReHo) is one of the
most used indicators, and it investigated brain local functional
connectivity by calculating the temporal correlations between
a voxel and its adjacent voxels without any prior knowledge.
More recently, we revealed that the ReHo changes in the frontal-
cerebellar-anterior cingulate cortices pathway were related to
depressed ET patients (10). However, due to traditionally mass-
univariate analyses, all these above studies could not be used to
diagnose the individual depressed ET patient, and had difficulty
sensitively identifying the diagnosis biomarker. Multivariate
pattern analysis (MVPA) is a new method based on machine
learning algorithm, which has been widely used to analyze the
spatial pattern information for fMRI classification with good
generalization ability (11). Owing to multivariate properties, the
MVPA can achieve greater sensitivity for discovering voxel-
level subtle and spatially distributed changes of intrinsic brain
activity, and are sensitive enough to perform classification at
the single-subject level. Combining global brain connectivity
of rs-fMRI with MVPA (12), our latest studies showed good
classification performance to identify depressed ET patients.
However, whether the MVPA based on local brain connectivity
can realize automatic identification of depressed ET has not
previously been investigated.

In this study, we combined voxel-level local brain connectivity
(regional homogeneity, ReHo) mapping of rs-fMRI with MVPA
(multiclass Gaussian Process Classification and binary support
vector machine algorithms) to identify depressed ET patients
from non-depressed ET and healthy controls (HCs).We expected
that these classification models could achieve good accuracy
and the selected significant discriminative brain region features
would help to establish potential diagnostic biomarkers and
reveal the intrinsic brain activity pathogenesis in depressed
ET patients.

METHODS AND MATERIALS

Participants
Depressed ET patients and non-depressed ET patients were
recruited at the movement disorders or psychiatry outpatient
clinic of the First Affiliated Hospital of Chongqing Medical
University (Chongqing, China). Healthy controls were recruited
from the local individuals by poster advertisements, and HCs
reported having a first-degree or second-degree relative with ET
or Parkinson’s diseases were discarded. The detailed inclusion
criteria for all subjects and head motion control are described
in Supplementary Materials. After controlling for image quality
and head motion, 3 depressed ET patients, 2 non-depressed ET
patients, and 3 HCs with FDpower head motion > 0.2mm were
removed from our study. Eventually, 41 depressed ET, 43 non-
depressed ET, and 45 age- and sex-matched HCs were included
in our study.

The depression severity of each subject was evaluated by the
17-item Hamilton Depression Rating Scale (HDRS-17) (13), and
all patients with a score of at least 7 points were considered
depressive. The Hamilton Anxiety Rating Scale (HARS-14) (14)
assessed the anxiety severity of all participants. Tremor severity
was assessed with the Fahn-Tolosa-Marin Tremor Rating Scale
(FTM-TRS). Meantime, to consider a ceiling effect for severe
tremor while tremor amplitude > 4 cm for the TRS scale,
the Essential Tremor Rating Assessment Scale (TETRAS) (15)
was also adopted to assess tremor severity in our study. The
MMSE was used to briefly assess cognitive function and screen
for dementia.

MRI Acquisition
Resting-state fMRI images, 3D T1-weighted images, and T2-
FLAIR images were acquired using a GE Signa Hdxt 3T
scanner (General Electric Medical Systems, Milwaukee, WI,
United States). Rubber earplugs were used to reduce noise, and
foam cushioning was used to reduce motion artifacts. During
the scan, participants were instructed to keep their eyes closed
and stay awake (which was confirmed via intercom immediately
after the rs-fMRI scan). Resting-state fMRI images were obtained
using a standard echo-planar imaging (EPI) pulse sequence with
the following parameters: 33 axial slices, slice thickness/gap =

4.0/0mm, matrix = 64 × 64, TR = 2000ms, TE = 40ms,
flip angle = 90◦, FOV = 240 × 240mm, and a total of 240
volumes were obtained (duration = 8min). High-resolution 3D
T1-weighted images (TR = 8.3ms, TE = 3.3ms, flip angle =

15◦, slice thickness/gap = 1.0/0mm, FOV = 240 × 240mm,
and matrix = 256 × 192) and T2-weighted FLAIR images (TR
= 8,000ms, TE = 126ms, TI = 1,500ms, slice thickness/gap
= 5.0/1.5mm, FOV = 240 × 240mm, and matrix = 256
× 192) were also acquired. We did not use the T2-weighted
FLAIR images for data processing, but they were used for
image evaluation.

Image Preprocessing
Functional imaging preprocessing was performed
using statistical parametric mapping software (SPM12;
www.fil.ion.ucl.ac.uk/spm) and the Data Processing Assistant

Frontiers in Neurology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 847650

http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Machine Learning in Depressed Essential Tremor

for Resting-State fMRI software (DPARSF; http://rfmri.org/
DPARSF). The first 10 volumes of the functional images were
discarded for the signal equilibrium and participants’ adaptation
to the scanning noise and only the remaining 230 images were
processed and analyzed. The main steps of image preprocessing
were as follows: (1) Slice-timing correction was performed
to correct the layer time to eliminate the error caused by
the removal of sequences at the beginning of the scan; (2)
realignment was performed to correct the differences in head
translation or rotation during data collection, and resulting in
Friston 24 head motion parameters. These parameters were
employed to assess head movement and ensure the quality of
rs-fMRI data; (3) the functional images were normalized to
the standard Montreal Neurological Institute (MNI) space by
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) and resampled to 3 × 3 × 3 mm3; (4)
the T1 images were co-registered to the mean rs-fMRI data
for each subject. Specifically, T1 images were segmented into
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). All the GM, WM, and CSF images were resampled to 1.5
× 1.5 × 1.5 mm3 and spatially normalized to the MNI space
using both affine transformation and non-linear deformation,
after that, resampled to 3 × 3 × 3 mm3 voxel resolution with
rs-fMRI and the deformation field was applied to the rs-fMRI
data; (5) the nuisance covariates including the Friston 24
head motion parameters, white matter signal, cerebrospinal
fluid signal, and the mean time series of the whole brain were
regressed out; (6) for detrending, we used 1st order polynomial
functions to remove the linear trend produced by a rise in
temperature due to the machine working or adaptation of
the subject over time; (7) the resting-state BOLD signal was
filtered using a filter with a frequency band of 0.01–0.08 to
decrease low-frequency drift and high-frequency noise. To
ensure that neighboring regional BOLD time courses did not
show a spurious increase in connectivity strength, smoothing
was performed after calculating the individual ReHo value,
and the flow chart of imaging preprocessing is presented in
Supplementary Figure S1.

Calculation of Voxel-Level Local Functional
Connectivity Mapping
In this study, we used ReHo to describe the voxel-level
local functional connectivity. Each individual ReHo map was
generated by calculating Kendall’s coefficient of concordance
(KCC) of the time series of a voxel with those of 26 nearest
neighbors. The KCC was calculated by the following formula:

W =

∑

(Ri)
2
− n(R)

2

1
12K

2
(

n3 − n
) (1)

Where W is the KCC among given voxels, ranging from 0 to 1;
Ri is the sum rank of the ith time point; R = ((n+ 1)K) /2 is
the mean of the Ri’s; K is the number of time series within a
measured cluster (K = 27, one given voxel plus the number of
its neighbors) and n is the number of ranks (16). Then a whole-
brain mask provided by DPARSF was used to remove non-brain
areas. To reduce the influence of individual variations, each ReHo

map was divided by the global mean ReHo of each participant.
Ultimately, the standardized ReHo maps were smoothed with a
Gaussian kernel of 4mm full-width at half-maximum (FWHM)
for noise reduction. All the subsequent analyses were carried out
based on smoothed ReHo maps (smReHo).

Multivariate Pattern Machine Learning
Classification Analysis
The Pattern Recognition for Neuroimaging Toolbox (PRoNTo
version 2.0; http://www.mlnl.cs.ucl.ac.uk/pronto/) (17) within
SPM12 was used to perform multivariate pattern machine
learning (MVPA) classification analysis. The machine library in
PRoNTo included four classification algorithms: support vector
machine (SVM), binary andmulticlass Gaussian Process classifier
(BGPC and MGPC), and L1-multiple kernel learning. To solve
the three-class (depressed ET, non-depressed ET, and HCs)
and two-class (depressed ET vs. non-depressed ET, depressed
ET vs. HCs, and non-depressed ET vs. HCs) classification
problems, the MGPC and Simple L1-Multiple Kernel Learning
(Simple-MKL) algorithms were used to deal with three-class
classification, and linear SVM and BGPC algorithms were
adopted to tackle two-class classification. Briefly, the MVPA
approach was composed of five main analysis modules: dataset
specification, feature set selection, model specification, model
estimation, and weights computation. In the dataset specification
and feature set selection, individual participants’ ReHo maps
served as inputs features for the machine learning algorithms,
in which a resting-state design was modeled with no conditions,
and the DARTEL gray matter mask was applied. A feature set was
prepared on whole-brain voxel-level smReHo data. In the model
specification and model estimation, the features were mean-
centered, and MGPC, Simple-MKL, binary SVM, and BGPC
algorithms were used to test whether the individual smReHo
maps could be used to discriminate these subjects. These subjects
were divided into training and testing sets and a leave-one-
subject-out cross-validation (LOSOCV) was used. During the
training phase, a learning algorithm was trained with the original
training set, and during the test phase, the trained learning
algorithm was applied to predict the labels from the unseen
samples on the testing set. For example, in the linear case, the
learned function relied on a linear combination of the feature
vectors xi, i.e., f (xi) = w0+wTxi. The weightsw∈Rd represented
the relative contribution of each feature for the classification
model (18). The area under the receiver operating characteristic
curve (AUC), receiver operating characteristic (ROC) curve (only
in binary SVM and BGPC), accuracy, sensitivity, specificity,
total accuracy, positive predictive value, and negative predictive
value were calculated to assess the classification performance.
We acquired the prediction labels for every participant, which
were used to build the confusion matrix, and we further used
permutation testing (1,000) to assess the significance of these
models’ performance and to locate the significant discriminative
features. More specifically, we repeated the permutation cross-
validation procedure test 1,000 times and counted how many
times the value of these accuracy measures was equal to or
higher than the correct one. The p-value was then calculated by
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dividing this number by the number of permutations (1,000).
To locate the significant discriminative features, the contribution
of each voxel to classification was calculated, and the voxels’ p-
value was calculated by dividing this number by the number of
permutations (1,000), and they were projected to generate the
discriminative map, and the cluster size> 30 voxels was adopted.

Statistical Analysis
Statistical analysis was carried out using Statistical Package for
the Social Sciences (SPSS) Version 20.0. The demographic and
clinical information was analyzed by descriptive statistics and
presented as means and deviations. Kolmogorov–Smirnov tests
were performed to assess the normality of these data. Among the
three groups, qualitative data were assessed using the chi-square
test based on the distribution, and quantitative variables were
analyzed using a one-way analysis of variance (ANOVA) test. Post
hoc analysis using Bonferroni correction was performed when
appropriate. The p-values of 0.05 were considered statistically
significant (two-tailed). Then, Pearson’s (for normal distribution)
or Spearman’s (for non-normal distribution) correlation analysis
was applied to explore relationships among HDRS-17 scores,
age, educational level, age of tremor onset, tremor duration, and
scores on TRS parts A and B, TRS part C, TETRAS, TETRAS-
ADL, MMSE, and HARS-14 in depressed ET patients.

To further explore whether the significant discriminative
features could be used to explain depression severity in depressed
ET patients, the significant discriminative features clusters
(BSVM: depressed ET vs. HCs) were defined as the region
of interest (ROI). Briefly, we extracted smReHo values from
these ROIs, and a partial Pearson’s correlation analysis between
smReHo values and the HDRS-17 scores of the depressed ET
patients was performed with a Bonferroni multiple comparison
correction, controlling for age, sex, years of education, and scores
of TRS parts A and B, TRS part C, MMSE, and HARS-14, and
head motion FDpower as covariates.

RESULTS

Demographic and Clinical Characteristics
Demographic and clinical information are shown in Table 1,
and the age, education level, tremor of onset, and scores on
TRS parts A and B, TRS part C, MMSE, HDRS-17, and HARS-
14 in depressed ET patients show a normal distribution (p =

0.63, 0.12, 0.32, 0.66, 0.33, 0.06, 0.97, and 0.06, respectively),
and the tremor duration in the depressed ET patients shows
a non-normal distribution (p = 0.035). There is no significant
correlation among these clinical data.

Classification Performances
TheMGPC algorithm achieved a good classification performance
with a total accuracy of 84.5%, and sensitivity for depressed
ET, non-depressed ET, and HCs at 80.49, 72.09, and 100.00%,
respectively. The Simple-MKL algorithm achieved an overall
classification accuracy of 79.07%, and sensitivity for depressed
ET, non-depressed ET, and HCs at 82.93, 65.12, and 88.89%,
respectively. For all performance evaluation metrics except
the sensitivity for depressed ET patients, the Simple-MKL

algorithm performed worse than the multiclass Gaussian
Process Classification algorithm. Supplementary Figures S2, S3

separately show the confusion matrixes and classification
performances of MGPC and Simple-MKL algorithms for
classifying depressed ET, non-depressed ET, and HCs.

Figure 1 (upper pictures) shows the confusion matrix and
classification performances of SVM of depressed ET vs. HCs,
non-depressed ET vs. HCs, and depressed ET vs. non-
depressed ET. These SVM classifications could reach a good
classification performance with accuracy at 90.70, 88.64, and
90.48% respectively, and the permutation test with statistically
significant balanced accuracy, sensitivity, and specificity at p
< 0.001. The classification performances of BGPC were worse
than that of SVM, and the confusion matrixes and classification
performances of BGPC are shown in the Supplemental Material.

Figure 2 shows significant discriminative features of
depressed ET vs. HCs with permutation test at p < 0.001.
Positive (mean depressed ET > HCs) discriminative features are
located in the bilateral supplementary motor cortices, bilateral
precentral cortices, bilateral anterior cingulate cortices, bilateral
precuneus gyri, bilateral middle and superior prefrontal gyri,
bilateral inferior parietal lobules and bilateral cuneus, and
negative (mean depressed ET < HCs) discriminative features are
located in bilateral cerebellum lobules IV∼V, bilateral cerebellum
lobules VI, bilateral cerebellum lobules VIII, bilateral cerebellum
lobules Crus 1, and bilateral cerebellum lobules IX.

Figure 3 shows significant discriminative features of non-
depressed ET vs. HCs with permutation test at p < 0.001.
The significant discriminative features were similar to that of
depressed ET vs. HCs, except the negative features in bilateral
cerebellum lobules IX were not revealed.

Figure 4 shows significant discriminative features of
depressed ET vs. non-depressed ET with permutation test
at p < 0.001. Positive (mean depressed ET > non-depressed
ET) discriminative features are located in the bilateral middle
and superior prefrontal gyri and bilateral anterior cingulate
cortices, and negative (mean depressed ET < non-depressed ET)
discriminative features are located in bilateral cerebellum lobules
IX.

The brain regions and peak MNI coordinates of significant
discriminative features in the classification of binary SVM are
listed in Supplementary Table S1.

Partial Pearson’s Correlation Analysis
A total of eighteen clusters of the significant discriminative
features of depressed ET vs. HCs were revealed and all of the
18 clusters were defined as 18 ROIs, and the smReHo values of
these ROIs were abstracted. Figure 1 (lower pictures) shows the
partial Pearson’s correlation analysis results, and the significant
correlation between HDRS-17 scores and smReHo values of the
left middle prefrontal gyrus (positive), and bilateral cerebellum
lobules IX (negative) and right middle and superior prefrontal
gyri (marginal positive) were found in depressed ET patients.

DISCUSSION

To our knowledge, this is the first study to combine local
brain functional connectivity with amultivariate patternmachine

Frontiers in Neurology | www.frontiersin.org 4 May 2022 | Volume 13 | Article 847650

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Machine Learning in Depressed Essential Tremor

TABLE 1 | Demographic and clinical features of depressed ET, non-depressed ET, and HCs.

Measure DET (41) ET (43) HCs (45) Statistic p-value

DET vs. HCs ET vs. HCs DET vs. ET

Demographic

Age (year) 47.85 ± 15.66 44.49 ± 13.73 46.67 ± 13.16 F = 0.99 0.48 0.47 0.16

Sex (male/female) 26:15 28:15 28:17 x2 = 0.79 0.91 0.78 0.87

Education (year) 14.73 ± 4.17 12.40 ± 3.77 12.22 ± 3.42 F = 5.75 0.03 0.83 0.06

Handedness (R/L) 41:0 49:0 43:0 x2 = 0 1 1 1

Clinical of psychology and cognitive

HDRS-17 18.98 ± 6.35 3.49 ± 1.56 2.11 ± 1.17 F = 261.56 1e−6 0.09 1e−6

MMSE 26.00 ± 1.40 26.33 ± 1.51 28.67 ± 1.35 F = 46.08 1e−6 1e−6 0.30

HARS-14 7.56 ± 3.47 4.09 ± 1.66 2.04 ± 1.17 F = 63.47 1e−6 0.5e−5 1e−6

Clinical of tremor

Tremor of onset 34.93 ± 11.84 33.09 ± 10.87 NA T = 0.74 NA NA 0.46

Tremor duration 13.90 ± 9.40 11.42 ± 6.82 NA T = 1.39 NA NA 0.17

TRS-parts A&B 22.66 ± 7.28 20.93 ± 7.77 NA T = 1.05 NA NA 0.30

TRS-part C 14.05 ± 4.74 10.70 ± 5.22 NA T = 3.08 NA NA 0.03

TETRAS 18.32 ± 8.27 17.41 ± 6.79 NA T = 0.57 NA NA 0.57

TETRAS-ADL 21.39 ± 6.51 20.53 ± 5.19 NA T = 2.37 NA NA 0.09

DET, depressed ET; ET, essential tremor; HCs, healthy controls; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination; HARS-14, 14-item

Hamilton Anxiety Rating Scale; TRS, Fahn-Tolosa-Marin Tremor Rating Scale; TETRAS, Essential Tremor Rating Assessment Scale; TETRAS-ADL, Essential Tremor Rating Assessment

Scale-Activities of Daily Living; N/A, not applicable.

learning approach to identify depressed ET patients from non-
depressed ET and HCs, and three main findings were gained:
(1) both the MGPC and SVM could achieve good classification
performance, especially for HCs with sensitivity at 100%; (2)
the significant discriminative features were mostly located
in cerebellar-motor-prefrontal gyri-anterior cingulate cortices
pathway; (3) the significant discriminative features in bilateral
cerebellum lobules IX and prefrontal gyri could be used to explain
depression severity in depressed ET patients.

Multivariate Pattern Analysis in Essential
Tremor
The typical analysis in neuroimaging was based on mass-
univariate analysis, and it assumed that the activity of one
brain region is independent of the other brain regions. Just as
our recent research revealed that changes of ReHo in frontal-
cerebellar-anterior cingulate cortex circuits were associated with
depressed ET (10). Although the mass-univariate approach had
powerful insights over the years, due to the voxel interaction,
high-dimensional and multivoxel properties of the rs-fMRI data,
these results could not be used to diagnose the individual
depressed ET patients, and it was not sensitive to reveal the
subtle and spatially distribution changes of these rs-fMRI metrics
including ReHo. Recently, the adoption of MVPA could not only
consider the above properties of the rs-fMRI data but also extract
stable and identifiable features from rs-fMRI data to distinguish
subjects at the individual level (19). Previously, the neural
networks machine learning model classified Parkinson’s disease
and ET based on balance and gait characteristics and achieved
an accuracy of 89% (17). Voice analysis with a support vector
machine classifier objectively discriminated between healthy

controls and ET patients who did and did not manifest clinically
overt voice tremors with the accuracy of 97.1 and 97.9% (20).
However, these clinical behavioral symptoms were less stable,
direct, and accurate than neuroimaging data. In our study, we
adopted local brain functional connectivity of rs-fMRI as input
features to identify depressed ET. Finally, the MGPC model was
able to classify the three groups (depressed ET, non-depressed
ET, and HCs) with total accuracy of 84.5% and the BSVM model
achieved a better classification performance with total accuracy of
90.7, 88.64, and 90.48% for depressed ET vs. HCs, non-depressed
ET vs. HCs, and depressed ET vs. non-depressed ET, and with
sensitivity of 80.49, 76.64, and 80.49%, respectively. The good
classification performance of MGPC and binary SVM suggested
that these classification algorithms not only provide a potential
chance for diagnosing the individual depressed ET patients but
also help to reveal the spatial distribution changes of local brain
connectivity in depressed ET patients.

The Cerebellar-Motor-Prefrontal
Gyrus-Anterior Cingulate Cortex Pathway
Associated With Depression in ET Patients
Amounting evidence has shown that the prefrontal cortex is
responsible for top-down mood and attention regulation (21).
This area plays an important role in the pathogenesis of primary
depression and movement disorders with depression such as
Parkinson’s disease (22, 23). In the past few years, a major
depressive disorder model mentioned the importance of the
ventromedial prefrontal cortex, anterior cingulate cortex, and
lateral parietal cortex, which might be related to self-referential
problems and negative ruminations (24). The anterior cingulate
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FIGURE 1 | Confusion matrix and ROC curve of the binary SVM algorithm (upper pictures). Correlation analysis results between the smReHo values of significant

discriminative features and the HDRS-17 scores in depressed ET patients (lower pictures). Bonferroni multiple comparison corrections, corrected p <

0.05/18*(18-1)/2. smReHo, smoothed regional homogeneity; PFG, prefrontal gyrus; zHDRS-17 scores, z-transformed Hamilton Depression Rating Scale 17-item

scores; DET, depressed essential tremor; ET, non-depressed essential tremor; HCs, healthy controls; ROC, receiver operating characteristic; AUC, area under the

curve.

cortex which consists of affective and cognitive subdivisions
plays an important role in regulating cognitive and emotional
functions and may be involved in the pathophysiology of
major depression (25). Furthermore, the anterior cingulate
cortex is not only an important hub of the default mode
network but also a key area of the limbic system. The default
mode network has been generally linked to self-referential
processing, affective cognition, and emotion regulation (26),
and disturbances of the default mode network have been
confirmed in many neurological and psychiatric disorders
including ET (27). Using voxel-wise global brain connectivity
mapping combined with MVPA, a study conducted by our team
has shown that the major associated discriminative features
in depressed ET were mainly located in the cerebellar-motor-
prefrontal cortex circuits (12). Compared to the previous study,
the present study was the first to combine local brain functional
connectivity with the MVPA approach to identify depressed
ET patients from non-depressed ET and HCs which may help
deepen our understanding of the depression pathogenesis of ET
from different perspectives. Similar to the studies mentioned

above, our study confirmed the involvement of the prefrontal
cortex, anterior cingulate cortex, and cerebellum among the
discriminative features of depressed ET vs. non-depressed ET, but
also brought additional highlights. It was worth noting that these
areas were mainly located in the cerebellar-prefrontal gyrus-
anterior cingulate cortex circuits. Understandably, we found the
involvement of the motor cortex in depressed ET in contrast
to HCs. Consequently, the significant discriminative features of
depressed ET vs. HCs were mainly located in the cerebellar-
motor-prefrontal gyrus-anterior cingulate cortex pathway. As
compared to non-depressed ET and HCs, depressed ET showed
increased ReHo in the bilateral middle and superior prefrontal
gyrus and bilateral anterior cingulate cortex, whereas decreased
ReHo in the bilateral cerebellum IX. We also found that no
significant correlation existed between HDRS-17 scores and the
tremor severity or tremor duration. This result was consistent
with a previous study by a US research team suggesting that
depression may be a separable construct in depressed ET (28),
which could dictate how the depressed ET patient copes with
his/her depressive symptoms. To some extent, this reflected that
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FIGURE 2 | The brain regions of significant discriminative features in the classification of depressed ET vs. HCs. ET, essential tremor; HCs, healthy controls.

depression in ET may be associated with identifiable underlying
brain changes, rather than a secondary psychiatric response to
disabling tremors.

Many studies have shown that functional abnormalities of
the cerebellum have been a consistent finding in ET (29).
Abnormalities in the cerebellar-thalamo-cortical network of ET
patients have been extensively reported in previous studies (30).
In terms of neuropsychiatric symptoms, several neuroimaging
studies revealed that affective disturbances such as anxiety and
depression have been related to the cerebellum in the context
of the cerebellar cognitive affective syndrome (CCAS) (31). And
abnormalities in the cerebellum in association with depression
have been consistently found, indicating the involvement of

cerebellar dysfunction in depressive disorders (32). Indeed,
the existing study has reported that cortical-cerebellar circuits
were linked to non-motor symptoms in ET (33). In addition,
partial correlation analysis in this study showed that depressive
symptoms was independent of tremor severity. The above
findings suggest that the cerebellum not only plays an important
role in the generation of tremors but also is involved in depressive
symptoms in ET.

Previous postmortem observations demonstrated that only
cerebellum (e.g., increased numbers of torpedoes and loss
of Purkinje cells) and brainstem (e.g., Lewy bodies and
depletion of neurons in the locus coeruleus) existed identifiable
structural changes in the ET brain (34, 35), and the other
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FIGURE 3 | The brain regions of significant discriminative features in the classification of non-depressed ET vs. HCs. ET, essential tremor; HCs, healthy controls.

brain regions including prefrontal cortices, motor cortices, and
anterior cingulate cortices and did not have neuropathology
abnormalities. For reasons stated above, we inferred that
the cerebellum may pose a key pathogenesis role through
the cerebellar-motor-prefrontal gyrus-anterior cingulate cortex
pathway involved in depressed ET.

Several limitations of our study are worth mentioning
for future improvements. First, in this study, both binary
SVM- and MGPC-supervised learning approaches could be
used to classify depressed ET, non-depressed ET, and HCs.
Although supervised approaches could be preferable than

the unsupervised ones when high-quality, representative,
and correctly labeled data are available for training, the
unsupervised learning algorithms based on a larger follow-
up sample size may give perfect classification performance
and even achieve a clinical diagnosis state. Second, due
to the lack of biological and pathogenic markers, the
diagnosis of ET mainly depended on clinical symptoms
and neuropsychological assessment. Therefore, all the ET
patients included in our study had long follow-up periods
supplemented with electromyography results to reduce the
incidence of misdiagnosis.
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FIGURE 4 | The brain regions of significant discriminative features in the classification of depressed ET vs. non-depressed ET. ET, essential tremor; HCs, healthy

controls.

CONCLUSION

Our findings suggested that combining the local functional
connectivity maps with MGPC and binary SVM algorithms
could achieve good classification performance to identify
depressed ET patients. The spatially distributed patterns
of ReHo changes in the cerebellar-prefrontal gyrus-
anterior cingulate cortex circuits not only acted as the
significant discriminative features but also helped us to
understand the pathogenesis underlying depression in
ET patients.
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