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Normal brain development is highly dependent on the timely coordinated

actions of genetic and environmental processes, and an aberration can

lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID)

and autism spectrum disorders (ASDs) are a group of co-occurring NDDs

that affect between 3% and 5% of the world population, thus presenting a

great challenge to society. This problem calls for the need to understand

the pathobiology of these disorders and to design new therapeutic strategies.

One approach towards this has been the development of multiple analogous

mouse models. This review discusses studies conducted in the mouse

models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1,
Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that,

despite having a diverse molecular origin, the effects of these mutations con-

verge onto similar or related aetiological pathways, consequently giving rise

to the typical phenotype of cognitive, social and emotional deficits that are

characteristic of ID and ASDs. This convergence, therefore, highlights

common pathological nodes that can be targeted for therapy. Other than

conventional therapeutic strategies such as non-pharmacological corrective

methods and symptomatic alleviation, multiple studies in mouse models

have successfully proved the possibility of pharmacological and genetic

therapy enabling functional recovery.
1. Introduction
The human brain is a complex organ with a wide array of functions. An adult brain

has approximately 86 billion neurons and 85 billion non-neuronal cells [1]. Synchro-

nized activity among neuronal and non-neuronal cells enables us to perform from

mundane yet straightforward tasks to an overly complicated range of activities.

Development of the human brain is a tightly regulated process. Any change can

lead to precarious and detrimental developmental deficits such as neurodevelop-

mental disorders (NDDs). To name a few, NDDs include, but are not limited to,

autism spectrum disorder (ASD), intellectual disability (ID) and attention deficit

hyperactivity disorder (ADHD), which affect 3–4% of the world’s population [2].

On average, NDD is diagnosed when a child is six months to 1 year old in the

absence of well-defined biomarkers as the child is not fulfilling developmental

milestones. The Diagnostic and Statistical Manual of Mental Disorders (DSM V), pub-

lished by the American Psychiatric Association in 2013, has suggested the following

for the diagnosis of ID: children often present with difficulty in learning and

memory, and exhibit deficits in self-care and social behaviour [3].

Studies over the past few decades have shown that there is a strong genetic

correlation between specific genes encoding protein synthesis that regulates

synaptic function and ASD/ID [4]. Mutations in such genes, along with gene–

gene and gene–environmental interactions, are responsible for ASDs and ID.
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Figure 1. Common pathophysiological features observed in genes implicated in ID/ASDs. Diagram illustrating morphological, synaptic and circuit properties of
neurons along with behavioural alterations observed in different key transgenic mouse models. As mentioned in the main discussion, although the mutations
were observed in different genes that are implicated in ASDs/ID, there are many common features found in these mutations. Therefore, it is imperative to understand
the mechanism of these mutations about neuronal function before prescribing therapeutics to patients with any of these mutations. E/I, excitation – inhibition; GABA,
gamma-aminobutyric acid; GDP, giant depolarization potential; D1-MSN, D1 receptors in medium spiny neurons (MSN); AMPAR, a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor; mEPSC, miniature excitatory postsynaptic current; mIPSC; miniature inhibitory postsynaptic current.
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The resulting pathophysiological mechanisms of many of

these overlap with those of ID and ASD, such as SYNGAP1,

FMRP, MECP2, NEUROLIGINS/NEURONEXINS and

SHANK2/3. Apart from the overlapping pathophysiology,

patients with ASD and ID have some comorbid conditions

which include schizophrenia, allergic disorders, food

sensitivity and autoimmune disorders to name a few [5–8].

While the distribution of specific proteins such as FMRP

is widespread, the SYNGAP1 protein is expressed only in

the brain, not in any other organ [9,10]. The variation in the

tissue, cellular and subcellular localization and expression

of these genes implicated in ID and ASDs may be one of

the reasons for the type of phenotypes observed in ID/ASD

individuals. Genes such as FMRP present with the syndromic

type of ID while others such as SYNGAP1, MECP2 and

SHANK3 are mostly linked to the non-syndromic type

[11,12]. The environmental factors which can lead to ID and

ASDs include the use of certain drugs during pregnancy

like valproate and alcohol as well as infections, exposure
to heavy metals, such as lead and mercury, and malnutrition

[13–16]. Although a complex interplay of environmental and

genetic factors are known to have a role in the pathophysiology

of ID/ASDs, most cases are idiopathic [17].

Precise control of synapse formation and development is

essential for correct brain development and function. Abnorm-

alities, if any, can lead to various biochemical and behavioural

deficits. In this review, we have discussed the convergence of

the pathophysiological hallmarks and phenotypic character-

istics with emphasis on the changes in the synaptic

morphology (figure 1). For instance, alterations in the

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptor/N-methyl-D-aspartate receptor (AMPA/NMDA)

ratio, induction and maintenance of long-term potentiation

(LTP) and long-term depression (LTD), and changes in the

basal synaptic transmission are some of the common

characteristics associated with ID and ASDs of different

genetic backgrounds, which are discussed in detail in this

review [18]. The current report further highlights the
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importance of the critical period of development and its

alteration due to pathogenic mutations [19].

Although the importance of the proper function of neur-

ons during a critical period of development is known, the role

of non-neuronal cells such as astrocytes has been barely

studied, but this has been changing in recent years. It has

been observed that the timing of astrocyte maturation

coincides well with the formation of excitatory synapses in

the brain. Secretion of molecules such as glypicans by astro-

cytes helps in the conversion of silent to functional

synapses, thereby facilitating the insertion of AMPA recep-

tors [20]. Although the expression of synaptic proteins such

as FMRP and NEUROLIGIN has been studied in astrocytes,

a complete understanding of their underlying roles in ID

and ASDs is still under investigation [21]. Here, we give an

overview of the importance of astrocytes during the critical

period of development, and how alteration in these impacts

neuronal function.

To further our understanding of the physiological rel-

evance of mutations implicated in ID and ASDs, the use of

transgenic animal models has provided insights into different

pathophysiological aspects of ID and ASDs. These transgenic

mice models had been validated at various levels to ensure

their efficacy in the replication of not only the pathophysiology

but also the behavioural phenotypes [22]. Although there are

limitations, they have been useful in understanding the novel

mechanisms contributing to the progression and development

of these disorders and in finding novel therapeutic targets.

As with most neurological disorders, the exact prevalence

and epidemiology of NDDs are not entirely known yet. Meta-

analysis studies, which make use of statistical procedures to

analyse data from already existing reports, have highlighted

the procedural limitations and underreporting cases from

several parts of the world [23,24]. However, current studies

have shown the prevalence to be higher in low- and

middle-income countries, which can be attributed to the

lack of essential diagnostic and management resources in

these geographical locations [23,24]. Considering that NDDs

require early diagnosis, an exhaustive study done in children

from birth until 12 years of age found the prevalence to be as

high as one in six children in the USA. Moreover, in the same

study, the incidence was higher among the males than among

females [25].

Nevertheless, according to a recent report by the World

Health Organization, about one in every 160 individuals

has an ASD/ID [26]. The numbers are remarkably alarming

as they are only expected to become worse in the absence

of any effective therapeutic strategy. With more laboratories

now working on NDDs, insights into possible new thera-

peutic targets and their mechanisms may aid finding

mitigation strategies in the future.

Drug repurposing is one of the impending fields; this

involves finding a new indication for an already approved

drug [27]. Drug development is an expensive and time-con-

suming process that could be shortened with the help of

this approach. In this review, we have highlighted studies

done on drugs with a known indication in some other

diseases. Targeting them at the preclinical and clinical

stages may prove to be a useful strategy in search of new

medications for ID and ASDs.

Although there are several unexplored mechanisms

associated with ID/ASDs, the involvement of synaptic func-

tion and plasticity in ID and ASDs is well characterized [28].
Technological advancement to measure neuronal activity

(electrophysiology and deep-brain imaging) and understand-

ing of the mechanisms which modulate synaptic plasticity

may aid in further expanding our knowledge to decipher

the pathophysiology of ID and ASDs. In this review, we

will discuss the implications of monogenic mutations on

the physiological, molecular and biochemical, and morpho-

logical aspects of neuronal and non-neuronal development

using different mouse models studied over the past few

decades.
2. Aetiology/causes of intellectual disability
The causes of ID and ASDs are diverse and involve a range of

genetic and environmental factors [29]. Although the nature

of the cause for about 60% of all known cases of ID and

ASDs remains unknown [30,31], studies where the cause is

known have demonstrated that aberrations leading to ID/

ASDs mainly occur during the developmental time period,

but have a lifelong effect, including in adulthood. The vulner-

able range of time includes the pre-, peri- and post-natal

stages of development [32]. Environmental stress factors

such as poor nutrition, hygiene, infection, familial instability

and socio-economic causes may affect brain development,

contributing to ID/ASDs [33,34]. For example, it is now

believed that oxidative stress as a result of environmental

stressors such as heavy metals affects sulfur metabolism,

which leads to alteration of the epigenetic mechanisms of

gene expression. Hence, the complex interplay of genetic

and environmental factors has a crucial role in the pathology

of ASDs/ID [17].

Other than environmental factors, about a quarter to half of

the identified causes of ID are the result of mutations in genes

[32]. These mutations can be either inherited or acquired gen-

etic defects due to metabolic genetic defects as observed in

cases such as phenylketonuria and Tay–Sachs disease that

can disrupt healthy brain development [33]. These genetic

changes can occur on various scales based on size (and thereby

ease of detection)—the largest being microscopically visible

aberrations at the chromosomal level and 15% of all cases of

ID were attributed to these chromosomal defects [30,35–38].

This review will provide a brief overview of the current under-

standing of ID/ASDs with regard to the critical period of

development, molecular and biochemical signalling, and elec-

trophysiological aberrations concerning monogenic mutations.
3. The critical period of plasticity
A remarkable property of the brain is its capability to undergo

changes based on experiences (stimuli) through a process

called synaptic plasticity, particularly during the early stages

of development [39]. Synaptic plasticity is a biological process

in which a stimulus or experience induces synaptic activity that

results in changes in synaptic strength and contributes to learn-

ing and memory. It includes the formation, storage and

retention of sensory memories, and occurs throughout life

starting from birth and continues into adulthood to an

extent. This process allows us to do everyday activities such

as performing mathematical calculations, decision making

and more complex multi-tasking activities, which are coordi-

nated by proper neuronal connections in the brain that act as

the central processing unit of the body. However, at the time
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of birth, there are fewer synaptic connections, but, as the brain

matures, there is a massive surge in the number of neuronal

connections that enables a child to learn tasks rapidly [40].

During this stage of development, the synaptic connections

are highly vulnerable to changes in environmental stimuli.

However, at the end of adolescence, only active connections

(upon repeated or stronger stimulation) will be strengthened,

and less active connections (upon weaker or not repeated

stimulation) will be eliminated [41]. For example, a child may

learn a new language in a few months to a year, but it might

take months to a few years for an adult to master the same

language. [42]. These observations postulated the phenom-

enon of a critical period of neuronal development. Different

experiences during early post-natal life determine the process

of formation, maturation and elimination of neuronal connec-

tions in the brain. Windows of heightened neuronal plasticity

during brain development are termed as critical or sensitive

periods, which predominantly occur in early life, and, hence,

learning any new paradigms is relatively easy and quick in

childhood, although it continues at a reduced level in adult-

hood. A critical period is a time when environmental or

sensory input is required for the proper development of par-

ticular neuronal connections in different regions of the brain

[43,44]. If these connections are unstimulated, the brain func-

tion served by that circuit will be permanently compromised

[43,44]. For example, the critical period for the visual cortex

begins soon after a baby is born in humans or soon after eye

opening in animals such as rats or mice. Similarly, the onset

of hearing triggers a critical period of development of the audi-

tory cortex in humans. Perturbation in neuronal connections of

these regions before the end of the critical period might perma-

nently compromise their function. In the last decade or so,

several laboratories have used visual, auditory and thalamo-

cortical regions of the brain as models to understand

the importance of the critical period in the plasticity and

development of an individual [41,45–47].

An important contribution to using the visual cortex as a

model came from studies by Hubel and Wiesel in 1962; they

emphasized the importance of the stimulus-dependent

response by a population of neurons. They observed that,

for cortical cells, the most effective stimulus configurations

dictated by the spatial arrangement of excitatory and inhibi-

tory regions were long narrow rectangles of light (slits),

straight line borders between areas of different brightness

(edges) and dark rectangular bars against a light background.

To attain the maximum response, the shape, area and orien-

tation of these stimuli were critical [48]. Recordings from

different stages of development in normal kittens and those

with monocular dominance (MD), where one eyelid was

sutured during the early time window of development, con-

cluded that kittens with MD had almost irreversible changes

in the functional properties of the visual cortex area V1,

suggesting the importance of sensory-dependent activation

of neurons during the critical period of development and

its relevance to neuronal connections [41]. These studies

have demonstrated the importance of the critical period in

the visual cortex and the modulation of neuronal plasticity

based on experience/sensory information. For a better under-

standing of the molecular mechanisms underlying the critical

period of development and plasticity in the primary visual

cortex, studies using various animal models are discussed

extensively in [41,48–53], and similar information can be

obtained for thalamocortical studies from [54–57].
Studies have shown that changes at the synaptic receptor

number and subunit expression of both excitatory and inhibi-

tory neurons signal the opening or closure of a critical period

of neuronal development [58]. For example, based on

these studies, NMDARs are considered as one of the

molecular determinants of the critical period of plasticity as

NMDAR-mediated synaptic transmission is developmentally

regulated, and their expression can modify neuronal activity

[58–61]. In the visual cortex, the percentage of total NMDAR-

mediated current can be described by a slow exponential

decay between the first and fifth post-natal week. Dark rearing

of pups delays the developmental shortening of NMDAR-

mediated currents, suggesting that the change in the 2A/2B

ratio requires stimulus-based experiences in the visual cortex,

and impairs the closure of the critical period. Pups reared in

the dark displayed longer duration of NMDAR-mediated cur-

rents similar to younger animals bred in normal conditions,

suggesting an altered critical period of development [62].

Apart from the visual cortex, various laboratories have studied

the critical period of development in the thalamocortical region

of the brain. By focusing on the NR2B to NR2A switch, which is

developmentally regulated, NMDAR-mediated currents were

recorded in layer IV of rat somatosensory cortex and found to

be decayed more rapidly in PND7 than in PND3, which

further suggests NMDAR-mediated, mainly subunit switch,

modulation of the critical period [63–65].

Another key factor that regulates the critical period of

plasticity during development is the function of gamma-

aminobutyric acid (GABA) in the neuron. The function of

GABA is carried out by two Cl2 cotransporters, NKCC1 and

KCC2, and its expression varies during the early stages of

development [66]. Several studies using the gene disruption

method to modulate the function of GABA and chloride con-

centration suggested the possibility to target NKCC1 and

KCC2 for the rewiring of neuronal connections in the brain

post-critical period of development, and, hence, a potential

target for therapeutics [67–69]. In various NDDs, such as ID,

ASDs and schizophrenia, one of the common features

observed is an imbalance of the excitation–inhibition (E/I)

ratio, which can serve as a key factor in understanding the

major cause of these disorders, and how manipulating the

critical period, particularly targeting GABA, would help to

resolve the associated defects [70,71]. It has been known for

decades that maturation of the inhibitory cortical circuits in

the brain parallels the opening of the critical period [72–76].

With the help of glutamate decarboxylase (GAD)–knockout

(KO) mice (GAD is a GABA-synthesizing enzyme), it has

been demonstrated how inhibitory signalling regulates the

critical period. For example, GAD-65 KO mice have impaired

ocular dominance shift when one eye is deprived of vision

[72]; visions was restored by the application of diazepam

(benzodiazepine), which enhances GABA activity, within

the critical period window by enhancing GABAR activity.

These experiments suggest that ocular dominance plasticity

is regulated by inhibitory neuronal signalling in the brain,

apart from the excitatory signalling as discussed earlier.

GAD-65 KO mice had shown reduced NR2A levels and

slower NMDAR-mediated currents in the visual cortex,

which plays an important role in the critical period of plasticity

[74]. Other studies have focused on the ectopic expression of

BDNF in mice, which is also known to regulate GABAergic

inhibitory interneurons and related synaptic strength and

has been shown to induce early opening and premature
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closing of the critical period of plasticity [73,77]. These studies

suggest that there are different molecular determinants of the

critical period of plasticity that are developmentally regulated.

Here, we have briefly discussed the role of different proteins,

especially GABAR, which are developmentally regulated

and, in turn, modulate the critical period of plasticity. Thus,

altering GABAR-mediated functions could be a potential

therapeutic approach in the rewiring of synaptic connections

and rescuing the pathophysiology of NDDs, particularly

after a critical period of development, which is one of the

major challenges faced by many neuroscientists.
l/rsob
Open
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4. Animal models of intellectual disability
The use of animal models to understand disease pathogenesis

and to design treatment strategies has been long been a prac-

tice in biology and related disciplines. Despite the substantial

ethical debate surrounding the use of animals in research,

and the argument of interspecific variations, data from

animal models remain the most positive attribute of biomedi-

cal research [78]. With technological advancements and the

advent of transgenic mice, the ability to study more complex

biological problems became feasible as a result of genetic

modifications [79]. More recently, the use of Cre-Lox technol-

ogy to generate tissue-specific KOs and other methods of

modulating gene transcription in vivo has further contributed

to our understanding of the mechanisms of human disease

[80,81].

Although it is not possible to mimic all aspects of a dis-

order or disease in any one animal model, a suitable animal

model should be able to replicate the clinical hallmarks of

the disease with the paramount degree of robustness. There-

fore, for a given condition, a range of animal models are

usually defined, characterized and then validated. A good

animal model should meet the following criteria: internal val-

idity, external validity, construct validity, face validity and

predictive validity. Internal validity refers to the reliability

and reproducibility of the model with regard to consistency

in the experimental measurements. Face validity describes

the degree of similarity between the symptoms shown in

human populations and those expressed in the animal

model. Predictive validity involves the extrapolation of a par-

ticular experimental manipulation done in a species or a

specific situation to the other species and situation. Construct

validity refers to the degree of similarity in the mechanisms

underlying the behavioural similarities between the animal

model and those seen in patient populations. External validity

involves the generalizability of the results obtained in the

animal studies in relation to the general population [22,82].

Different reviews have discussed the commonly available

and used animal models for ID [82–84]. Some of the widely

used mouse models that replicate the pathophysiology of ID

are listed in table 1 along with the morphological, biochemi-

cal and behavioural alterations associated with them.

Nevertheless, citing the failure of pharmacological agents in

those clinical trials which otherwise showed efficacy in the

preclinical studies, it becomes clear that the existing models

have their limitations [79]. Hence, there is a need to look

for new animal models of ID/ASDs that display different

mutations and not only reproduce the clinical features of a

disease but also guarantee a higher degree of translational

success.
5. Gene mutation in intellectual disability
and autistic spectrum disorders

5.1. SYNGAP1
SYNGAP1 is a 135 kDa protein that was shown by Chen et al.
[116] and Kim et al. [10] to be one of the targets of phos-

phorylation by Ca2þ/calmodulin-dependent protein kinase

II (CaMKII) in the post-synaptic density (PSD) in the rat

brain. It has several different isoforms which arise as a

result of alternative splicing owing to different start sites.

Though the existence of SYNGAP1 isoforms was first ident-

ified in 1998, detailed characterization and analysis were

done much later [82,116,117]. The functions of different iso-

forms and physiological functions of Syngap1, particularly

in regard to the Syngap1 mutation and its implications in

ID and ASDs, are extensively discussed in another

comprehensive review by Jeyabalan & Clement [82].
5.1.1. Behavioural changes associated with Syngap1 mutation

Syngap1þ/2 was found to be associated with several behav-

ioural abnormalities, including cognitive and learning

deficits, reduced seizure threshold, hyperactivity and

increased locomotion [118,119]. Behavioural tests such as

the Morris water maze, radial arm maze, spontaneous alter-

nation test and the Y-maze novel arm test have been used

to compare learning- and memory-related impairments in

Syngap1þ/2 mice [87,120]. Syngap1þ/2 mice showed a sig-

nificant decline in working memory; however, the

performance was comparable to wild-type (WT) animals in

the reference memory tasks, suggesting only specific mem-

ories are impaired [121]. These mice further presented with

deficits in the remote memory when tested on the contextual

fear learning procedure [119]. These findings have been ver-

ified physiologically by Clement et al. [88] by measuring

basal synaptic transmission from the dentate gyrus and relat-

ing it to learning and memory deficits observed in these mice

and patients.

Apart from cognitive decline, Syngap1þ/2 mice also

exhibited stereotypic behaviour, hyperactivity and reduced

anxiety-like behaviour, which was estimated experimentally

using an open field test and elevated plus maze [85,121].

These mice spent more time in the open arms of the elevated

plus maze than the WT animals, thereby displaying

enhanced overall locomotion [85,119,121]. These behavioural

abnormalities suggest impairment in learning and memory.

To further validate these findings related to the Syngap1 het-

erozygous mutation, a study made use of the cliff avoidance

test in which latency to jump off the cliff was higher in the

case of the Syngap1þ/2 mice than in the normal WT animals,

suggesting the lack of competency to judge the depth [122].

Similarly, patients with the SYNGAP1 mutation exhibited a

non-syndromic form of ID that had been linked to a decline

in sociability, and this was reinforced with the help of

sociability tests done in transgenic mice [85].

Studies from patients with the SYNGAP1 heterozygous

mutation have shown that approximately 80% of patients

have epileptic seizures [82,123,124]. Indeed, electroenceph-

alogram monitoring combined with video monitoring

assays in patients showed spontaneous abnormal cortical

activity in patients with the Syngap1 heterozygous mutation
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[119]. Similarly, Syngap1þ/2 mice exhibited a reduction in

the seizure threshold and induction of myoclonic seizures

as a result of mutations in the Syngap1 gene, which is in

agreement with the epileptic seizures observed in patients

[88,119]. Additionally, reduced levels of SYNGAP1 in the

inhibitory GABAergic neurons exhibited reduced inhibitory

synaptic activity and cortical gamma oscillation power and

resulted in cognitive and social deficits [125].

A recent report has shown the impairment of sensory pro-

cessing and touch-related deficits observed in patients as a

result of reduced activity within the upper lamina somato-

sensory cortex (SSC) circuits in Syngap1þ/2 mice [126]. On

the contrary, an earlier finding suggested that Syngap1 het-

erozygous mutation resulted in increased overall excitability

of neurons [126]. These studies demonstrate the fact that

Syngap1þ/2 mutations lead to abnormal neuronal activity,

thereby causing excitatory and inhibitory imbalance.

In addition, the clinical findings were similar to the

behavioural phenotypes observed in mice. Forexample, patients

with SYNGAP1þ/2 reported delated psychomotor symptoms

and developmental delays [127–129]. They also manifested

reduced seizure threshold and increased chances of epilepto-

genesis [124,129–131]. Identification of different splice

variants of the SYNGAP1 gene in patients would help to under-

stand the implication of this gene mutation in humans and the

translational success of studies done in rodents [132,133].

5.1.2. Synaptic function and morphology

SYNGAP1 protein has been shown to regulate postsynaptic

cytoskeletal changes and AMPA receptor trafficking onto the

surface of the postsynaptic membrane [86]. It was reported

that Syngap12/2 mice died within a week of their birth,

while the survival of Syngap1þ/2 mice was similar to WT

[86]. The latter further showed a reduction in LTP in compari-

son with the WT littermates, suggesting impaired learning

and memory abilities [86]. Non-viability of the Syngap12/2

mice has been attributed to increased apoptosis as a result of

CASPASE-3 activation [134]. This could explain the reasons

for not identifying any homozygous mutations in human

patients, to date, and corroborates well with the preclinical

mouse model, suggesting its impact on translational research.

Syngap1þ/2 mice, on the other hand, exhibited premature

spine maturation, leading to an overall increase in neuronal

excitability [87]. Research has also pointed out the involvement

of SYNGAP1 in the ACTIN-mediated steady-state regulation

of spine morphology, which is necessary for spine maturation

[135]. Clement et al. [88] confirmed the association of behav-

ioural abnormalities with premature spine maturation in the

hippocampus. They observed a higher number of mush-

room-shaped spines and a lesser number of stubby spines at

the beginning of the second post-natal week in comparison

with the WT littermates [88]. This confirmed the role of

SYNGAP1 in the control of cytoskeleton rearrangement and

spine maturation. A follow-up study went on to suggest the

crucial role of SYNGAP1 during the critical period of develop-

ment [136]. Apart from early spine maturation as previously

reported, somatosensory neurons in the Syngap1þ/2 mice

showed adult neuron-like characteristics, including increased

arbour complexity, total length and occupational volume

[19]. Similar observations were made in another report,

which studied the development of layer II/III of the medial

prefrontal cortex (mPFC) in Syngap1þ/2 mice. They found
an elevated AMPA/NMDA ratio during the early stages of

development, which was correlated to the prematuration of

excitatory synapses in the cortex [136].

Maturation of the spines from filopodia to mushroom-

shaped requires un-silencing of synapses mediated by an

increase in the insertion of AMPA receptors. This change

leads to an increase in the level of basal synaptic trans-

mission, which has already been discussed in detail

elsewhere [137]. It was initially demonstrated that the basal

synaptic transmission remained unaffected in the adult

Syngap1þ/2 mice. However, a follow-up study by Clement

et al. [88] showed that AMPAR-mediated currents increased

in P14–16, equivalent to that of WT, but otherwise remained

unchanged in young (P7–9) and adult mice [88]. This

suggested that the alteration in the insertion of AMPA recep-

tors could lead to changes in the excitatory and inhibitory

balance and altered the critical period of development

which eventually causes various behavioural defects as

reported by patients with SYNGAP1þ/2.

As a part of the NMDAR-mediated signalling pathway, a

heterozygous mutation in Syngap1 may impair the NMDAR-

mediated current. However, it remained unaffected when

NMDAR-mediated currents were measured from different

stages of development, suggesting a role for Syngap1 in

synapse formation and function without altering the charac-

teristics of NMDARs [138]. An in vitro study performed

later went on to show an increase in the amplitude and fre-

quency of the mEPSCs as a result of an increase in the

number of AMPA receptors at the post-synapse and, hence,

the surge in the AMPAR-mediated current [87]. In a similar

study done in vivo, comparable results were obtained,

though only at the P14–16 stages [88]. These studies further

suggested that an increase in the AMPA/NMDA ratio at

P14–16 in Syngap1þ/2 mice correlated with an increase in

the number of functional synapses in the hippocampus.

Experiments involving other areas of the brain such as

mPFC have also yielded similar results with an overall

increase in glutamatergic activity [119].

As a result of increased basal synaptic transmission and

excitability due to increased AMPA receptor insertion at the

post-synapse, LTP generation and maintenance were

impaired in the adult Syngap1þ/2 mice [86,119,138]. On the

other hand, the effect of Syngap1þ/2 on LTD induction has

been studied less extensively. Acute application of NMDA

had been widely used to induce LTD in acute brain slices

[139]. The same protocol when used in Syngap1þ/2 mice

yielded poor maintenance of the LTD in comparison with

the WT control animals where stable LTD was maintained

throughout the experiment [135]. Nevertheless, the paired-

pulse protocol used elsewhere did not show significant differ-

ences in LTD induction in Syngap1þ/2 mice, which suggests

that the release probability was not affected by SYNGAP1

and it was an altered function of post-synapses [86]. To

study the role mGluR-mediated LTD, Barnes et al. [18] stimu-

lated group I mGluRs with dihydroxyphenylglycine (DHPG)

in the hippocampus and showed mGluR-LTD was signifi-

cantly increased independent of protein synthesis in

Syngap1þ/2 mice at PND 25–32. Our unpublished data, at

the time of writing this review, further confirmed that

increased mGluR-LTD is persistent in adulthood. How-

ever, the mechanisms of how SYNGAP1 regulates

mGluR-LTD are yet to be elucidated. One of the possible

mechanisms proposed by Barnes et al. suggests the
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presence of convergence in the biochemical signalling

pathway downstream of mGluR- and NMDAR-mediated

signalling proteins, although this needs to be further

investigated in detail.

5.1.3. Biochemical pathways and their alteration in the SYNGAP1
haploinsufficiency

SYNGAP1 is a postsynaptic protein that is downstream of

NMDA receptors and the postsynaptic scaffolding protein

PSD-95 [10]. It negatively regulates RAS-GTPase activity,

thereby regulating the insertion of AMPARs at the post-

synapses [10]. Furthermore, its activity is regulated by the

phosphorylation of CaMKII [10]. Based on these initial find-

ings, the possible phosphorylation sites of SYNGAP1 were

recognized, and the levels of phosphorylation increased acti-

vation of NMDARs [140]. Studies performed using
Syngap1þ/2 mice to identify the signalling cascades down-

stream of SYNGAP1 demonstrated that it is a negative

regulator of extracellular signal-regulated kinase/mitogen-

activated protein kinase (ERK/MAPK) signalling and a

positive modulator of the p38–MAPK signalling pathway,

thereby regulating activity-induced synaptic plasticity

(figure 2 compares the signalling mechanisms impaired in

different mutations in ID that are discussed in this review)

[138,141]. Additionally, the activity of proteins such as p21-

activated kinase [27], RAC and p-Cofilin, which are regulated

by the SYNGAP1, were also elevated in Syngap1þ/2 mice

under the basal conditions [135]. Thus, SYNGAP1 regulates

spine morphology and function by modulating cytoskeletal

dynamics. It was clear from these studies that the signalling

pathways downstream of NMDARs were impaired in

Syngap1þ/2, causing various sensory, cognitive and social

deficits as observed in patients.
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5.1.4. The critical period of plasticity
Syngap1 is shown to have a developmentally regulated

expression in mice wherein the expression peaks at PND14

and stabilizes subsequently. In Syngap1þ/2, at PND14–16,

the SYNGAP1 expression was half of that of WT. Electro-

physiological studies in acute hippocampal brain slices have

shown an increased AMPA/NMDA ratio which was further

corroborated by an increased number of mushroom-shaped

spines at PND14, increased basal synaptic transmission and

increased mEPSC and mIPSC (increase in amplitude and fre-

quency, which suggests that the number of functional

AMPAR/GABAR, respectively, in the post-synapse) at

PND14 in Syngap1þ/2 when compared with WT (matures

at PND21) [88]. Overall, this study suggests that early matu-

ration of dendritic spines, which indirectly illustrates the

altered critical period of plasticity and development in

Syngap1þ/2. Clement et al. in 2012 [88], using the conditional

Cre-lox system to create haploinsufficiency of SYNGAP1,

measured AMPA/NMDA in neonatal and young adult

mice. Surprisingly, they observed that the AMPA/NMDA

ratio in Syngap1þ/2 young adults was the same as WT

adults, which contradicts increased AMPA/NMDA for neo-

natal mice. This study further confirms that the critical

period of SYNGAP1 protein function is in the first two

weeks of hippocampal development. In 2013, a similar

study [136] by the same group demonstrated an altered criti-

cal period of development in mPFC and thalamocortical

connections in Syngap1þ/2 during development, further vali-

dating early excitatory synaptic maturation in mPFC and,

thereby, restricting the duration of the critical period of plas-

ticity window [136]. This study further suggests that, owing

to a mutation in Syngap1þ/2, an altered critical period of

plasticity and early maturation of dendritic spine structures

might prevent remapping of connections, particularly to

any experience, during development. In a study by Aceti

et al. [19], tracking of dendritic arborization in the somatosen-

sory cortex in Syngap1þ/2 at PND21 unveiled several adult-

like features of neurons, such as higher order branching, arbor-

ization and adult-like dendritic length, suggesting early

maturation of neurons [19]. A filopodia to spine structure tran-

sition is often associated with functional remapping of sensory

circuits in response to experiences [142]. Whisker deprivation

indicated a 2.5-fold increase in filopodia density at PND21 in

WT which was absent in Syngap1þ/2; this further suggests

a limited capacity to organize cortical circuits or remapping

cortical circuits in Syngap1þ/2. To further study the develop-

mental regulation of SYNGAP1 and early maturation of

neuronal spines, Aceti and group did genetic rescue by induci-

ble Cre-allele post-critical period. Different behavioural

phenotypes such as risk-taking, novelty-induced hyperlocomo-

tion and long-term memory were rescued in neonatal mice

(tamoxifen injected in PND1), whereas the young adult

(PND21) counterpart showed partial rescue of brain dysfunc-

tion in Syngap1þ/2 [19]. Overall, these studies suggest that

there is indeed a heightened period of development and plas-

ticity of SYNGAP1 protein in different brain regions within the

critical period window, which is irreversible in Syngap1.

5.2. FMR1
Fragile X syndrome is the most common monogenic form of

ID [143,144]. It is an X-linked disorder [145] and, therefore,

generally affects males more prevalently (1 in 4000) than
females (1 in 8000) [146,147]. It is caused by the loss of func-

tion of the fragile X mental retardation protein (FMRP) [148].

The absence of FMRP is most often the result of transcrip-

tional silencing of the locus containing the FMR1 gene

[149]. Typically, the FMR1 gene consists of a polymorphic

repeat region present in the 50-UTR (untranslated) non-

coding region of the FMR1 gene [148,150]. It consists of a

stretch of trinucleotide CGG repeats that varies between six

and 54 in normal alleles [150]. Such trinucleotide repeats

were found to be susceptible to expansion and contraction

events during the process of DNA replication [151,152].

When this region consists of more than 200 trinucleotide

repeats, it leads to epigenetic silencing owing to hypermethy-

lation of the repeat region, and the neighbouring CpG islands

present in the promoter region leading to heterochromatin

formation [149,153–156]. The formation of condensed hetero-

chromatin in this region creates a microscopically visible

constriction in the corresponding site on the X-chromosome,

from which the disease derives its name [148,157]. Alleles

containing 54–200 CGG repeats do not lead to silencing

but are more likely to expand further and, thus, are termed

pre-mutations [158]. Although pre-mutations do not cause

fragile X syndrome, they were found to be responsible for

causing fragile-X-related disorders such as fragile-X associ-

ated tremors/ataxia syndrome (FXTAS) [159,160] and

fragile X-related primary ovarian insufficiency (FXPOI)

[161,162] (box 1).

Other than having an ID, patients with fragile X syn-

drome exhibit a range of morphological abnormalities such

as macroorchidism (enlarged testis), macrocephaly, elongated

face, prominent jaws and forehead, and a highly arched

palate and contain loose connective tissue leading to highly

extendable joints, flat feet and soft skin [163–165]. To further

understand the pathophysiology and aetiology of this

disorder, the most commonly used mouse model is the

Fmr1-KO mouse, which was first developed in 1994 [166].

5.2.1. Behavioural changes associated with Fmr1 mutation

Patients with fragile X syndrome display a variety of neurop-

sychiatric symptoms that mainly include cognitive deficits,

delayed language development, hyperactivity, social anxiety,

impulsivity and a subset of autistic behaviours such as stereo-

typic and repetitive behaviour, shyness, poor eye contact and

hypersensitivity to sound. Other than ID/ASD, fragile X syn-

drome frequently co-occurs with additional neuropsychiatric

disorders such as epilepsy, sleep disorders and ADHD

[163,164,167–171].

Numerous studies have been performed to study the

emergence and nature of behavioural characteristics in the

Fmr1-KO mouse model. Various types of fear-conditioning

studies that test memory (hippocampus, amygdala and

mPFC dependent) have revealed mild impairments in

Fmr1-KO mice [172–176]. Additionally, in the Morris water

maze test, which requires intact long-term hippocampus-

dependent memory, Fmr1-KO showed learning deficits

during the phases of acquisition and reversal memory

[166,177]. Fmr1-KO mice failed to discriminate during the

novel object recognition task, a well-established short-term

memory task [178,179]. Additionally, Fmr1-KO mice

showed exaggerated inhibitory (passive) avoidance extinc-

tion, demonstrating impaired emotional memory processing

[173,180–182]. Thus, the Fmr1-KO mice were found to



Box 1. Mechanism of trinucleotide expansion.

Although the mechanism is unknown, it is thought to occur as a result of the formation of secondary hairpin loop structures

by these repeats in the daughter strand. During replication, DNA polymerase synthesizes a new complementary strand of

DNA along the original parent strand, which then bind to each other. When a long stretch of DNA has newly synthesized
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structure, leaving the just-copied parent strand unbound. As a result of this gap, the DNA polymerase slips back and re-repli-

cates the same sequence. In this manner, the daughter strand now contains an extra set of trinucleotide repeats, i.e. expansion

takes place [151].
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display various forms of memory impairments and cognitive

deficits such as increased locomotor activity, anxiety, poor

communication based on the ultrasound test, repetitive be-

haviour, defective sensory motor gating and seizures and to

prefer social isolation [166,173,183–192]. Fmr1-KO mice

further showed increased stereotypic and repetitive beha-

viours as observed from self-grooming [186,193] and

marble-burying tendencies [194]. Based on these studies, it

is evident that the biochemical, molecular, physiological

and behavioural findings in mice are similar to phenotypes

observed in human patients. Therefore, many of the Fmr1
mouse models are useful tools to study the effect of mono-

genic mutations in pathophysiology and synaptic deficits as

well as behaviour, and can be a potential preclinical model

to find novel therapeutic targets [195,196]. However, caution

should be shown to determine a suitable mouse model as it

should fulfil the criteria discussed in the animal model

section earlier.

5.2.2. Synaptic function and morphology

During development, spine morphology gradually changes

from thin, motile immature, elongated spines to larger,

more stable, mature, stubby, mushroom-shaped spines

[197–199]. Golgi staining of post-mortem brain tissue of

patients with fragile X syndrome revealed dysgenesis in the

spine morphology. Neurons in these tissues showed

increased spine density, most of which were thin and

elongated, indicating an immature spinal phenotype [200].

A similar observation was made in neurons from multiple

cortical areas [201]. Fmr1-KO mice also exhibit a similar

spine morphology such as the increased density of thin,

long, immature spines in many cortical regions and the hip-

pocampus [202,203]. This change in the spines may result

from impaired synaptic turnover and maturation of spines

during development, leading to retention of an immature

spinal phenotype during the adult stages [204]. Studies

have indeed found that increased spine turnover fails to

decrease after the first two weeks of post-natal development

and persists until four weeks of age, and even until adult-

hood [205,206]. The number of mature dendritic spines

(those opposed to pre-synapse) is also reduced in Frmr1-KO

mice [207]. This general lack of spine maturation is

corroborated using electrophysiological evidence [208,209].

The morphology of spines correlates with the functional

properties of synapses such as plasticity. Studies of basal

synaptic transmission in Fmr1-KO mice did not show any

difference in mEPSC amplitude [210], input–output (IO)

curve or paired-pulse ratios (PPRs). However, a difference

was observed in evoked spontaneous events, indicating that

knockdown of FMRP does not change intrinsic synaptic
electrophysiological properties, but reduces or delays the

number of functional synaptic connections [210]. Fmr1-KO

mice also showed a reduced AMPA/NMDA receptor ratio

during the developmental stages [209,211]. Concerning

plasticity, Fmr1-KO mice exhibited enhanced group I

mGluR-dependent LTD [212]. However, no impairments

were observed in NMDAR-mediated LTD [213].

On the other hand, NMDAR-mediated LTP was impaired

in many cortical areas of Fmr1-KO mice. In the hippocampus,

NMDAR-mediated LTP induced by theta-burst stimulation

was also reduced in Fmr1-KO mice [214–218]. Both mGluR-

mediated LTD and sustained theta-burst-mediated LTP

require local synaptic protein synthesis, showing that FMRP

may play a role in the regulation of synaptic protein syn-

thesis. Large-scale forms of plasticity such as homeostatic

plasticity have also been reported to be impaired in Fmr1-
KO mice [219,220]. Other than glutamatergic synaptic

impairments, Fmr1-KO mice further show reduced dopa-

mine- [221] and GABAR-mediated signalling, and the

number of GABARs were altered in Fmr1-KO mice [222].

These alterations in GABAR cause aberrant GABAR-

mediated signalling, contributing to an altered E/I balance

[223–226]. These studies suggest that the impaired group I

mGluR-mediated protein synthesis and altered E/I balance

lead to the decreased seizure threshold and learning and

memory deficits observed in patients.

Impaired synaptic morphology and function may lead to

abnormal neuronal circuit phenotype and subsequent beha-

viours. The E/I balance is altered in Fmr1-KO mice [226]. In

general, reduced inhibition and increased excitation levels

were observed in these mice, corroborating the increased sus-

ceptibility to seizures and epileptogenesis [90,227–229].

Thus, these alterations in the spine morphology and synaptic

function could lead to ID and ASDs in human patients.

5.2.3. Biochemical pathways

The FMR1 gene present at locus Xq27.3 in humans codes for

the FMRP protein [148]. FMRP was found to be majorly

expressed in the brain and testes [230]. It consists of three

RNA binding domains—two of which are K homology

domains (KH1 and KH2), the third being the RGG (argi-

nine–glycine–glycine) domain [231,232]. Thus, FMRP binds

to RNA and regulates many of its dynamics. FMRP binds

to almost approximately 4% of the neuronal RNA population

and regulates the expression of their proteins, thereby affect-

ing many neuronal and synaptic properties [231,232]. Once

bound to mRNA, FMRP negatively regulates its translation

[233]. This is hypothesized to take place by one or a combi-

nation of three mechanisms: (i) FMRP binds to secondary

G-quadruplex structures in mRNA, stalling ribosomes
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[234–237]; (ii) FMRP recruits CYFIP-mediated inhibition of

translation [238]; and (iii) FMRP recruits inhibitory miRNA

containing AGO2 (Argonaute 2) complex to the mRNA, lead-

ing to RNA-induced silencing complex (RISC)-induced

silencing [239–242]. FMRP additionally has nuclear import

and export signals [243]. FMRP has been reported to bind

mRNA in the nucleus and regulate RNA’s transport to den-

dritic spines [244,245]. Finally, the two tandem Agenet

domains were found to recognize trimethylated serine resi-

dues, and, thereby, have been reported to interact with

histones and modify chromatin dynamics in the nucleus

[245,246]. It is evident from these studies that FMRP binds

to different RNA domains, thereby regulating the strength

of synapses in response to a stimulus.

An important physiological function of FMRP in neurons

is the activity-dependent group I mGluR-mediated repression

of local protein synthesis in dendritic spines [247]. FMRP, in

its phosphorylated form, represses translation [248,249]. Neu-

rotransmitter-mediated activation of group I mGluRs leads to

the activation of a phosphatase PP2A which dephosphory-

lates FMRP [250]. This change in PP2A leads to removal of

FMRP from the mRNA, enabling local protein synthesis of

various plasticity-related proteins, including those involved

in AMPAR endocytosis [249,251,252]. On a slower time

scale, mGluR activates mTOR, which, in turn, inactivates

PP2A and activates S6 kinase, leading to re-phosphorylation

of FMRP and repression of translation [253,254]. Thus, knock-

out of Fmr1 leads to elevated levels of protein synthesis,

causing dendritic spine dysmorphogenesis and impaired

mGluR-mediated LTD [161,255]. In conclusion, such changes

at the biochemical and molecular level impacts synaptic

function and behaviour.

5.2.4. The critical period of plasticity

The critical period of plasticity is often found to be disrupted

in many of the NDDs. One of the first studies in the somato-

sensory cortex by Harlow et al. [256] has shown the

impairment of the critical period of plasticity in the Fmr1-

KO mouse model. Behaviourally, Fmr1-KO mice showed

altered sensory processing, as discussed above. Previous

studies have shown an abundance of long thin immature

dendritic spines in the somatosensory cortex [257,258]. How-

ever, these observations were correlative and unclear

regarding the mechanism for various behavioural abnormal-

ities. Using voltage clamp recordings, Harlow et al. [256]

measured the ratio of NMDAR- and AMPAR-mediated cur-

rent (NMDA/AMPA ratio) from the spiny stellate cells of

the somatosensory cortex. In WT mice, the NMDA/AMPA

ratio decreased progressively from PND4 to PND7, marking

the closure of the critical period, whereas in Fmr12/Y mice the

NMDA/AMPA ratio increased between PND4 and P7 and

returned to the WT level at PND10–14 [256]. In addition,

loss of LTP induction was shown to be a manifestation of

the closure of the critical period in the somatosensory

cortex [63], which was delayed in Fmr12/Y mice [256].

These data suggest a delay in the maturation of the thalamo-

cortical synapses in fragile X syndrome, which could be the

reason for impaired sensory processing, learning and

memory. Along the same lines, altered ocular dominance

plasticity in the visual cortex of Fmr12/Y mice was shown

by measuring visual evoked potentials (VEPs) [182,259].

Later, a maladaptive auditory response manifested by
patients with fragile X syndrome and in Fmr1-KO animals

was shown to be a result of the impaired critical period of

plasticity in the primary auditory cortex [229]. In conclusion,

alteration in the critical period of synaptic plasticity is a sig-

nificant contributor to the behavioural and synaptic

pathophysiology, which may prevent neuronal remapping

in the fragile X syndrome.

5.3. MeCP2
X-linked heterozygous mutations in methyl CpG binding
protein 2 (MeCP2) has been shown to cause Rett syndrome

(RTT) in humans [260–263]. MeCP2 has one of the longest

known 30-UTRs of the human genome and contains four

exons [264]. It is believed that the diverse and complex func-

tion of MeCP2 partly lies in its 30-UTR. Studies have shown

that different polyadenylation signals also bring changes in

the expression pattern of MeCP2 [265].

5.3.1. Behavioural alterations

Studies have shown that approximately 1 in 10 000 females is

affected by RTT [266–268]. Studies on human patients

between 7 and 18 months of age showed phenotypes of dete-

riorated higher cognitive and social functions, stagnancy of

brain development, severe dementia, autism, ataxia and

repetitive hand movements [266–268]. Constitutive MeCP2
hemizygous KO and conditional KO mouse models showed

motor deficits such as improper gait, hindlimb clasping, irre-

gular breathing [98] and microcephaly [98,269], and did not

survive for more than 12 weeks after birth. Apart from the

motor and social impairment, a mouse model of Mecp2 also

manifested impaired hippocampus-dependent spatial

memory, and contextual fear memory [270]. Post-mitotic

neuron-specific KO and overexpression of Mecp2 displayed

a similar phenotype to patients with RTT. These animals

showed deficits in motor behaviour, an increase in anxiety-

related behaviour, impaired social interaction and alteration

in learning and memory [269,271]. In addition, a C-terminal

deletion mouse model of MeCP2 also displayed a similar

kind of phenotype, with impaired motor learning, social def-

icits and epileptic seizures [272]. All these results describe

successful representation of RTT in mouse models, opening

the possibility for effective pre-clinical studies.

5.3.2. Synaptic function and morphology

Post-mortem studies from patients with RTT revealed

reduced axonal and dendritic processes and decreased den-

dritic spine density in CA1 pyramidal neurons [273,274]. A

similar phenotype, i.e. reduced neuronal soma size and

decreased dendritic arborization, was observed in the cortical

pyramidal neurons of layer II/III of the MeCP2 null mouse

[275]. Thus, reduced complexity and size of the neurons

could be one of the underlying reasons for the impaired be-

havioural phenotypes in the animal models similar to the

patients. Considering the function of MeCP2, it can be specu-

lated that dysregulation in the expression of many genes such

as Bdnf, which is important for neuronal growth, may lead to

altered neuronal morphology in Mecp2 mutant mouse

models. However, a mouse model overexpressing MeCP2
had shown similar spine morphology to the MeCP2 null

mouse and patients with RTT. This study suggests that the
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excess level of the protein affects the synaptic functions,

which, in turn, may lead to learning and memory deficits

[276].

Patients with RTT show cognitive deficits, which could be

due to impairment in the synaptic functions [266–268].

Synaptic functions were altered in the MeCP2 mutant

mouse models, consistent with the structural and behavioural

alterations [277–279], thereby causing E/I imbalance. In

addition, modification in basal synaptic transmission has

resulted in impaired hippocampal LTP, not only in KO but

also in knockin studies [270,279,280]. It is clear from these

studies that any fluctuation in the level of MeCP2 can alter

not only behaviour but also synaptic function.

5.3.3. Biochemical pathways

MeCP2 regulates transcription through DNA methylation

and histone acetylation. As the name suggests, it binds to

the methylated cytosine residues on DNA through its

methyl CpG binding domain (MBD) [281–283]. Another

domain, the transcriptional repression domain (TRD), inter-

acts with HDACs and mSin3a to regulate transcription of

the downstream genes [281]. These proteins act as a corepres-

sor of transcription. Therefore, the interactions are necessary

to bring about transcription regulation through MeCP2.

MeCP2 is shown to regulate many genes such as Bdnf,
Dlx5, Dlx6, Reln and Ube3A, which are crucial for neuronal

maturation and development, and the protein product is

enriched in synapses [284–287].

MeCP2 is a master regulator of the transcription that

regulates the neuronal maturation process by controlling

the expression of the genes mentioned above. Besides its

role in transcription regulation, MeCP2 has been shown to

localize in heterochromatin by associating with chromatin

remodelling complexes such as SWI/SNF, ATRX and histone

methyl-transferase [282,288–291]. Association of MeCP2 with

these different complexes allows the possibility of a global

role in the regulation of gene expression. For a detailed

review of the biochemical functions of MEPC2, please refer

to Singh et al. [292] and Guy et al. [293].

Therefore, MeCP2, being a transcription regulator, regu-

lates the expression of a wide array of synaptic plasticity-

related genes. Hence, it modulates the neuronal/synaptic

function which is crucial for healthy brain functions. How-

ever, a perturbation in MeCP2-mediated regulation due to a

pathogenic mutation alters synaptic function and behaviour,

resulting in RTT-related pathophysiology.

5.3.4. The critical period of plasticity

MeCP2 is required at different stages of brain development

from increasing dendritic complexity to synaptogenesis and

astrocyte maturation. Disrupting MECP2 at any of these

stages has been linked to RTT-like phenotypes [294]. The

maturation of the cortical GABA inhibitory circuitry, particu-

larly parvalbuminþ (PVþ) fast-spiking interneurons, is a key

regulator for the initiation and termination of the critical

period. MECP2 KOs exhibited accelerated functional matu-

ration of PV interneurons, which correlated with a

precocious onset and closure of the critical period and

deficient binocular visual function in mature animals [99].

The findings to validate the role of MeCP2 in the critical

period came from another study which observed that
specific Mecp2 deletion in GABAergic PV cells abolished

the visual experience-dependent plasticity during the criti-

cal period in post-natal development of the visual cortex,

while conditional Mecp2 deletion in somatostatin-

expressing GABAergic cells or glutamatergic pyramidal

cells had no such effect [295]. Their study demonstrated

that, during the critical period, selective deletion of the

RTT-related gene Mecp2 in GABAergic PV neurons could

result in defective inhibitory PV neuronal circuits in the

developing visual cortex, which leads to the absence of

experience-dependent critical period plasticity [295].

5.4. SHANK
SH3 and multiple ankyrin repeat domain proteins (SHANKs),

also known as ProSAPs, are a family of post-synaptic scaffold-

ing proteins present in the excitatory glutamatergic synapses

[296]. Being a primary scaffolding protein, SHANKs organize

other proteins in the synapse. Thus, they are essential for

normal neuronal development and function [297]. Mutations

in different Shank genes (SHANK1, SHANK2 and SHANK3),
especially SHANK2 and SHANK3, are associated with ASDs

[298], and co-occurrences with ID [299]. A recent meta-analysis

study has proposed that around 1% of all patients with ID/

ASDs had a mutation in SHANK genes [300]. Thus, it is vital

to understand the pathophysiology of such mutations to

develop the correct treatment.

5.4.1. Behavioural alterations

A study on the Shank1 null mouse model showed reduced

social interaction (social sniffing), reduced ultrasonic vocali-

zation, increased self-grooming and repetitive behaviour,

enhanced spatial learning and impaired fear conditioning

[301,302]. Although deletions in exons 6–7 and 7 of Shank2
mouse models showed contradictory deficits in the synaptic

functions, comparable behavioural phenotypes were seen.

Both the mouse models displayed increased locomotor

activity, increased anxiety-like behaviour and impaired

social behaviour [303,304]. However, exon 7 deletion of

Shank2 resulted in increased self-grooming but normal

working memory [304].

A mouse model of Shank3 with exon 4–9 deletion showed

impaired social behaviour, reduced ultrasonic vocalization,

increased self-grooming and impaired novel object recog-

nition [107,305]. Other models of Shank3 mutation

displayed similar behavioural deficits, which are summar-

ized in table 1. Thus, it is evident that the mouse models

for different Shank mutations can represent many of the

behavioural deficits observed in humans.

5.4.2. Synaptic function and morphology

Mutation in the PDZ domain of Shank3 showed reduced den-

dritic spine density during maturation, whereas mutation in

the Ank and Sh3 domains led to a reduced spine head

volume [306]. Therefore, SHANK3 plays an essential role in

dendritic spine maturation and morphology. An in vitro
study using cultured rat neurons showed impairment in

mGluR5-dependent plasticity and signalling, demonstrating

the importance of SHANK3 downstream to mGluR5-

mediated signalling [307]. A mouse model of Shank1 exhib-

ited reduced basal synaptic transmission, whereas LTP and



royalsocietypublishing.org/journal/rsob
Open

Biol.9:180265

14
LTD were not altered [302]. On the contrary, opposing effects

were observed when exon 6–7 and exon 7 were deleted from

Shank2, suggesting that there may be a possibility for an iso-

form/transcript-specific function of this gene, but it is unclear

whether splice variation has any implications for human

patients. A study by Schmeisser et al. [304] showed reduced

spine density and synaptic transmission in the CA1 region

of the hippocampus when exon 7 was deleted. In addition,

a decreased I/O ratio and mEPSC frequency were seen in

the exon 7 deletions, suggesting an impairment in pre-synap-

tic neurotransmitter release upon exon 7 deletion. I/O is the

measure of basal synaptic transmission, indicating a corre-

sponding output to every input provided to a neuron. In

contrast to the increased NMDA/AMPA ratio in exon 7

deletion, decreased NMDA/AMPA was observed in the

exon 6–7 deletion model of Shank2 mutation [303,304].

Again, these observations show that the different exons in

the gene might have opposite effects on the synaptic functions.

A Shank3 mouse model with exon 4–9 deletion had

severe defects in synaptic function. For example, activity-

mediated spine remodelling was impaired in the

hippocampal CA1 region, leading to learning and memory

dysfunctions. AMPAR functions were affected in these

mouse models, which was manifested by reduced AMPAR-

mediated basal transmission. However, the study showed

that the decreased mEPSC amplitude was accompanied by

a subsequent increase in mEPSC frequency. The increase in

mEPSC frequency suggests an impairment in the level of

pre-synaptic function or an increase in the number of func-

tional synapses. Owing to impaired AMPAR-mediated

synaptic function, LTP was reduced significantly. These

results can be corroborated with impaired learning and

memory observed in patients. However, no change in

NMDAR- and mGluR-mediated LTD was observed in

these mouse models [107,305]. These data reiterate the fact

that SHANK3 plays an essential role in synaptic signalling

and function. Also, the data indicate the role of SHANK3

not only in mGluR-mediated signalling but also in

AMPAR-mediated synaptic transmission. Several other

mouse models of Shank3 show deficits in different synaptic

functions and are summarized in table 1.
5.4.3. Biochemical pathways and signalling

SHANK proteins are postsynaptic scaffolding proteins associ-

ated with the PSD complex in excitatory glutamatergic

synapses [308–310]. Structurally, the SHANK family of pro-

teins consists of five distinct motifs/domains: ankyrin

repeat domain (ANK), Src homology 3 (SH3) domain, PSD-

95/disc-large/ZO-1 (PDZ) domain, proline-rich (Pro) and

sterile alpha motif (SAM) domain [311]. Studies that have

taken place over decades have identified at least 30 proteins

interacting with SHANK proteins, including different recep-

tors, ion channels, cytoskeletal proteins and signalling

molecules [297,307,308,312–314]. A study on Shank3 KO

showed an alteration in the mGluR5-HOMER scaffolding

that in turn affected the neuronal connections in the brain

[315]. However, knockdown of Shank3 led to decreased

mGluR5-mediated phosphorylation of ERK1/2 and CREB

[307]. These independent observations link the importance

of SHANK3 in mGluR5-mediated signalling and, in turn,

are associated with regulation of synaptic functions.
Mouse models of the Shank1 mutation showed a decreased

synapse-associated protein-90/postsynaptic density-95

associated protein (SAPAP), guanylate kinase-associated

protein (GKAP) and HOMER protein level in the PSD complex

[302]. Exon 6–7 deletion in the Shank2 model showed reduced

phosphorylation of calcium/calmodulin-dependent kinase II

(CaMKII), extracellular signal-regulated kinase (ERK) and

the AMPAR subunit, GluA1, but increased expression of the

NMDAR subunit, GluN1 [303]. Deletion of exon 7 from

Shank2 increased NMDAR subunit, GluN2B, expression in

the hippocampus, whereas, in the striatum, GluN1, GluN2A,

SHANK3 and GluA1 levels were increased [304]. These data

show that there could be a different function for SHANKs in

different brain regions. Also, by modulating the expression

of different NMDAR subunits, synaptic properties involved

in learning and memory were modulated by different

SHANKs. Studies from a mouse model of Shank3 with exon

4–9 deletion showed a robust reduction in the level of

GluA1 subunit [107,305]. Shank3 knockdown in cultured hip-

pocampal neurons showed reduced expression of mGluR5 but

not NMDAR or ERK [307], whereas analysis from the striatal

PSD fractions of the Shank3B2/2 mouse model showed a

decreased level of NR2A, NR2B, GluA2 and HOMER [108].

However, other mouse models of Shank3 also show related

biochemical alteration (table 1). Based on the studies above,

it is evident that the SHANK family of proteins have diverse

roles in cellular signalling at different brain regions. In con-

clusion, the SHANK family of proteins differentially

regulate synaptic function by modulating different receptor

subunit expression, and, thus, regulate neuronal function,

learning and memory, and behaviour.

5.4.4. The critical period of plasticity

An in vivo study has shown that loss of Shank3 led to impair-

ment in the ability of visual cortical circuit recovery following

sensory input deprivation [316]. Also, the homeostatic plas-

ticity of neuronal circuits was disrupted in the Shank3 KO

model, which hints towards perturbation of the critical

period in Shank3 mutation [316]. However, using a

conditional knockin mouse model, Mei et al. [317] showed

re-expression of SHANK3 in adulthood restored spine den-

sity and synaptic functions in the striatum. Repetitive

grooming and impaired social interaction were improved,

whereas no improvement was seen in anxiety-like behaviour

and motor behaviour [317]. From these studies, we can

speculate that there was no major effect of Shank3 pertur-

bation on the critical period of development. However,

another possibility could be delayed closure of the critical

period, which may persist until adulthood in the Shank3
KO, but this is unclear. This may explain the partial rescue

of behavioural phenotypes observed after restoring Shank3
expression in adulthood.

5.5. Neuroligins
For almost two decades, it has been known that, to hold a

particular synapse together for communications between

neurons to occur, there are synaptic adhesion molecules

such as NEUROLIGINS present in the post-synapse

[318,319], and NEUREXINS, present in the pre-synapses,

are known to hold a particular synapse together [320–322].

Mutations in NEUREXIN and NEUROLIGIN genes increase



royalsocietypublishing.org/journal/rsob
Open

Biol.9:180265

15
the likeliness of affecting synapse formation, as well as func-

tion [318,319,323,324]. NRXN1, NRXN2 and NRXN3, in

mammals encode for NEUREXINS, a-NEUREXIN and

b-NEUREXIN, depending on their promoters [320,321]. NEU-

ROLIGINS generally interact with b-NEUREXIN isoforms

[318]. NEUROLIGINS, on the other hand, are encoded by

five genes, NLGN1, NLGN2, NLGN3, NLGN4 and NLGN4Y,

in humans [318,319,325,326]. Based on immunostaining and

biochemical analysis, subcellular localization of NLGN1

was found to be present at the excitatory synapses, and

the expression level is low at birth but increases during

post-natal days 1–8 and remains relatively high in later

stages of development in mouse [323]. NLGN2 and

NLGN4 were shown to be expressed in inhibitory

synapses [327,328], whereas NLGN3 was expressed in

both excitatory as well as inhibitory synapses [329]. With

the help of different binding partners, such as PSD-95

[330], MAGUK [331] and GluN1 [332] at excitatory

synapses and GEPHYRIN [242,327] and COLLYBISTIN

[333,334] at inhibitory synapses, all NEUROLIGINS are

required to maintain synapse number/density and to

regulate maturation and differentiation of synapses.

NEUROLIGINS were recognized to induce the formation

of functional synapses in early 2000. These studies, using

non-neuronal cells expressing NEUROLIGIN, revealed that

NLGN1 and NLGN2 alone could trigger the formation of

pre-synaptic structures such as clustering of synaptic vesicles

in the axon terminals of central nervous system (CNS) neurons

[335]. The role of NEUROLIGINS was further validated by dis-

secting functional characteristics, such as NMDAR-mediated

excitatory postsynaptic currents and NMDAR-dependent

LTP, which are a cellular correlate of learning and memory

[336,337]. This study suggests a vital role of NEUROLIGINS

in learning and memory. Moreover, Varoqueaux et al. [338]

have shown that the Neuroligin mouse model dies after birth

due to a reduced neuronal network activity and reduced gluta-

matergic and GABAergic synapse formation/function

resulting in respiratory failure [338], suggesting the importance

of NEUROLIGINS not only in synapse formation and

maturation but also in neuronal function. In vitro electrophysio-

logical studies have shown altered mIPSC amplitude as well as

frequency, suggesting a reduced number of functional GABA

receptors at the post-synapse resulting in altered E/I. Further-

more, decreased excitatory and inhibitory synapses were

observed in the downregulation of NLGN1 and NLGN2

[339]. The introduction of exogenous NLGN increased both

mEPSCs and mIPSCs indicates an increase in excitatory and

inhibitory synaptic function (increased number of functional

AMPAR and GABAR in the post-synapse, respectively) [340],

implying the critical role of NEUROLIGINS in maintaining

E/I balance.

Clinically, NLGN1 genetic variants are associated with

disorders, such as ASDs [341,342], Alzheimer’s disease

(AD) [343] and post-traumatic stress disorder (PTSD) [344].

Genome sequence studies in humans have shown

dysfunction in NLGN2 to be associated with ASD and schizo-

phrenia. Studies were done by assessing the developmental

history of a patient with a rare missense mutation, R215H,

which revealed that the patient had psychotic symptoms

such as self-laughing and talking, auditory hallucinations

and delusions. However, the patient’s sibling was a carrier

of this mutation, suggesting that the R215H mutation is

inheritable and had incomplete penetrance [345,346].
5.5.1. Behavioural alterations

Impaired spatial working memory by using the Morris water

maze in either loss of Nlgn1 or overexpression of Nlgn1 was

observed, which further implies the constitutive requirement

of Nlgn1 for learning and memory [347,348]. Conditional KO

of Nlgn1 in the CA1 region of the hippocampus in new-born

(P0) or P21 resulted in impaired NMDAR-type and L-type

Ca2þ channel-dependent LTP, further validating the loss of

spatial working memory [349]. Nlgn1 KO mice created by

targeted deletion of exon sequences covering the translational

start site 380 bp of the 50 coding sequence of NLGN1 and by

homologous recombination in embryonic stem cells exhibited

increased repetitive behaviour such as grooming, impaired

social interaction and altered pain sensation [347].

Overexpression of Nlgn2 in transgenic mice had displayed

diverse behavioural deficits such as reduced lifespan, limb

clasping, offspring viability, repetitive behaviour, anxiety and

impaired social interactions [350]. Based on the inhibitory

avoidance (IA) behaviour paradigm, widely used for studying

fear memories, Ye et al. [351] had found increased expression of

NLGN1 and NLGN2 in quantitative immunoblot analyses after

training of rats for IA. This altered expression of NLGN1 and

NLGN2 suggests a role for both Nlgn1 and Nlgn2 in memory

consolidation [351]. Further studies were performed to under-

stand the role of Nlgn2 in memory formation and behaviour.

Overexpression of Nlgn2 in the hippocampus had shown an

increase in adult neurogenesis but decreased performance in

the water maze task, suggesting an impaired working

memory [352]. Nlgn2 KO mice showed reduced anxiety,

increased impulsivity in the elevated plus maze and reduced

fear conditioning with an increased ratio of evoked E/I synaptic

currents [353,354]. These reports proved the importance of

Nlgn2 in diverse behavioural functions by regulating inhibitory

synapse function and plasticity in the mPFC, which is essential

for anxiety and fear memory. In addition, Nlgn2 KO mice exhib-

ited an irregular breathing pattern, suggesting its role in

regulating lung and heart functions [338].

As discussed in the earlier section regarding the significant

role of Nlgn4 KO in synaptic function, other studies have

shown perturbations in general behavioural patterns, such as

visible platform training in the Morris water maze (for

vision), buried food finding (for olfaction), sucrose preference

(taste), startle response (hearing), prepulse inhibition (sensori-

motor gating), rotarod (locomotor activity and balance), hole

board (exploratory behaviour), object preference, open field,

hidden platform training in the Morris water maze, cued and

contextual fear conditioning, and reversal training in the

Morris water maze but lacked seizure propensity. These

studies demonstrate a selective deficit in social interaction in

Nlgn4 KO as seen in patients with ASDs [109,355,356].
5.5.2. Synaptic function and morphology

A transgenic mouse model of Nlgn1 overexpression led to an

increase in excitatory dendritic spine and synapse number,

E/I ratio and synaptic transmission in the hippocampus.

Additionally, overexpression or downregulation of Nlgn1
has been shown to have impaired long-term potentiation

(LTP), suggesting importance for Nlgn1 in learning and

memory [348,357]. Moreover, studies from Caenorhabditis ele-
gans lacking nrxn-1 or nlgn-1 have been shown to mediate

retrograde synaptic signalling that inhibits neurotransmitter
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release at neuromuscular junctions, which might affect the

activity of neurons in response to stimuli [358]. Nlgn1 KO

mice made by targeted deletion (exon sequences covering

the translational start site 380 bp of the 50 coding sequence

of Nlgn1) by homologous recombination in embryonic stem

cells showed no change in PPRs, and basal synaptic trans-

mission but altered LTP and AMPA/NMDA [347]. These

studies from different mouse models show that Nlgn1 is

necessary for AMPAR dynamics and, thus, the alteration

would impair learning and memory.

E/I imbalance is one of the significant characteristic fea-

tures of ID and ASDs that causes various physiological and

behavioural deficits. In fact, in Nlgn2 transgenic mice, the

E/I ratio was found to be decreased in the PFC along with

the increased frequency of miniature inhibitory synaptic cur-

rents, which suggests an inclination towards potentiation of

inhibitory synapses and, thereby, shifting towards altered

inhibition [350]. Nlgn2 knockdown was associated with abol-

ished GABAergic function from excitation to inhibition

switch in cortical neurons based on Ca2þ imaging studies

that show a gradual decrease of GABAR-evoked Ca2þ

response in developing neurons along with the decreased

frequency of mIPSC and mEPSC, suggesting a reduction in

excitatory and inhibitory receptors. However, overexpression

of KCC2, the potassium-chloride co-transporter, partially res-

cued synaptic currents, suggesting a role of NLGN2 in

excitatory as well as inhibitory synaptic function [359].

Along with these earlier studies, another study has

reported that Nlgn2 KO mice have developmental delays

such as delayed eye-opening period, vocalization in pups

and reduced body length in these Nlgn2 KO mice [360]. Fur-

thermore, these mice displayed diminished inhibitory

synaptic transmission with no change in synapse number in

the ventrolateral medulla [333]. These studies suggest that

Nlgn2 is an essential constituent of inhibitory synapses and

necessary for the formation, maintenance and function of

inhibitory neurons.

To further study the role of Nlgn3 mutations in synaptic

function and neuronal development in vivo, lentiviral-mediated

knockdown of Nlgn3 in the CA1 region of the hippocampus at

P0 and P21 was performed, and excitatory basal synaptic trans-

mission was unaffected [361]. On the contrary, a primary

neuronal culture study has shown that overexpression of

Nlgn3 increased inhibitory postsynaptic currents (IPSCs),

suggesting an increase in expression of GABAergic currents

[362]. Patch clamp recordings from the hippocampus, somato-

sensory cortex and cerebellum of Nlgn3 KO mice have revealed

increased mIPSC (increased number of functional GABA recep-

tors) and decreased mEPSC (decreased number of functional

AMPA receptors) in the hippocampus, suggesting an increase

in inhibitory activity as the number of functional GABARs

was higher when compared with excitatory activity. Addition-

ally, decreased mEPSC and impaired mGluR-mediated LTD in

the cerebellum was also observed, which suggests a differential

function of Nlgn3 in different regions of the brain [110,363].

An Nlgn3, wherein R451C was overexpressed, increase in

mIPSC frequency (increase in the number of functional

GABARs) was associated with altered GABA release prob-

ability, concomitant with an increase in giant depolarizing

potential (GDP), a neuronal network-related activity

mediated by GABAR [111]. These studies further validate

the importance of Nlgn3 in network-based activities in imma-

ture neurons. Since GABAR-mediated network activity, as
well as GABAergic synaptic transmission, was impaired in

R451C, it is essential to understand whether the effects

observed were a global GABAR-mediated phenomenon or

any specific GABAergic cell types involved in it. Using a

paired whole-cell patch clamp between one PV expressing

basket cells and either spiny neurons/pyramidal neurons,

IPSCs measured from PV neurons displayed impaired ampli-

tude and frequency in the hippocampus as well as in the

barrel cortex in Nlgn3 R451C knockin mice [112,113]. In

addition, these studies found that the IPSC was reduced,

leading to an altered E/I ratio in D1-medium spiny neurons

(D1-MSN) in R451C mutant mice [114]. These studies show

that the NLGN3 mutation has a stronger effect on PV cells

comparatively, and is vital for D1-MSN-mediated synaptic

transmission.

Moreover, the same knockin mouse model of Nlgn3,

R451C, showed increased dendritic complexity and branching

in stratum radiatum. These mice also showed increased excit-

atory basal synaptic transmission, LTP, NMDA/AMPA and

mEPSC in the CA1 region of the hippocampus, suggesting,

unlike KO models of Nlgn3, R451C function majorly affects

glutamatergic synapse [110]. In contrast to previous studies,

another mouse model of Nlgn3, R704C, displayed a decreased

AMPAR-mediated synaptic response, rendering the NMADR-

or GABAR-mediated response unaltered. Additionally,

NMDAR-mediated LTP was associated with reduced EPSC fre-

quency and increased NMDA/AMPA ratio in cultured

hippocampal neurons, suggesting that an R704 mutation affects

differently the inhibitory as well as excitatory synapses [115].

Overall, different mutant mouse models of Nlgn3 depict

region- and synapse-specific function. Therefore, specificity in

neuronal types and synapses may help Nlgn3 to execute

different functions efficiently in various parts of the brain.

Nlgn4 is another essential gene that plays a significant

role in synapse formation, development and function. To

further understand the role of Nlgn4 in neuronal function,

Jamain and group [355] have demonstrated reduced ultra-

sonic vocalizations in Nlgn4 KO males. The Nlgn4 KO is the

result of chimeric non-functional protein. It contains a small

fraction of the esterase domain that cannot bind to Nrxn
upon contact with a female in oestrous cycle, suggesting a

lack of ability to attract the opposite gender despite being

fertile. A magnetic resonance imaging volumetric study

demonstrated a reduction in total brain volume, particularly

in the cerebellum and brainstem [355]. Nlgn4 KO showed a

reduced decay in glycinergic mIPSC, impaired inhibition,

altered firing and decreased b-wave amplitude in retinal

cells, demonstrating that Nlgn4 localizes to glycinergic post-

synapses and plays an essential role in encoding stimuli in

the retinal network [328]. The Nlgn4 R87 W mutation abol-

ished NLGN4-induced synapse formation and function,

particularly in modulating synaptic strength [364]. An impor-

tant hallmark of several NDDs, such as ID/ASDs, is impaired

synapse formation and function. As NLGN4 is implicated in

ASDs (reviewed extensively in [356]), a point mutation in

Nlgn4 causes ID/ASDs through the loss of function. A

study identified a frameshift de novo mutation, 1186insT in

NLGN4, in two siblings with ASD and Asperger syndrome

in a Swedish family, and that linked NLGN3 and NLGN4 to

ASDs. Another Swedish family of two siblings with ASD

and Asperger syndrome were identified with a C to T tran-

sition in NLGN3. This mutation had led to changes in

highly conserved arginine to cysteine (R451C), an integral
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part of the esterase domain that is necessary for interaction

with NRXNs [365]. Therefore, these studies have demon-

strated that mutations in different Nlgn genes affect the

basic synaptic transmission, which can have lasting

implications for the pathophysiology in ID/ASDs.

5.5.3. Biochemical pathways

NEUREXIN and NEUROLIGIN contain an intracellular PDZ-

binding domain that mediates interactions with synaptic scaf-

folding proteins, such as calcium/calmodulin-dependent

serine protein kinase (CASK) [366], and Munc18 interacting

protein; lin10/X11 [367] (for NEUREXINS) and PSD95 (for

NEUROLIGINS) [330]. The synaptic function of NEUROLI-

GIN depends on cis clustering of NEUROLIGIN molecules,

which requires a crucial integral esterase like ectodomain

that can interact with NEUREXIN and execute synaptic func-

tions [368]. PSD-95, a critical scaffolding protein interacting

with NEUROLIGIN, recruits different synaptic protein/

receptors like NMDAR, which activate the downstream sig-

nalling necessary for learning and memory. It also recruits

specific adaptor proteins such as GKAP [369] that, in turn,

interacts with SHANK3 [356,369]. This interaction is necess-

ary for normal synaptic functions and is indirectly driven

by different synaptic partners. Sequence homology studies

have revealed that NLGN1, NLGN3 and NLGN4 were simi-

lar, unlike NLGN2, which is predominantly expressed in

inhibitory synapses [318,319]. NLGN2 was shown to stabilize

inhibitory synapses with the help of scaffolding protein

GEPHYRIN, which interacts with an a2 subunit of

GABARs [370,371] and helps in the maintenance and func-

tion of GABAergic synapses. Overall, NLGN4 is considered

as one of the primary receptors involved in learning and

memory formation, along with evolutionary conserved

other NLGNs.

5.5.4. The critical period of plasticity

During brain development, NLGN1, NLGN2, NLGN3 and

NLGN4 expression increases from embryonic to post-natal

days before reaching a plateau around three weeks in the

mouse hippocampus [355]. This study suggests that NLGNs

have a precise developmental window of expression and,

thus, could be considered as one of the determinants of a critical

period of development in the brain, which could have impli-

cations in ID/ASDs [356]. To further corroborate NLGNs in

the critical period of development, monocular and binocular

deprivations (MD, BD) in mice were performed. Increased

spatial acuity by measuring visually evoked potentials was

observed in young adult R451C Nlgn3 mutant mice. Immuno-

histochemical analysis revealed an increased number of

puncta of GAD65. This increase suggests an alteration in the

number of GABAergic interneurons, thereby resulting in elev-

ated inhibition that led to decreased E/I, and, thus, increased

acuity in mutant mice. R451C also showed permanent loss of

acuity on prolonged MD as WT, but the relative loss was

more for the mutant mice, suggesting a longer window for plas-

ticity. This alteration observed in MD might lead to the

abnormal opening of a critical period of plasticity and impaired

local circuit connections [355]. Studies have further tried to dis-

sect the mechanism of NEUROLIGIN functions in synapse

development and neuronal functions using different animal

models such as KO, knockin and transgenic mice.
6. Metaplasticity
Metaplasticity is a term which refers to the higher order of

synaptic plasticity, i.e. plasticity of the synaptic plasticity

[372]. It includes processes that lead to physiological and bio-

chemical changes, altering the neuron’s ability to induce and

maintain synaptic plasticity [373]. Different mechanisms have

been proposed to explain metaplasticity depending on the

location and the type of synapse or receptors of interest

[373]. To date, there are no reports stating the direct involve-

ment of metaplasticity in any gene mutations implicated in

ID or ASDs. However, it has been proposed that synaptic

defects and memory deficits associated with ID and ASDs

may be due to an inability to undergo metaplasticity

during various developmental stages [374]. It has also been

demonstrated that hippocampal metaplasticity is required

for the formation of temporal associative memories [375].

Although studies done to investigate the effect of metaplasti-

city in animal models are limited, owing to its role in the

maintenance of LTP and LTD it may be crucial for learning

and memory impairments in ID.
7. Glial cells in intellectual disability
Other than neuronal cells, the brain consists of non-neuronal

cells called glia. The three main types of glia are—oligoden-

drocytes (responsible for axonal myelination), microglia

(responsible for immunity-related functions) and astrocytes

(responsible for maintaining homeostasis in the brain) [376].

7.1. Astrocytes
Astrocytes are star-shaped cells initially only known to pro-

vide neuronal support. However, research over the past few

decades has increasingly revealed the importance of astro-

cytes, and their multifaceted role in the brain [20,377,378].

Astrocytes regulate post-natal neurogenesis [379,380] and

maintain homeostasis of many factors such as ions, neuro-

transmitters, water and extracellular matrix [381–384]. They

regulate many aspects of the blood–brain barrier [385,386]

and glucose metabolism (supply and storage) in the brain

[387,388]. They protect against damaging factors such as

pathogens, reactive oxygen species and excitotoxicity [389–

391]. Most importantly, astrocytes wrap around synapses

and finely regulate all aspects of synaptic dynamics such as

formation, maturation, plasticity and even elimination

[378,392–395].

Proteins of many genes implicated in ASDs and ID are

expressed in astrocytes. Fmr1 is one such gene that encodes

FMRP. In astrocytes, FMRP is expressed during early and

mid-post-natal developmental stages, indicating its probable

role in brain development and fragile X pathology

[396,397]. Indeed, studies have shown that Fmr1-KO astro-

cytes were able to induce pathogenic delayed maturation

and synaptic protein expression in WT neurons. Vice versa,

WT astrocytes can rescue abnormal spinal and dendritic phe-

notype in Fmr1-KO neurons [398,399]. Astrocyte-specific

knockdown of Fmr1 led to increased spine density in cortical

neurons and can be rescued by restoring astrocytic FMRP

levels [21]. A study on MECP2 has also been shown to be

expressed in astrocytes, and similar co-culture studies

demonstrate astroglia contribution to disease pathology
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[400,401]. Other than these proteins, only NEUROLIGINS are

expressed in astrocytes, where they contribute to the for-

mation of astrocyte morphology and neuronal synapses

[402]. Disease-related studies for Neuroligins, Shank and

Syngap1 remain to be carried out.

7.2. Microglia and oligodendrocytes
Microglia are the resident macrophages of the brain. They are

of mesodermal origin and migrate into the brain during

development [376,403]. Other than immune surveillance,

microglia help in synaptic pruning (through complement-

mediated phagocytosis or TREM2 signalling), clearance of

apoptotic neural debris during development and synaptic

plasticity (through secreted factors) [404,405]. On the other

hand, oligodendrocytes originate from neural tissue and

differentiate from oligodendrocyte precursor cells. They

differentiate soon after neuronal migration and start wrap-

ping neuronal axons with lipid-rich myelin, providing

insulation and dividing the axon into multiple domains.

The altered activity helps in regulation of the propagating

action potentials and, in turn, neuronal circuit properties

[406]. Oligodendrocytes also provide metabolic support and

maintain ion homeostasis of the axon [407,408]. Not many

studies have been performed on the relationship between

genes implicated in ID/ASDs and microglia/oligodendro-

cytes. However, FMRP has been demonstrated to express in

both cell types [397]. Further studies regarding how these

mutations (implicated in ID and ASDs) affect microglia and

oligodendrocytes, and how this, in turn, contributes to the

pathophysiology of these disorders remains an open and

exciting topic for investigation.
8. Current and upcoming therapeutic
options targeting synaptic abnormalities

A therapeutic intervention targeting the underlying causes of

ID and ASDs is not yet available in the clinic, but preclinical

trials are going on in many laboratories. Drugs are, neverthe-

less, used to provide symptomatic relief from anxiety,

epilepsy, depression, and cognitive and social dysfunctions

in ID/ASDs. Response to already existing treatment options

is known to be variable and is reported to have some side

effects owing to their off-target interactions [29,30]. Coadmi-

nistration of different medications with irrational prescription

and use was another concern that affects people with ID/

ASDs. More often than not, polypharmacy is a common

practice and may lead to adverse drug reactions [31,32].

Although some of the currently followed strategies have

prolonged the life of patients, their quality of life has not

improved substantially [33]. Hence, there is a need to

search for a new therapeutic intervention which can provide

a cure, or at least alleviate the symptoms better than the exist-

ing therapeutic strategies for patients with ASDs and ID.

Different mutations, as discussed earlier, and drugs tar-

geting these had undergone rigorous testing in preclinical

trials on different mouse models. These have provided

insights into the underlying mechanisms associated with

the efficacy of these drugs for the treatment of ID/ASDs.

Some of these approaches are summarized in table 2. How-

ever, their translational success is yet to be validated in

clinical trials.
9. Conclusion
ID and ASDs are prevalent NDDs that have proven to be com-

plicated and challenging in several aspects. Since they often

present with a highly variable and overlapping spectrum of

symptoms and syndromes, defining a distinct set of diagnostic

criteria has been difficult for clinicians and scientists. However,

studies in mouse models of monogenic causes of ID and ASDs

have proved to be immensely helpful in the construction of the

pathophysiology of these disorders, through a bottom-up

approach. These studies have demonstrated that ID/ASDs

with diverse causal origins have intersecting aetiologies that

might be responsible for the observed shared phenotypes.

Opposing cellular phenotypes observed in these disorders high-

light the importance and need for balanced and timely

developmental processes at all systemic levels.

Further studies have employed these aspects for the

development of genetic and pharmacological therapeutic

strategies (creation of mouse models with counteracting

mutations to re-establish balance and the testing of drugs tar-

geting common neurological pathways). However, only a

fraction have been uncovered in the understanding of these

disorders, and require further studies for improved diagno-

sis, treatment and prognosis. As highlighted in this review,

there are several areas which remain unexplored and could

play an essential role in the pathophysiology of ID/ASDs.

Additionally, the role of non-neuronal cells such as astro-

cytes, oligodendrocytes and microglia have also not been

studied in detail concerning mutations in ID/ASDs. The aug-

mented critical period is another characteristic modality

altered in many forms of ID/ASDs. The study of precise

mechanisms for a better understanding of this phase of devel-

opment could be useful for rescue during the later period of

life. Because the diagnosis is delayed during a critical period of

development, reversing neuronal connections becomes diffi-

cult, which is one of the significant questions lingering in the

minds of neuroscientists. Preclinical studies in this regard

can warrant some useful clues for the translational success of

small molecules being tested for efficacy in ID/ASDs. How-

ever, many drugs still fail in clinical trials even after

ameliorating disease pathology in the preclinical mouse

models. Poor experimental design with inadequate sample

size could be one of the reasons for failure at the later stages.

Another critical point is the variability in the intrinsic

metabolic and biochemical pathways among different

animal strains and species that lead to changes in drug phar-

macokinetics and pharmacodynamics across systems. These

factors influence how a potential therapeutic candidate mol-

ecule can be metabolized by the animal model, and how

this is different in human beings. One viable alternative to

overcome the above issues is to use patient-derived IPSCs,

which have been considered as a model in the last decade

or so. However, to acquire an all-round understanding of

ID/ASDs, it is crucial to study in vivo, i.e. animal models in

combination with patient-derived IPSCs. Such a combinator-

ial study can fulfil the existing gap in our knowledge about

ID/ASDs and show the way for future therapeutic strategies.
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