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The performance of spatial filters based on independent components analysis (ICA) was evaluated by employing principal
component analysis (PCA) preprocessing for dimensional reduction. The PCA preprocessing was not found to be a suitable
method that could retain motor imagery information in a smaller set of components. In contrast, 6 ICA components selected
on the basis of visual inspection performed comparably (61.9%) to the full range of 22 components (63.9%). An automated
selection of ICA components based on a variance criterion was also carried out. Only 8 components chosen this way performed
better (63.1%) than visually selected components. A similar analysis on the reduced set of electrodes over mid-central and centro-
parietal regions of the brain revealed that common spatial patterns (CSPs) and Infomax were able to detect motor imagery activity
with a satisfactory accuracy.
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1. Introduction

The aim of brain-computer interfaces (BCIs) [1–5] is to
create control signals by utilizing brain patterns generated by
thoughts without the aid of peripheral nerves and muscles.
There is a variety of invasive and noninvasive methods
available to record signals from the brain. Among the
noninvasive methods, the electroencephalogram (EEG) [6] is
probably the most practical method available for BCI systems
due to its fine temporal resolution and inexpensive recording
equipment. However, due to volume conduction through
the scalp, skull, and other layers of the brain, the spatial
resolution of EEG signals needs to be improved. Moreover,
EEG signals are usually recorded in a high-dimensional
space, and it is a well-known fact that classification rules are
difficult to learn and time consuming in a high-dimensional
space.

To address these issues, several techniques of spatial filter-
ing are used such as Laplacian derivations, common spatial
patterns (CSPs) [7, 8], and various independent component
analysis (ICA) algorithms, for example Infomax, FastICA,
and SOBI [9–11]. An important attribute of a spatial filtering
method is to reduce the number of dimensions and at

the same time to retain all the information necessary for
classification. In this regard, CSP has an internal mecha-
nism of reducing the dimensionality of the data and was
successfully used for the classification of EEG-based motor
imagery data. On the other hand, ICA has an inherent
indeterminacy to order and scaling, which means that the
importance of the components cannot be determined on
this basis. However, spatial filtering algorithms based on
ICA can reduce the dimensionality of the data by visual
selection of the components [12] on the basis of time-
frequency maps [13] and scalp maps [14] or by applying
principal component analysis (PCA) [15] as a preprocessing
step before ICA.

The response of a command-related activity, depending
upon the neurophysiological signal used in a BCI appli-
cation, can be mapped to distinct areas of the brain. For
example, ERD/ERS (event-related desynchronization/event-
related synchronization) is dominant over the motor cortex,
and visually evoked potentials (VEPs) are dominant over the
occipital lobe. Since the approximate location of the activity
associated with the control attempt is known a priori, an
optimization of recording sites can also be done in advance.
A reduced number of channels results in a low-dimensional
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feature vector which is advantageous in terms of better
generalization and also reduces processing requirements.
Clearly, channel selection is a dimensionality reduction
technique motivated by physiological considerations and can
be considered, like component selection methods, similar to
feature selection. The advantage of utilizing these techniques
lies in the fact that they propose to go a step further and
also remove redundancy and noise in the reduced set of
dimensions.

The goal of this study is to find the optimum number
of dimensions of 22-channel EEG data which represents all
the information without redundancy for the classification of
four class motor imagery tasks. For this purpose, first, the
dimensions were reduced by employing PCA preprocessing
before ICA and then the classification accuracies were
calculated. Similarly, classification accuracies were also cal-
culated on 6 visually selected ICA components. Further, an
automated selection of ICA components (Infomax) based on
a variance criterion was also carried out. In addition, a subset
of electrodes was manually selected, and the classification
results were obtained by employing ICA as well as CSP
and these results were compared with Laplacian derivations
[16]. The data analysis was performed without removing any
artifacts.

2. Methods

2.1. Experimental Data. The EEG data of 4-class motor
imagery was recorded with 22 electrodes placed according
to the scheme in Figure 1. Monopolar derivations were
used throughout all recordings (the left mastoid served as
reference and the right mastoid as ground). The signals were
sampled with 250 Hz and prefiltered in the range of 0.5 and
100 Hz. Furthermore, a 50 Hz notch filter was enabled to
suppress line noise. The data sets were recorded from eight
healthy subjects, all inexperienced in BCI training. They were
sitting in a comfortable armchair in front of a computer
monitor. Two sessions of each subject were recorded on
different days. There were 288 trials (72 per motor imagery
class) in each session distributed in a randomized order.

The experimental paradigm consisted of the imagination
of left hand, right hand, foot, and tongue movement. A short
beep (at t = 0 s) along with the display of a fixation cross in
the middle of the screen indicated the beginning of the trial.
A visual cue (at t = 2 s) in the form of an arrow pointing
either left, right, up, or down appeared for 1.25 seconds on
the screen. Each position of the arrow required the subject to
perform the corresponding imaginary movement task. The
disappearance of the fixation cross (at t = 6 s) indicated the
subject to relax. Finally, 1.5–2.5 seconds of resting period
with a blank screen followed before the next trial started. The
experimental paradigm is illustrated in Figure 2.

2.2. Dimensionality Reduction and Channel Selection

2.2.1. PCA-Based ICA Components. PCA works on the
premise of uncorrelatedness and sorts the components in
decreasing order of variances. That is, it accumulates as much
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Figure 1: EEG electrode setup, some labels corresponding to
positions in the international 10-20 system are marked. Electrodes
are numbered from 1 to 22 in ascending order from top to bottom
and left to right. The three subsets of electrodes used for channel
selection are (1) 2–21, (2) 2–18, and (3) 2, 4, 6–14, 16, 18.

0 1 2 3 4 5 6 7 8

t(s)

Beep

Fixation
cross Cue Motor imagery Pause

4.5–5.5

Figure 2: Timing of a trial of the training paradigm. The time slice
between seconds 4.5 and 5.5 was used to train the classifiers. In the
case of CSP the same time slice was also employed to calculate the
spatial filters. However, for calculating ICA spatial filters the entire
time period (0–7.5 seconds) was used.

activity as possible in the first (and then in the second, third,
etc.) component, constrained by the quite unreasonable
assumption that the scalp maps are orthogonal. One can
immediately see two consequences of this procedure: first,
the constraint of orthogonality ensures the minimization
of redundancy among the components. Second, a large
variance is often translated as important in the field of signal
processing. Therefore, the first few components are expected
to contain most of the interesting dynamics, and removing
the remaining components simply implies enhancing the
signal-to-noise ratio. This is in contrast to ICA, which is
blind to order and scaling and hence the importance of
components cannot be determined automatically.

To overcome this shortcoming, PCA is often used as a
preprocessing step before ICA decomposition [17, 18]. This
procedure seeks to extract independent components (ICs)
from the first few principal components (PCs), implicitly
assuming that the relevant brain dynamics are contained
in those few components. This assumption, however, has
never been verified quantitatively, at least in the cases of
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neuroimaging data sets. By discarding many small principal
components, the risk of removing potentially interesting
information cannot be neglected.

The low-variance components may not necessarily be
unimportant ones, therefore choosing a certain number
of PCA components for subsequent ICA decomposition
is always an open question. To address this issue, the
dimensions of the data sets were reduced in steps of one
by applying PCA preprocessing. More specifically, each 22-
channel EEG data set was first decomposed into 21, 20, . . . ,
and 6 PCA components data sets (yielding 16 data sets),
respectively, before ICA decomposition. The ICA algorithms
chosen for this study were Infomax, FastICA, and SOBI [9–
11]. Infomax seeks to find maximally independent com-
ponents, whereas FastICA maximizes the nongaussianity
between the output components. SOBI (second-order blind
identification), on the other hand, achieves source resolution
by a simultaneous diagonalization of covariance matrices. In
the case of FastICA, a tangent hyperbolic was used instead
of the default nonlinearity of a third-order polynomial.
Moreover, the deflationary approach was employed instead
of a symmetric decomposition. In contrast, all the default
parameters were used in Infomax. Similarly, SOBI was
implemented by utilizing a default value of 50 time delays
[12].

2.2.2. Visual Selection of ICA Components. The discrimi-
nation between important (task-related) and unnecessary
(noisy) components in this analysis was ascertained by
inspecting time-frequency maps [13] and topographic maps
[14] (see Figures 3 and 4). For example, important hand
imagery components were the ones focused on contralateral
regions over the motor cortex area containing mu or beta
ERD. The ipsilateral components containing ERS activity
were also important. In the case of foot or tongue imagery,
midcentral or parietal components containing localized
activity were considered. The components chosen to depict
tongue imagery contained dominant ERS activity, whereas
for foot imagery both ERD and ERS patterns were more
significant [19]. In contrast, the components that showed
scattered activity over the whole surface on a topographic
map (which is merely a projection of the components
[w1, . . . , wn] on a two-dimensional head surface) were not
chosen [12].

Summarizing, a priori knowledge of the physiological
processes underlying motor imagery helped in selecting the
most important components. The idea was to choose a
minimum number of components to depict the suitability
of ICA itself for dimensional reduction. In the selection
process, care was taken to include at least one component
representing each task. However, in many subjects more
than one significant component corresponding to a specific
task were present. This was mostly true for contralateral
components and rarely for central components. Therefore,
two additional components were selected, somewhat heuris-
tically but also based on analysis [13, 14]. It should be
mentioned that this selection of six components may not be
so adequate for all the subjects, as each can have an individual

“best-number-of-components” that represent the sources
of interest. However, a fixed number of components was
needed to assess the relative performances of the three ICA
algorithms. Finally, the preliminary results on the average
(across the subjects) were comparable with those of the full
range of 22 components.

2.2.3. An Automated Selection of ICA Components. As men-
tioned in the introduction ICA is ambiguous to scaling
as well as order. Therefore, unlike PCA importance of
components cannot be determined on the basis of variance of
the components. However, a mechanism of pseudo-order is
available in Infomax: the components are arranged according
to their mean projected variance. This implies that the first
component contributes most to the power of EEG signal,
the second contributes the second most, and so forth. As a
consequence of this order frontal and temporal components
usually find their way in the top order. Additionally, non-
specific and nonlocalized components sometimes can also be
found in the upper order. This makes automatic selection of
motor imagination components difficult if not impossible.

A way to tackle this issue is to employ prior information
in automatic selection of components. It is a well known
fact that oscillatory patterns (ERD/ERS) are pronounced
in 8–14 Hz (alpha rhythm) and 14–30 Hz (beta rhythm).
Due to this reason, features of data sets belonging to motor
imagination experiments are usually (as is the case in this
paper) extracted in 8–30 Hz. Utilizing this prior information,
components were first filtered in the range of 8–30 Hz and
then their variances estimated. Sorting the components in
the descending order would therefore depict the potential
importance of the components. This way, first six, eight,
and then ten components were selected. This analysis is
performed only with Infomax.

2.2.4. Channel Selection. Similarly, prior information about
task-related activity was used in the manual selection of a
subset of the total number of 22 electrodes. For this analysis,
3 subsets of 22 electrodes were chosen (see Figure 1). The
first subset consisted of electrode numbers 2 to 21, that is, the
entire scalp except frontal and occipital regions. The second
subset included electrode numbers 2 to 18, comprising mid-
central and centro-parietal regions. Similarly, the third subset
contained electrodes C3, C4, Cz, and electrodes surrounding
them (in total 13 electrodes). With each of these three subsets
of electrodes, spatial filters were calculated by employing
three ICA methods as well as CSP.

2.3. Feature Extraction and Classification. The next para-
graph describes the cross-validation, feature extraction, and
classification procedures for the ICA components with or
without dimensionality reduction and channel selection. In
each instance of a reduced number of ICA components
or a subset of channels selected, the number of band
power features were also different. Other than that, identical
procedures were employed for 6 visually selected ICA
components, automatic selection of ICA components (6, 8,
and 10) and also 6 Laplacian components. The same holds
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Figure 3: Time-frequency maps (Infomax-subject s5 session 1): components are numbered in order of mean projected variance. The six
visually selected components are 5, 8, 12, 14, 16, and 18.

for the ICA components based on manual selection of the
subset of electrodes and also for components extracted after
dimensionality reduction with PCA.

First, the ICA unmixing matrix was multiplied to the
raw signals to extract independent components. In the next
step, logarithmic band power features in the range of 8–30
Hz were calculated. For example, 22 features were computed
when utilizing all the 22 ICA components. Next, a 10 × 10-
fold cross-validation procedure [20] was performed. In other
words, 100 different combinations of trials were created.
For each of this combination, 90% of the trials were used
for training four linear statistical classifiers (Fisher’s linear
discriminant analysis, LDA) combined in a one-versus-the-
rest classification scheme [20]. Within each trial, samples
between seconds 4.5–5.5 were used to train the classifiers.
These classifiers were then applied to the remaining 10%
of the data, and the classification accuracy was calculated

by choosing the class corresponding to the maximum value
of the four LDAs. The whole process mentioned above was
repeated for all the 100 combinations, and the classification
accuracy was calculated. The overall performance of the sys-
tem was evaluated by taking an average of the classification
accuracy of each combination.

Similarly, classification results of the CSP-preprocessed
data (manual selection of subsets of electrodes as well as the
complete set) are also presented. First, signals were bandpass
filtered in the range of 8–30 Hz and then a 10×10-fold cross-
validation procedure [20] was performed by creating 100
different combinations of trials. Each of this combination
was divided into 90% and 10% portions. The (four) spatial
filters were calculated on the basis of the 90% portion
and were then multiplied to this data. In the next step, 6
components (the first and last three) were chosen and log-
transformed normalized variances were calculated for each
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Figure 4: Topographic maps (Infomax-subject s5 session 1):
components are numbered in order of mean projected variance.
The six components (from left to right, top to bottom) selected are
5, 8, 12, 14, 16, and 18.

of the components. Next, these features were forwarded to
four linear statistical classifiers (again using a one-versus-
the-rest scheme). It should be noted that each classifier
received the same 24 features. The classifier weights were
calculated and these classifiers plus the four spatial filters
were then applied to the remaining 10% of the data and the
classification accuracy was calculated by choosing the class
corresponding to the maximum value of the four LDAs. The
whole process mentioned above was repeated for all the 100
combinations and the classification accuracy was calculated.
Finally, the mean of these accuracy values was estimated. The
same time slice (between seconds 4.5–5.5) was used to train
the classifiers as in the case of ICA. In the case of CSP, this
interval was also used to calculate the spatial filters.

3. Results

The mean accuracy values showed an almost linear increase
with an increasing number of PCA-preprocessed compo-
nents. This is true, in general, for all the ICA algorithms, as
depicted in Figure 5. The maximum values obtained for Info-
max and SOBI were 63.9% and 58.6%, respectively. In both
cases, spatial filters were calculated without PCA decomposi-
tion. However, in the case of FastICA, the maximum value of
62.5% was achieved with 21 PCA-preprocessed components,
which was only marginally better than the one obtained
without PCA decomposition. Moreover, Infomax showed
better results for each and every choice of PCA-preprocessed
components in comparison to the corresponding choice with
respect to FastICA and SOBI. The same is true for FastICA
in comparison to SOBI. In fact, the performance of SOBI
was generally poor and did not improve as markedly as
Infomax and FastICA with an increasing number of PCA-
preprocessed components (see Figure 5).

One immediate conclusion that can be drawn in the
analysis with manual selection of electrodes is that the spatial
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Figure 5: Comparison of three ICA algorithms with reduced
dimensionality by PCA preprocessing in the step of one, that is,
from a total of 22 components to 6 PCA reduced ICA components.
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Figure 6: Comparison of three ICA algorithms (reduced number
of electrodes) with CSP.

filters built from 20 channels (2–21) performed more or
less similarly with the ones built from 22 channels (see
Figure 6). More specifically, Infomax performed marginally
better (64.2%) with 20 channels reduced data sets, whereas
the other methods (FastICA, SOBI, and CSP) performed
marginally worse with the same number of channels.
Similarly, results with 17 channel data sets showed only a
slight decrease in performance in comparison with either 22
channel or 20 channel data sets. In fact, the only exception
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Figure 7: Comparison of three ICA algorithms (6 components
selected by visual inspection) with Laplacian (6 components) and
CSP.

Table 1: Infomax: mean accuracy values of automatically selected
components, visually selected components, and the full range of
components.

Components 6 (auto) 8 (auto) 10 (auto) 6 (visual) 22 (full)

Mean accuracy 61.4 63.1 63.8 61.9 63.9

was FastICA, where the performance was noticeably down
by about (2.5%). However, in general, the 13 channel subset
showed a pronounced deterioration for all the methods. For
this analysis, CSP performed better than the rest but Infomax
was only slightly worse, in comparison with CSP, for each
subset of total number of electrodes considered.

For the visual selection of components with the ICA
methods, Infomax (with 61.9%) performed much better
than FastICA (58.3%) and SOBI (56.2%) (see Figure 7).
However, CSP performed better than all methods and
surprisingly, Laplacian derivations (with 6 components)
performed almost as good as Infomax. In addition, the
performance of Infomax with visual selection of components
was better than the corresponding performance with 19
PCA-preprocessed components and only slightly worse than
21 components. Similarly, the performance of Infomax with
the reduced set of 17 electrodes was only slightly better
than the visually selected components by the same method.
On the other hand, the result with visual selection of
components of FastICA (58.3%) was comparable with 16
PCA-preprocessed components and also with the reduced set
of 13 electrodes. In the case of SOBI, 19 PCA-preprocessed
components performed comparably with 6 visually selected
components by the same algorithm. However, the perfor-
mance was comparatively lower than the reduced set of 13
electrodes.

The components in Figures 3 and 4 are arranged in the
following order by the automatic selection procedure: 8, 12,

11, 17, 3, 13, 5, 10, 6, 16, 9, 22, 20, 18, 21, 1, 14, 7, 2,
19, 15, 4. That is, two contra-lateral components can be
found among the first in this list. The frontal component
(4) can be seen in the last position, whereas the temporal
component (10) is at place 8. In fact, one of the temporal
components was usually found to be present in the first 8 to
10 components. In few instances, components with scattered
topography were also found among the first few. However,
these components usually represented task-related activity.
This is amply demonstrated in Table 1. The mean accuracy
for 6 automatically selected components is comparable with
the one for 6 visually selected components. The performance
of 8 automatically selected components is even better and
that of 10 components is almost equivalent to the full range
of 22 components.

4. Conclusions

As the spatial filters built with ICA methods and CSP on
the reduced set of 20 electrodes performed more or less
comparably with the ones built with the total number of
22 electrodes, it can be concluded that frontal and occipital
regions of the brain do not capture significant motor imagery
patterns. Therefore, data recorded from these areas of the
brain can safely be excluded before building spatial filters.
Similarly, results with the reduced set of 17 electrodes showed
that especially CSP and also Infomax were able to focus
motor imagery activity in mid-central and centro-parietal
regions. The exception of FastICA in this regard could be
due to the algorithmic choice of the deflationary approach
instead of a symmetric decomposition employed for source
resolution.

The results presented for PCA-preprocessed ICA algo-
rithms lead to the conclusion that at least 20 PCA compo-
nents out of the 22 electrodes are necessary for preserving
relevant information. For the 22 channels data sets con-
sidered in this analysis, PCA preprocessing was not found
to be a suitable preprocessing method that could retain
motor imagery information in a smaller set of components.
It should also be mentioned that dimensional reduction
even up to 6 PCA components still preserves about 98%–
99% of the total variance in general. This fact simply
implies that reducing the dimension by throwing away low-
variance components more often than not results in a loss of
important and relevant information.

The selection of ICA components on the basis of visual
inspection of time-frequency maps and scalp maps has a
subjective bias. Even this heuristic measure presented in this
work outperforms the PCA-based method of dimensional
reduction. Infomax in particular performed much better
than the other ICA variants considered. The overall result of
Infomax with 6 visually selected components was only 2.0%
less than the corresponding result with all the components
and about 14% higher than 6 PCA-preprocessed Infomax
components. This implies that Infomax was able to incor-
porate most of the task-related activity in few components.

However, visual selection of components is a manual
and subjective procedure. In order to automatically select
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these few important components, a simple variance-based
criterion was employed. This procedure proved to be a
success as only 8 to 10 components were needed to capture
relevant motor imagination activity. Based on the relative
performances, especially with reference to the PCA-based
method, this procedure can be recommended as a dimen-
sional reduction technique for motor imagery data sets.

5. Discussion

The variance-based procedure is applicable to motor imagery
data sets. Moreover, the number of required components can
further be reduced if some of the unwanted components
can be located a priori. Further, a very small set of
correctly selected clean components has the potential of
enhancing the performance of ICA algorithms. Therefore, an
improved general purpose automated method needs to be
developed for the determination of important components.
This objective can be achieved for example by employing
some of the new ideas such as constrained ICA. Various
ways to incorporate prior information in ICA algorithms
have already been suggested [21, 22]. For example, reference
signals of different classes can be employed as constraints in
ICA algorithms. Similarly, probability distribution functions
of reference signals can be incorporated directly as models
in ICA algorithms. Independent components can thus be
extracted under the constraint of being similar to the
reference signals or their probability distribution functions.
Moreover, this method is oblivious to the square mixing
assumption of standard ICA [21]. Therefore, in addition to
enhancing the signal-to-noise ratio of neuroimaging data,
constrained ICA can also deal effectively with the issue of
dimensional reduction.

The standard PCA method cannot be recommended, at
least for the data sets considered in this study. This leads
to the interesting question whether there are other PCA-
based strategies for the selection of the components to
retain the most important information. A recent paper [18]
proposed an alternative signal representation that is based
on PCA for dimensionality reduction and ICA conducted
across all subjects and conditions simultaneously. The results
based on partial least squares (PLSs) analysis showed an
enhancement of the task-related activity under compression.
Another approach worth implementing is nonlinear PCA
[23, 24]. Nonlinear PCA can be considered as a type of ICA
under special conditions [23]. The nonlinearity is introduced
in the objective function, but the output variables are still a
linear combination of the input variables. It can therefore be
seen as an ICA with an additional advantage of PCA.

A novel method in a very recent paper [25] utilized
ICA for source localization. The method then found the
optimal positions of two bipolar electrodes with the purpose
of reducing the number of electrodes to four. The goal was to
optimize the number of electrodes for practical BCI systems.
The results showed promise for two-class motor imagery
data. The extension to the four-class problem, such as the
data analyzed in this paper, is also possible and could be
carried out in future analyses.
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