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Abstract

\

Phosphoinositide 3-kinase (PI3K) signaling in hypothalamic neurons integrates peripheral metabolic cues, including
leptin and insulin, to coordinate systemic glucose and energy homeostasis. PI3K is composed of different subunits,
each of which has several unique isoforms. However, the role of the PI3K subunits and isoforms in the ventromedial
hypothalamus (VMH), a prominent site for the regulation of glucose and energy homeostasis, is unclear. Here we
investigated the role of subunit p110B in steroidogenic factor-1 (SF-1) neurons of the VMH in the regulation of
metabolism. Our data demonstrate that the deletion of p110{ in SF-1 neurons disrupts glucose metabolism, rendering
the mice insulin resistant. In addition, the deletion of p110f in SF-1 neurons leads to the whitening of brown adipose
tissues and increased susceptibility to diet-induced obesity due to blunted energy expenditure. These results highlight
a critical role for p110B in the regulation of glucose and energy homeostasis via VMH neurons.

Introduction

Obesity and obesity-related metabolic diseases are
major public health burdens'. The central nervous system
(CNS) governs whole-body metabolism by sensing and
responding to fluctuating levels of circulating cues, such
as nutrients and hormones. Unraveling the neuronal
mechanisms by which the CNS regulates metabolism is a
fundamental step in the treatment of metabolic disease
and recent scientific efforts in this area have led to a new
class of Food and Drug Administration-approved anti-
obesity drugs”.

The hypothalamus is an important region for the reg-
ulation of metabolism?. In particular, the ventral medial
nucleus of the hypothalamus (VMH) has been known
since the early 1940s, to play a critical role in the reg-
ulation of glucose and energy balance™®. However, the
molecular blueprint underlying the VMH regulation of
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glucose and energy homeostasis remains unclear. Phos-
phoinositide 3-kinase (PI3K) is critical for the integration
of metabolic hormone cues. It is composed of the reg-
ulatory subunit p85 and the catalytic subunit p110, and
each subunit comprised several variant forms. Previously,
we demonstrated that mice lacking p110a in the VMH are
more prone to high-fat diet (HFD)-induced obesity and
obesity-related metabolic disturbances®. Recent studies
have shown distinct metabolic roles for each subunit/
variant in proopiomelanocortin (POMC) and agouti-
related peptide (AgRP) neurons of the arcuate nucleus
(ARC) of the hypothalamus7’9, These studies indicate
that, at least in ARC neurons, p110p plays a greater role in
the regulation of metabolism than does p110a. Although
electrophysiological approaches suggest that pll0f is
required for leptin and insulin action in the VMH', the
specific metabolic roles of each of the PI3K subunits in
VMH neurons are not well understood. Here we investi-
gated the role of p110p in the VMH in the regulation of
glucose and energy metabolism.
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Materials and methods
Animal care and generation of tissue-specific KO mice
All experimental procedures were approved by the
Institutional Animal Care and Use Committees at
UT Southwestern (Dallas, TX) and Yonsei University
College of Medicine. Mice were kept at room temperature
(22°C-24°C) with a 12h light/dark cycle (lights on at
06:00 h) and fed a normal mouse chow diet (4% fat diet;
7001; Harlan Laboratories) or a HFD (Research Diet
#D12331; 58% kcal from fat, 26% from sucrose, 5.56 kcal/
g) with water provided ad libitum. To generate VMH-
specific p110p knockout (KO) (p110p KO*') mice, males
that were homozygous for the floxed (F) p1108 allele'" and
heterozygous for the Sf-1-Cre transgene'” were crossed
with female mice homozygous for the floxed p110p allele.
Littermate mice homozygous for the floxed p110p allele
(p110B7F) served as controls (Ctr). All experimental mice
were on a mixed C57BL/6;129S6/SvEv background.

Protein and mRNA analyses

All samples were collected between 1300 and 1500 h for
quantitative PCR (Q-PCR) analysis. Total RNA was iso-
lated using Trizol reagent (Invitrogen, Carlsbad, CA) and
reverse transcribed with a SuperScript First-Strand
Synthesis System (Invitrogen) for reverse transcriptase
PCR (RT-PCR). Real-time PCR (Q-PCR) was performed
using an ABI 7900 HT Sequence Detection System
(Applied Biosystems, Foster City, CA). The Q-PCR pri-
mers used for the TagMan method (Applied Biosystems)
are as follows: 18S (ABI, Hs99999901), pik3ca (ABI,
MmO00435673_m1), pik3cb (ABL, MmO00659576_m),
pik3r1  (ABI, MmO00808818 s1), pik3c2a  (AB],
MmO00478162_ml), B-adrenergic receptor 3 (B3-AR)
(ABI, Mm02601819_g1), Cidea (ABL, Mm00432554_m1),
PGCla (ABI, Mm01208835_ml), PPARy (ABI,
MmO01184322_m1), PRDM16 (ABI, Mm01266507_gl),
uncoupling protein 1 (UCP1) (ABI, MmO01244861), and
UCP3 (ABL, Mm01163394_m1).

For protein analysis, tissues from control and p110f
KO*"! mice were homogenized in lysis buffer [20 mM Tris,
5mM EDTA, and NP40 1% (v/v)] containing protease
inhibitors (P2714 Sigma, St. Louis, MO, resolved by SDS-
polyacrylamide gel electrophoresis and finally transferred
to a nitrocellulose membrane. After blocking the mem-
brane with 5% non-fat milk, proteins were detected using
the following commercially available antisera: UCP1
(Abcam, Cambridge, MA, 1:5000), GAPDH (Santa Cruz
Biotech, Santa Cruz, CA, 1:5000), phosphorylation of
AKT (pAKT) (Cell Signaling Technology, 1:2000), and
pFoxO1 (Cell Signaling Technology, 1:1000).

In situ hybridization

RNA in situ hybridization was performed on every
fourth serial section from the brains of control and p110f
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KO mice'®™'” (n=5 for each genotype). Before hybri-
dization, brain sections were mounted onto SuperFrost
Plus slides (Fisher Scientific) and stored at —20 °C. Before
hybridization, sections were fixed in 4% formaldehyde for
20 min, dehydrated in ascending concentrations of etha-
nol, cleared in xylene for 15 min, rehydrated in descend-
ing concentrations of ethanol, and placed in prewarmed
0.01 M sodium citrate buffer pH 6.0. Sections were pre-
treated for 10 min in a microwave, dehydrated in ethanol,
and air-dried. The p110p riboprobe was generated by
in vitro transcription with *°S-UTP. The >°S-labeled
probe was diluted (10°dpm/mL) in hybridization solu-
tion containing 50% formamide, 10% dextran sulfate, and
1x Denhardt’s solution (Sigma). The hybridization solu-
tion (120 ul) was applied to each slide and incubated
overnight at 56 °C. Sections were then treated with 0.002%
RNAase A solution and submitted to stringency washes in
decreasing concentrations of sodium chloride/sodium
citrate buffer. Sections were dehydrated and enclosed in
X-ray film cassettes with BMR-2 film (Kodak) for 72 h.
Slides were dipped into an NTB2 autoradiographic
emulsion (Kodak), dried, and stored at 4 °C for 25 days.
Slides were developed with a D-19 developer (Kodak).
The pl10p probe was produced from PCR fragments
amplified with ExTaq DNA polymerase (Takara) from
c¢DNA generated with SuperScript II Reverse Tran-
scriptase (Invitrogen) for RT-PCR from total mouse
hypothalamic RNA. The p110p probe comprises positions
502-762 of the NCBI reference sequence NM_029094.3
and spans exon 4 of the Pik3cb gene. This region is
flanked by LoxP sites and, therefore, this probe can be
used to identify the Cre-mediated deletion of the Pik3ch
gene. All images were captured with a Nikon E1000
automated microscope installed with a Nikon digital
camera (DXM 1200F; Nikon, Melville, NY).

Metabolic cage studies

A combined indirect calorimetry system (CaloSys
Calorimetry System, TSE Systems, Inc., Bad Homburg,
Germany) was used for all metabolic studies. Experi-
mental animals were acclimated for 5 days in a home cage
with food and water. The room temperature for all
metabolic studies was maintained at 22°C with a 12h
light/dark cycle. Heat generation, O, consumption, and
CO, production were measured after acclimation, and the
relationship between metabolic rate and body mass was
normalized to metabolic body size (body weight 0.75)
unless otherwise noted. During this time, ambulatory and
rearing  activities also  monitored  with
infrared beams.

To assess diet-induced thermogenesis, chow-fed mice
with matched body weights were acclimatized in the TSE
metabolic chambers as described above, followed by
continuous monitoring of the metabolic rate. Chow was

were
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provided from day 1 to day 4 and replaced with a HED at
17:00 h of day 4. Metabolic parameters were measured for
3 additional days. The AVO, was calculated by the VO,
difference before and after the HFD.

Hormone measurement

Corticosterone levels were measured as previously
described®. Briefly, psychosocial stress was given to male
mice by housing for 30 min in groups of four animals after
3 days of isolation. Trunk blood for corticosterone mea-
surements was taken by decapitation at the indicated
times (Supplementary Table 1). For follicle-stimulating
hormone (FSH), luteinizing hormone (LH), testosterone,
epinephrine, and norepinephrine measurements, serum
and/or plasma were obtained between 14:00 and 15:30 h.
The blood samples for corticosterone, FSH, LH, testos-
terone, epinephrine, and norepinephrine levels were sent
for analysis to either the Ligand Assay & Analysis Core at
the University of Virginia or the Hormone Assay &
Analytical Services Core, Vanderbilt Diabetes Research
and Training Center.

VMH dissection for western blotting and Q-PCR analyses

To assess leptin-mediated AKT and forkhead box-
containing protein of the O subfamily-1 (FoxO1) phos-
phorylation, body weight-matched 9- to 13-week-old male
mice were fasted for 18 h and given murine leptin (5 mg/
kg body weight, Sigma, St. Louis, MO) or pyrogen-free
saline (Sigma, St. Louis, MO). After 40 min, the animals
were transcardially perfused with 10% formalin. A coronal
slice between bregma —1.22mm and —2.06 mm was
made, and then the VMH was microdissected with a
scalpel under a microscope. All samples were immediately
frozen on dry ice. Protein lysate was prepared from the
VMH sample and used for western blotting analysis as
described above.

To measure mRNA levels in the VMH of control and
p110p KO*! male mice, mice were decapitated after deep
anesthesia. The VMH was microdissected with a scalpel
under a microscope as described above. All samples were
immediately frozen on dry ice. Total mRNA was extracted
and used for Q-PCR analyses.

Histology

All tissues were fixed in 10% neutral buffered formalin
and either transferred to 1x phosphate-buffered saline
followed by paraffin embedding or cryoembedded after
sucrose infiltration for hematoxylin and eosin (H&E),
Nissl, pSTATS3, or Oil Red O staining.

Body weight and composition

The body weight of control and p110p KO mice fed a
normal chow diet (NCD) was monitored weekly from
weaning (4 weeks old) to 21 weeks. The body composition
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of control and p110p KO*! mice was determined using a
Bruker Minispec mql0 nuclear magnetic resonance ana-
lyzer (The Woodlands, TX).

GTT and ITT

The glucose tolerance test (GTT) was performed as
previously described'®. Male p110p KO*! mice and con-
trol littermates between the ages of 20-23 weeks were
fasted for 18 h with water provided ad libitum. After
fasted glucose levels were measured, glucose was admi-
nistered via intraperitoneal (i.p.) injection (1.5 g/kg body
weight). Blood glucose levels were measured from blood
sampled from tail nicks at 20, 40, 60, 90, and 120 min after
injection. Blood glucose levels were determined by the
glucose oxidase method using a commercial glucometer
(Ascensia Contour; Bayer HealthCare, Mishawaka, IN).
For the insulin tolerance test (ITT), male mice between
the ages of 20-23 weeks were fasted for 2 h with water
provided ad libitum. After measurements of basal glucose
levels, insulin (0.8 U/kg, Eli Lilly and Company, HI-210,
Indianapolis, IN) was administered via i.p. injection. Blood
glucose levels were monitored as described above.

Data analysis

The data are presented as the mean + SEM, as indicated
in each figure legend. Statistical significance was deter-
mined by Student’s ¢-test or two-way analysis of variance.
GraphPad Prism, version 5.0a (GraphPad, San Diego, CA),
was used for all statistical analyses and P<0.05 was
considered a statistically significant difference.

Results
Generation of SF-1 neuron (VMH)-specific p110f KO mice
p110p is ubiquitously expressed and mice lacking p110§
in the VMH were generated by crossing floxed p110S
mice'! with steroidogenic factor-1 (Sf-1) Cre mice (p110p
KOSﬂ)u, which in the CNS, express Cre recombinase
exclusively in the VMH. Histological analyses confirmed
that the deletion of p110p was confined to the VMH (Fig.
la—d) without disturbing VMH cytoarchitecture (Sup-
plementary Fig. 1). Q-PCR analysis of RNA isolated from
the VMH showed that p110p was significantly reduced,
and that the expression of the remaining isoforms and
subunits was unchanged (Fig. le). Peripherally, SF-1 is
also expressed in the pituitary, adrenal glands, and
gonads, which are important tissues for the regulation of
metabolism. We therefore examined these tissues for
morphological changes and measured the circulating
levels of corticosterone (normal and stressed), testoster-
one, FSH, and LH. We found similar tissue morphology
and hormone parameters between the two genotypes,
indicating that the hypothalamic—pituitary—adrenal and
hypothalamic—pituitary—gonadal axes were intact (Sup-
plementary Fig. 2 and Supplementary Table 1). These data
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dorsomedial nucleus of the hypothalamus

p1108 KO*"

Bregma -1.70 mm

Bregma -1.82 mm

Fig. 1 Deletion of p110B is restricted to SF-1 neurons of the VMH. Expression of p110f detected by RNA in situ hybridization in the anterior VMH
of a control and b p110B KO*! mice, and the posterior VMH of ¢ control and d p1108 KO mice. @ mRNA expression of p1108, p110a, p85a, and PI3K-
(2a in the VMH of control and p1103 KO mice. f The VMH was collected after i.p. administration of leptin (5 mg/kg body weight) and the levels of
PAKT and pFoxO1 were measured in control and p1108 KO mice. The number of mice in each group is indicated in the figure. *P < 0.05 by
Student’s t-test. Data are shown as mean + SEM. Scale bar =200 um. Abbreviations: 3V, third ventricle; ARC, arcuate nucleus; Ctr, control; DMH,
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suggest that the metabolic phenotype of the p110g KO

mice described in this study is not secondary to disrup-
tions in these hormones.

To determine whether the deletion of pl110p in SF-1
neurons altered PI3K signaling in the VMH', we mea-
sured the pAKT and FoxOl in the VMH after intraper-
itoneal leptin administration (5 mg/kg). Although leptin
administration activated pAKT and pFoxO1 in the VMH
of control mice, this effect was significantly blunted in
mice that lacked p110p (Fig. 1f). In contrast, the activation
of pSTAT3 by leptin was comparable (Supplementary Fig.
3). These results indicate that p110p in SF-1 neurons of
the VMH is necessary for the normal activation of the
PI3K pathway.

p110f isoform in the VMH is required for normal glucose
homeostasis

To investigate the role of p110f in the regulation of
energy homeostasis, we first examined several metabolic
parameters in mice fed a NCD. No differences were
observed in body weight, body composition, leptin and
insulin levels, food intake, oxygen consumption (VO,),
locomotor activity, or respiratory exchange ratio (RER)
between littermate controls and p110p KO*" mice (Sup-
plementary Fig. 4). Numerous studies suggest that the
VMH is a key brain site for the regulation of glucose
homeostasis through the modulation of the autonomic
nervous system20_23. For instance, microinjection of lep-
tin or orexin into the VMH increases glucose uptake and
enhances insulin sensitivity, and VMH-mediated glucose
uptake is blocked by inhibition of the sympathetic nervous
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system (SNS)**7%°, Although we found no significant
differences in the glucose levels of mice fed a NCD, glu-
cose levels during the refeeding period following a 24 h
fast were significantly elevated in p110p KO*™ mice
compared with control mice (Fig. 2a). Furthermore, p110p
KO*™' mice exhibited blunted glucose and insulin sensi-
tivity in response to both i.p. GTTs and ITTs (Fig. 2b—f).
Notably, previous studies have shown that the deletion of
p110a in the VMH does not affect glucose metabolism in
NCD-fed mice®. Our data suggest that glucose home-
ostasis by SF-1 neurons in the VMH is uniquely mediated
by the p110f subunit.

Serum insulin levels obtained during the course of the
GTT were unaltered (Fig. 2d), suggesting an impairment
in insulin sensitivity rather than impaired insulin secre-
tion from pancreatic P-cells. Therefore, we measured
insulin sensitivity in peripheral tissues, including the liver,
interscapular brown adipose tissue (iBAT), heart, and
muscle, by monitoring the activation of pAKT after i.p.
injection of insulin®”. The insulin-mediated activation of
pAKT was decreased in p110B KO*™ mice in all tissues
examined, including the iBAT, heart, and muscle, com-
pared with control littermates (Fig. 2g—j). These results
strongly suggest that the blunted insulin sensitivity in
these peripheral tissues contributes to altered whole-body
glucose homeostasis in p110p KO*™ mice.

Increased whitening of iBAT and decreased energy
expenditure in p110p KO*"' mice

The VMH is a critical brain site mediating sympathetic
tone to the iBAT*?®%°, A disruption in B-adrenergic
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Fig. 2 Deletion of p110p in SF-1 neurons disrupts glucose and insulin homeostasis. a Glucose levels in fed (3 h fasted), fasted (24 h), and refed
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signaling causes iBAT lipid accumulation®”", a process

known as “whitening”®'. Notably, the activation of pAKT
in the iBAT after insulin administration was significantly
blunted in p110 KO*™ mice (Fig. 2h). H&E staining
revealed an increase in lipid droplets in p110p KO mice
(Fig. 3a—c). In addition, the RNA levels of f3-AR and
UCP1, and the protein levels of UCP1 were significantly
reduced in the iBAT of p110p KO* mice (Fig. 3d-f).
Moreover, plasma norepinephrine, a neurotransmitter
released by sympathetic nerve terminals, was decreased in
p110p KO*™ mice (Fig. 3g). Our study demonstrates that
the deletion of p110f in SF-1 neurons hampers sympa-
thetic activity and leads to the whitening of iBAT. Col-
lectively, these data suggest that p110p expression in the
VMH is a key module to maintain BAT programming.
As p110p KO*™ mice displayed changes in sympathetic
tone, we postulated that metabolic stress would alter
metabolic homeostasis in p110p KO*' mice. Of note, a
HFD decreases UCP1, PGCla, and other genes, which are
important for maintaining BAT programming®’. To
address this hypothesis, metabolic stress was induced by
challenging mice with a HFD and assessing the metabolic
response of p110p KO*! mice. The body weight of p110p
KO mice began to diverge from that of control mice
after 6 weeks of HFD feeding (Fig. 4a). The increased body
weight was caused by increased fat mass but not lean mass
(Fig. 4b, c). Indirect calorimetry studies revealed sig-
nificantly decreased oxygen consumption in p110f KO
mice, without changes in food intake, movement, or the
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RER during HED feeding (Fig. 4d—h). These data imply
that PI3K activity in SF-1 neurons of the VMH might be
necessary for the regulation of energy expenditure, espe-
cially under high-calorie conditions. Serum analysis
showed elevated levels of leptin, insulin, fasted glucose,
triglyceride (TG), and free fatty acid in HFD-fed p110p
KO*! mice (Fig. 4i—m). In addition, HFD-fed p110p KO
mice exhibited increased liver TG (Fig. 4n) but not serum
or liver cholesterol (Fig. 40, p). These results indicate that
the p110p subunit in the VMH might be involved in the
regulation of metabolic homeostasis.

Discussion

Although the metabolic importance of PI3K has been
shown in several tissues, little is known about its function
in the hypothalamus®*'". In this study, we specifically
deleted the p110p isoform of PI3K from SF-1 neurons of
the VMH. We found that p110f in the VMH, possibly
through actions on the autonomic nervous system, is
required for energy homeostasis and the maintenance of
normal glucose and insulin sensitivity. p110a and p110p
are class IA PI3K isoforms, and studies using global KO
mice have suggested that each isoform has distinct
metabolic functions®*33, Notably, the deletion of class I
PI3K isoforms in ARC POMC or AgRP neurons revealed
that p110p has a greater contribution than does p110« to
metabolic parameters, such as body weight, food intake,
and leptin-mediated neuronal excitability”**. Our studies
have extended these findings to the VMH. We previously
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showed that p110«a deletions in the VMH affect diet-
induced obesity but not the basal metabolic rate®. Our
current study shows that p110p in SF-1 neurons of the
VMH plays a much broader role, affecting glucose and
insulin homeostasis and BAT function.

The VMH is well known to regulate many physiological
processes, including energy expenditure, reproduction,
defensive behavior, food intake, carbohydrate and fat
metabolism, and metabolic adaptation®'>!#232%35757 1
1966, Shimazu et al.>> demonstrated that electric stimu-
lation of the VMH remarkably increased blood glucose
and suggested the important role of the VMH in the
regulation of glucose metabolism>**’. Previous reports
have indicated that microinjection of leptin into the VMH
can stimulate glucose uptake into the peripheral tissues,
including skeletal muscle®. We recently found that the
p110pB subunit is required for leptin-induced depolariza-
tion in SF-1 neurons of the VMHX. Collectively, these
studies suggest that the deletion of p110f in SF-1 neurons
may compromise leptin’s glucoregulatory actions, leading
to refractory responses to the GTT. Interestingly, we
found that p110p KO*™ mice exhibited glucose intoler-
ance under refed conditions, with no significant body
weight change, and exhibited diet-induced obesity, with
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significantly increased fasted glucose levels. p110p KO*™
mice exhibited insulin insensitivity in the iBAT, heart, and
gastrocnemius muscle. These results highly imply that the
higher glucose level in p110f KO* mice might be the
result of decreased glucose uptake and insulin sensitivity
mediated by decreased sympathetic tone.

A recent paper showed that SNS input is necessary for
maintaining the thermogenic properties of BAT*'. Dis-
ruption of the SNS signaling pathway leads to a whitening
of BAT accompanied by a reduction in mitochondrial
activity and the accumulation of lipid droplets®’. In fact,
ob/ob®® and DIO®' mice show impaired SNS and BAT
whitening. The VMH regulates BAT function via the
SNS*#2>3¢41 L esions in the VMH have been shown to
cause mitochondrial dysfunction and to reduce fatty acid
oxidation®~®', indicating that an intact VMH is impor-
tant for maintaining BAT function. Lower levels of nor-
epinephrine together with increased iBAT whitening in
p110p KO*! mice suggest that p110p in the VMH might
be a critical component for the SNS-mediated BAT
pathway, while further analyses including the direct
visualization of sympathetic nerve fibers are necessary.

Our study supports the notion that the VMH plays a
critical role in regulating metabolic adaptations under
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Fig. 4 Diet-induced obesity and blunted energy expenditure in p110B KO mice. a Body weights of male mice fed a HFD for 8 weeks. b Body
composition (18-20 weeks) of male mice fed a HFD for 8 weeks. ¢ Gonadal fat pad weights of male mice fed a HFD for 8 weeks. d Changes in O,
consumption before and after HFD feeding. The star indicates a significant difference at a specific time point (15:00 h). e Temporal change in O,
consumption before and after HFD feeding. f Cumulative food intake before and after HFD feeding. g Total movement. h Respiratory exchange ratio.
i Leptin, j insulin, k fasted glucose, | serum triglyceride (TG), m serum free fatty acid, n liver TG, o serum cholesterol, and p liver cholesterol levels in
control and p1103 KO*" mice fed a HFD. Number of animals examined is expressed in parentheses in each graph. Data are shown as the mean +
SEM. *P < 0.05 by Student's t-test

conditions requiring high-energy expenditure, such as a
HFD and exercise®>*#°%°5>62 The regulation of energy
expenditure by the VMH is known to be mediated by the
SNS; however, the precise neuronal pathway linking the
SNS and the VMH has not yet been precisely determined.
Genetic tracing experiments revealed that SF-1 neurons
project to several brain nuclei that regulate SNS func-
tion®; thus, future studies using emerging techniques
such as channel rhodopsin-assisted neurocircuit map-
ping®* may provide further insights into the functional
pathways linking the SNS and the VMH. In summary, the
current study suggests that pharmaceutical therapies that
target PI3K in a tissue- and isoform-specific manner may
prove beneficial toward ameliorating metabolic syndrome,
especially diabetes.

Official journal of the Korean Society for Biochemistry and Molecular Biology

Acknowledgements

We thank Dr. Joel K. EImquist (UT Southwestern Medical Center) for guidance
and suggestions. We also thank Laura Brule, Min Kim, Danielle Lauzon, and
Linh-An Cao for technical assistance and the Metabolic Phenotyping Core at
the University of Texas Southwestern Medical Center (supported by PL1
DK081182 and UL1RR024923). Funding for these studies was provided to TF.
(Juvenile Diabetes Research Foundation postdoctoral fellowship 3-2011-405
and an American Heart Association Scientist Development Grant
14SDG17950008), CF.E. (NIH grant ROTHD061539), and KW.K. (Korea Health
Industry Development Institute HI17C0745 and the National Research
Foundation NRF-2016R1C1B3012748 and NRF-2016RTA5A2008630).

Author details

"Division of Hypothalamic Research, Department of Internal Medicine, UT
Southwestern Medical Center, Dallas, TX 75390, USA. 2Depar‘[ment of
Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Cellular and Integrative Physiology, Long School of Medicine,
UT Health San Antonio, San Antonio, TX, USA. 4Departmem of Oral Biology,
BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, Korea.
°Department of Physiology and Biophysics, Institute of Biomedical Sciences,



Fujikawa et al. Experimental & Molecular Medicine (2019) 51:52

University of Sdo Paulo, Sdo Paulo, SP 05508000, Brazil. SMetabolic Signal
Research Center, Institute for Molecular and Cellular Regulation, Gunma

University, Maebashi 371-8512, Japan. ’Department of Molecular and
Integrative Physiology, University of Michigan, Ann Arbor, MI, USA

Author contributions

TF,YHC, SL and KWK. designed the experiments. T.F, YHC, D.J.Y, DMS, J.
D, DK, CEL, CFE and KWK conducted and analyzed the experiments. TF, Y.
H.C, S.L. and KWK wrote the manuscript. All authors discussed the results and
commented on the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information accompanies this paper at https://doi.org/
10.1038/512276-019-0249-8.

Received: 14 September 2018 Revised: 10 January 2019 Accepted: 23
January 2019.
Published online: 26 April 2019

References

1.

Dobbs, R. et al. How the world could better fight obesity (The McKinsey
Global Institute, 2014).

Gautron, L, Elmquist, J. K. & Williams, K. W. Neural control of energy balance:
translating circuits to therapies. Cell 161, 133-145 (2015).

Morton, G. J, Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in
health and disease. Nat. Rev. Neurosci. 15, 367-378 (2014).

Hetherington, A. W. The relation of various hypothalamic lesions to adiposity
and other phenomena in the rat. Am. J. Physiol. 133, 326-327 (1941).

Choi, Y. H, Fujikawa, T, Lee, J, Reuter, A. & Kim, K. W. Revisiting the ventral
medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy
homeostasis. Front. Neurosci. 7, 1-9 (2013).

Xu, Y. et al. PI3K signaling in the ventromedial hypothalamic nucleus is
required for normal energy homeostasis. Cell Metab. 12, 88-95 (2010).

Hill, J. W. et al. Phosphatidyl inositol 3-kinase signaling in hypothalamic
proopiomelanocortin neurons contributes to the regulation of glucose
homeostasis. Endocrinology 150, 4874-4882 (2009).

Hill, J. W. et al. Direct insulin and leptin action on pro-opiomelanocortin
neurons is required for normal glucose homeostasis and fertility. Cell Metab.
11, 286-297 (2010).

Al-Qassab, H. et al. Dominant role of the p110beta isoform of PI3K over
pl110alpha in energy homeostasis regulation by POMC and AgRP neurons.
Cell Metab. 10, 343-354 (2009).

Sohn, J. W. et al. Leptin and insulin engage specific PI3K subunits in hypo-
thalamic SF1 neurons. Mol. Metab. 5, 669-679 (2016).

Jia, S. et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and
tumorigenesis. Nature 454, 776-779 (2008).

Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this
action by leptin is required for normal body-weight homeostasis. Neuron 49,
191-203 (2006).

Kishi, T. et al. Expression of melanocortin 4 receptor mRNA in the central
nervous system of the rat. J. Comp. Neurol. 457, 213-235 (2003).

Kim, K- W. et al. Steroidogenic factor 1 regulates expression of the cannabinoid
receptor 1 in the ventromedial hypothalamic nucleus. Mol. Endocrinol. 22,
1950-1961 (2008).

Zhao, L. et al. Central nervous system-specific knockout of steroidogenic factor
1 results in increased anxiety-like behavior. Mol. Endocrinol. 22, 1403-1415
(2008).

Tong, Q. et al. Synaptic glutamate release by ventromedial hypothalamic
neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5,
383-393 (2007).

Elias, C. F. et al. Chemical characterization of leptin-activated neurons in the rat
brain. J. Comp. Neurol. 423, 261-281 (2000).

Official journal of the Korean Society for Biochemistry and Molecular Biology

21.

22.

23.

24,

25.

26.

27.

28.

29.

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 8 of 9

Bingham, N. C, Anderson, K. K, Reuter, A. L, Stallings, N. R. & Parker, K. L.
Selective loss of leptin receptors in the ventromedial hypothalamic nucleus
results in increased adiposity and a metabolic syndrome. Endocrinology 149,
2138-2148 (2008).

Williams, K- W, Scott, M. M. & Elmquist, J. K Modulation of the central mela-
nocortin system by leptin, insulin, and serotonin: co-ordinated actions in a
dispersed neuronal network. Eur. J. Pharm. 660, 2—12 (2011).

Cotero, V. E. & Routh, V. H. Insulin blunts the response of glucose-excited
neurons in the ventrolateral-ventromedial hypothalamic nucleus to decreased
glucose. Am. J. Physiol. Endocrinol. Metab. 296, E1101-E1109 (2009).

Borg, M. A, Sherwin, R. S, Borg, W. P, Tamborlane, W. V. & Shulman, G. I. Local
ventromedial hypothalamus glucose perfusion blocks counterregulation
during systemic hypoglycemia in awake rats. J. Clin. Invest. 99, 361-365
(1997).

Borg, W. P. et al. Ventromedial hypothalamic lesions in rats suppress coun-
terregulatory responses to hypoglycemia. J. Clin. Invest. 93, 1677-1682 (1994).
Borg, W. P, Sherwin, R. S, During, M. J, Borg, M. A. & Shulman, G. I. Local
ventromedial hypothalamus glucopenia triggers counterregulatory hormone
release. Diabetes 44, 180-184 (1995).

Haque, M. S. et al. Role of the sympathetic nervous system and insulin in
enhancing glucose uptake in peripheral tissues after intrahypothalamic
injection of leptin in rats. Diabetes 48, 1706-1712 (1999).

Minokoshi, Y, Haque, M. S. & Shimazu, T. Microinjection of leptin into the
ventromedial hypothalamus increases glucose uptake in peripheral tissues in
rats. Diabetes 48, 287-291 (1999).

Shiuchi, T. et al. Hypothalamic orexin stimulates feeding-associated glucose
utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10,
466-480 (2009).

Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic
Akt and Foxol. Nat. Med. 18, 388-395 (2012).

Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced
thermogenesis. Nature 281, 31-35 (1979).

Minokoshi, Y, Saito, M. & Shimazu, T. Sympathetic denervation impairs
responses of brown adipose tissue to VMH stimulation. Am. J. Physiol. 251,
R1005-R1008 (1986).

Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis
and obesity resistance. Science 297, 843-845 (2002).

Shimizu, |. et al. Vascular rarefaction mediates whitening of brown fat in
obesity. J. Clin. Invest. 124, 2099-2112 (2014).

Foukas, L. C. et al. Critical role for the p110alpha phosphoinositide-3-OH kinase
in growth and metabolic regulation. Nature 441, 366-370 (2006).

Ciraolo, E. et al. Phosphoinositide 3-kinase p110beta activity: key role in
metabolism and mammary gland cancer but not development. Sci. Signal. 1,
ra3 (2008).

Hill, J. W. et al. Acute effects of leptin require PI3K signaling in hypothalamic
proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 17961805 (2008).
Shimazu, T, Fukuda, A. & Ban, T. Reciprocal influences of the ventromedial and
lateral hypothalamic nuclei on blood glucose level and liver glycogen content.
Nature 210, 1178-1179 (1966).

Perkins, M. N,, Rothwell, N. J, Stock, M. J. & Stone, T. W. Activation of brown
adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289,
401-402 (1981).

Shimazu, T. & Ishikawa, K. Modulation by the hypothalamus of glucagon and
insulin secretion in rabbits: studies with electrical and chemical stimulations.
Endocrinology 108, 605-611 (1981).

Takahashi, A. & Shimazu, T. Hypothalamic regulation of lipid metabolism in the
rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4,
195-205 (1981).

Vander Tuig, J. G, Knehans, A. W. & Romsos, D. R. Reduced sympathetic
nervous system activity in rats with ventromedial hypothalamic lesions. Life Sci.
30, 913-920 (1982).

Sakaguchi, T. & Bray, G. A. The effect of intrahypothalamic injections of glucose
on sympathetic efferent firing rate. Brain Res. Bull. 18, 591-595 (1987).
Sakaguchi, T. & Bray, G. A. Intrahypothalamic injection of insulin decreases
firing rate of sympathetic nerves. Proc. Natl Acad. Sci. USA 84, 2012-2014
(1987).

Sakaguchi, T, Arase, K & Bray, G. A. Sympathetic activity and food intake of rats
with ventromedial hypothalamic lesions. Int J. Obes. 12, 285-291 (1988).
Vissing, J, Wallace, J. L, Scheurink, A. J, Galbo, H. & Steffens, A. B. Ventromedial
hypothalamic regulation of hormonal and metabolic responses to exercise.
Am. J. Physiol. 256, R1019-R1026 (1989).


https://doi.org/10.1038/s12276-019-0249-8
https://doi.org/10.1038/s12276-019-0249-8

Fujikawa et al. Experimental & Molecular Medicine (2019) 51:52

45.

47.

48.

49.

50.

51

52.

53.

54.

Sakaguchi, T. & Bray, G. A. Ventromedial hypothalamic lesions attenuate
responses of sympathetic nerves to carotid arterial infusions of glucose and
insulin. Int J. Obes. 14, 127-133 (1990).

Shimazu, T, Sudo, M, Minokoshi, Y. & Takahashi, A. Role of the hypothalamus
in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27,
501-504 (1991).

Sudo, M, Minokoshi, Y. & Shimazu, T. Ventromedial hypothalamic stimulation
enhances peripheral glucose uptake in anesthetized rats. Am. J. Physiol. 261,
E298-E303 (1991).

Musatov, S. et al. Silencing of estrogen receptor alpha in the ventromedial
nucleus of hypothalamus leads to metabolic syndrome. Proc. Natl Acad. Sci.
USA 104, 2501-2506 (2007).

Klockener, T. et al. High-fat feeding promotes obesity via insulin receptor/PI3K-
dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14, 911-918 (2011).
Lin, D. et al. Functional identification of an aggression locus in the mouse
hypothalamus. Nature 470, 221-226 (2011).

Kim, K W. et al. FOXO1 in the ventromedial hypothalamus regulates energy
balance. J. Clin. Invest. 122, 2578-2589 (2012).

Mobbs, C. V., Moreno, C. L. & Poplawski, M. Metabolic mystery: aging, obesity,
diabetes, and the ventromedial hypothalamus. Trends Endocrinol. Metab. 24,
488-494 (2013).

Toda, C. et al. Extracellular signal-regulated kinase in the ventromedial hypo-
thalamus mediates leptin-induced glucose uptake in red-type skeletal muscle.
Diabetes 62, 2295-2307 (2013).

Correa, S. M. et al. An estrogen-responsive module in the ventromedial
hypothalamus selectively drives sex-specific activity in females. Cell Rep. 10,
62-74 (2015).

Wang, L, Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial
hypothalamus mediate defensive behaviors. Neuron 85, 1344-1358
(2015).

Official journal of the Korean Society for Biochemistry and Molecular Biology

55.

56.

57.

58.

59.

60.

61.

62.

63.

Page 9 of 9

Fujikawa, T. et al. SF-1 expression in the hypothalamus is required for bene-
ficial metabolic effects of exercise. Elife 5, pii: €18206 (2016).

Meek, T. H. et al. Functional identification of a neurocircuit regulating blood
glucose. Proc. Natl Acad. Sci. USA 113, 14 (2016).

Stanley, S. A. et al. Bidirectional electromagnetic control of the hypothalamus
regulates feeding and metabolism. Nature 531, 647-650 (2016).

Knehans, A. W. & Romsos, D. R. Norepinephrine turnover in obese (ob/ob)
mice: effects of age, fasting, and acute cold. Am. J. Physiol. 244, E567-E574
(1983).

Seydoux, J, Rohner-Jeanrenaud, F., Assimacopoulos-Jeannet, F., Jeanrenaud, B.
& Girardier, L. Functional disconnection of brown adipose tissue in hypotha-
lamic obesity in rats. Pflug. Arch. 390, 1-4 (1981).

Saito, M. & Shimazu, T. Decreased rate of fatty acid synthesis in brown adipose
tissue of hypothalamic obese rats. FEBS Lett. 166, 151-154 (1984).

Seydoux, J. et al. Decreased guanine nucleotide binding and reduced
equivalent production by brown adipose tissue in hypothalamic obesity.
Recovery after cold acclimation. FEBS Lett. 146, 161-164 (1982).

Choi, Y. H, Fujikawa, T, Lee, J, Reuter, A. & Kim, K- W. Revisiting the ventral
medial nucleus of the hypothalamus: the roles of SF-1 neurons in energy
homeostasis. Front. Neurosci. 7, 71 (2013).

Cheung, C. C, Kurrasch, D. M, Liang, J. K & Ingraham, H. A. Genetic labeling of
SF-1 neurons in mice reveals VMH circuitry beginning at neurogenesis and
development of a separate non-SF-1 neuronal cluster in the ventrolateral
VMH. J. Comp. Neurol. 521, 1268-1288 (2012).

Sternson, S. M, Atasoy, D, Betley, J. N, Henry, F. E. & Xu, S. An emerging
technology framework for the neurobiology of appetite. Cell Metab. 23,
234-253 (2016).



	P110&#x003B2; in the ventromedial hypothalamus regulates glucose and energy metabolism
	Introduction
	Materials and methods
	Animal care and generation of tissue-specific KO mice
	Protein and mRNA analyses
	In situ hybridization
	Metabolic cage studies
	Hormone measurement
	VMH dissection for western blotting and Q-PCR analyses
	Histology
	Body weight and composition
	GTT and ITT
	Data analysis

	Results
	Generation of SF-1 neuron (VMH)-specific p110&#x003B2; KO mice
	p110&#x003B2; isoform in the VMH is required for normal glucose homeostasis
	Increased whitening of iBAT and decreased energy expenditure in p110&#x003B2; KOsf1 mice

	Discussion
	ACKNOWLEDGMENTS
	ACKNOWLEDGMENTS




