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Abstract: Mental health disorders are ambiguously defined and diagnosed. The established diagnosis
technique, which is based on structured interviews, questionnaires and data subjectively reported by
the patients themselves, leaves the mental health field behind other medical areas. We support these
statements with examples from major depressive disorder (MDD). The National Institute of Mental
Health (NIMH) launched the Research Domain Criteria (RDoC) project in 2009 as a new framework
to investigate psychiatric pathologies from a multidisciplinary point of view. This is a good step in
the right direction. Contemporary psychiatry considers mental illnesses as diseases that manifest in
the mind and arise from the brain, expressed as a behavioral condition; therefore, we claim that these
syndromes should be characterized primarily using behavioral characteristics. We suggest the use
of smartphones and wearable devices to passively collect quantified behavioral data from patients
by utilizing digital biomarkers of mental disorder symptoms. Various digital biomarkers of MDD
symptoms have already been detected, and apps for collecting this longitudinal behavioral data have
already been developed. This quantified data can be used to determine a patient’s diagnosis and
personalized treatment, and thereby minimize the diagnosis rate of comorbidities. As there is a wide
spectrum of human behavior, such a fluidic and personalized approach is essential.

Keywords: digital phenotyping; digital biomarkers; personalized psychiatry; Research Domain
Criteria; major depressive disorder

1. Introduction

The problematic heterogeneity of mental disorders is a well-discussed issue [1–3].
Olbert et al. [2] used combinatorial mathematics to show that two individual patients
who have the same psychiatric diagnosis may not share any symptoms. In addition,
two combinations of symptoms of the same disorder will often share less than half of
the symptoms [2]. In order to conduct an in-depth exploration of the problem of and
the potential digital solutions to the inconsistency in the characterization of psychiatric
pathologies, in this article we focus on major depressive disorder (MDD).

MDD is a highly prevalent condition, with 6% of the adult population worldwide
affected each year [4]. MDD has been recognized as a major risk factor for suicide by the
World Health Organization [5]. In addition, MDD is associated with other life-threatening
conditions, such as stroke [6]. As MDD is of particular medical importance, it is unfortunate
that experts from the psychiatric community claim that MDD is poorly defined and diag-
nosed [7,8]. Santor et al. [8] mapped over 280 different depression scales to measure MDD.
Another study that emphasized the unwanted heterogeneity of MDD was undertaken by
Zimmerman et al. [9], who found that there are 227 possible ways to meet the DSM-IV
diagnostic criteria for MDD, while only 170 different combinations occur among patients.
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This evidence indicates the problematic diagnosis system established by the Diag-
nostic and Statistical Manual of Mental Disorders (DSM), which is routinely used by
psychiatrists. The DSM-5 diagnosis method for MDD includes a list of nine symptoms
applied as diagnostic criteria [10]. Patients meet the diagnostic criteria based on the number
and duration of symptoms and signs. Threshold scores are used to classify and measure
depression severity. The conventional way to determine those crucial scores is to use
questionnaires completed by the psychiatrist (Figure 1a). Even though psychiatrists aim
to determine scores objectively, this diagnosis technique, which is mostly based on data
subjectively reported by the patients themselves, leaves the mental health field behind
other medical areas. One of the consequences of using this problematic diagnosis technique
is also reflected in the low remission rates of MDD patients, even after they are treated with
different treatment options [11,12]. Other factors that are also likely to have an influence
on remission rates include patients who do not routinely take their prescribed medications.
In this article, we provide examples and evidence from the literature discussing MDD, but
our ideas are also relevant to other mental health disorders.
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From a historical viewpoint, we can observe the conceptual changes that the classifica-
tion system for mental conditions has undergone. The first DSM versions were focused
on collecting statistical data [13]. In the DSM-III, there was a paradigm shift to include
empirically based data with the goal of producing non-biased diagnosis criteria [13]. The
DSM-5 combines etiological and neurobiological research results into the definitions of
mental disorders in order to improve the diagnosis process [14,15]. This approach is consis-
tent with the Research Domain Criteria (RDoC) project of the National Institute of Mental
Health (NIMH).

The NIMH launched the RDoC project in 2009, which proposed a new framework
to investigate psychiatric pathologies [16]. The project’s idea is that the integration of
data from different disciplines, such as genomics, neuroimaging and the clinical field,
can provide a better understanding of psychiatric pathologies. Thomas R. Insel [17]
explained that today’s diagnostic systems, ICD and DSM, create a common language
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in psychiatry but rely on observable symptoms. This approach limits physicians from
performing examinations to obtain a specific diagnosis, an option that exists in other
medical fields [17]. This approach also leads physicians to routinely diagnose comorbidities
within patients [18,19]. In addition, Thomas R. Insel [17] mentioned that medical diagnoses
that rely only on symptoms, which are reported by the patients themselves, are not only
heterogeneous and imprecise, but the subsequent treatment focuses on symptom relief
and prevention.

Addressing these problems that accompany the conservative and common practice of
psychiatric diagnosis requires a paradigm shift. Although it is known that various aspects
(e.g., genetics, chronic medical conditions and deprivation) influence the development
of a mental disorder within an individual [20], mental disorders—including MDD—are
behavioral conditions. It is also known that contemporary psychiatry considers mental
illnesses as diseases that manifest in the mind and arise from the brain, expressing them-
selves as behavioral conditions [21]. Therefore, we claim that mental syndromes should
be characterized primarily using behavioral characteristics. This approach does not fully
correspond with the RDoC project’s view since we argue that behavioral data should be
the field’s pillar. Data from other areas, such as emotional regulation and genetics, are
also essential for understanding the core of the psychiatric disorder, and must therefore be
cross-referenced with behavioral data (Figure 1b). As we will emphasize in the following
sections, we support the use of digital devices to collect behavioral data for the purpose of
psychiatric assessment.

2. The Digital Revolution in Mental Health
2.1. An Active Digital Collection of Behavioral Data

Digitally completing a singular self-reported questionnaire is a current technique in
the field [22]. Furthermore, it has been shown that smartphones and wearable devices
can also be utilized for repeated self-reported questionnaires [23–25]. This method is
called ecological momentary assessment (EMA). The advantage of this method is the
frequent number of times in a short period that patients can be repetitively asked to answer
diagnostic questions while in a natural setting, as opposed to periodical assessment at the
clinic. Torous et al. [25] developed an app with an interface that allows users to answer
the Patient Health Questionnaire-9 (PHQ-9). Suhara, Xu and Pentland [24] developed the
Cognition Kit app, which asks patients to report their moods and perform digital cognitive
tasks [24].

The data collected using these apps correlates with the data collected using traditional
methods [23–25]. Although these apps show progress in the data collection method in MDD
patients, they are based on conventional methods of symptom-based self-reported diagnosis.

2.2. Digital Phenotyping

To perform the characterization of MDD via behavioral features, patient behavior
needs to be quantified objectively. At present, patients self-report about their own behavior.
Physicians try their best to objectively fill the diagnosis questionnaires and determine the
quantified scores. Nevertheless, the existing data are still biased. In addition, the reported
behavioral data are not longitudinal and are collected during meetings between patients
and their physicians. Most of the time, this is based on retrospective recollection. To over-
come these limitations, we suggest the use of smartphones and wearable devices to collect
quantified behavioral data from patients passively. This process falls under the definition
of digital phenotyping, as defined in 2016 by Onnela and Rauch [26]. The utilization of
smartphones and wearable devices exists in many other medical areas. For example, the
monitoring of glucose levels among diabetes patients was revolutionized by developing
and producing low-cost continuous glucose monitoring sensors [27]. Recently, decision-
making using data recorded by these devices was approved by the FDA [27]. Another
example of data collection via wearable devices is that done with the Apple Watch or other
fitness bands that can passively measure pulse rate and detect pulse irregularity, which can
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signal atrial fibrillation or flutter [28]. Embracing smartphones and wearable devices as
sensors for collecting quantified behavioral data could generate a quantified, continuous
and objective database of patients’ behavior. Applying a computational algorithm to this
database could enable different mental disorders to be subtyped into subcategories using
data-driven analysis and combined with other relevant dimensions. This computational
system could help determine better disease diagnoses and treatments for new patients. Of
course, there are limitations to this digital approach. Since personal data about patients
are collected in face-to-face meetings, unique nuances can be overlooked; a professional
clinician has the potential to detect information that a machine would miss.

Torous, Onnela and Keshavan [29] previously suggested the use of digital phenotyping
to collect data as part of the RDoC project. Our idea is novel in that we suggest that digital-
behavioral biomarkers can not only assist in the diagnosis of MDD and other mental
disorders, but that a new characterization of subtypes of such disorders should be based
on them.

Our vision of embracing smartphones and wearable devices to collect data among
patients suffering from mental health disorders is very reasonable since the use of these
devices is growing tremendously, and 50% of all smartphones and tablets have a mobile
health app downloaded [30].

The digital phenotyping field is growing. In 2018, it was suggested that actions
recorded by smartphones, such as typing and scrolling patterns, can reflect the results of
tests conducted by psychiatrists to assess mental health patients [31]. Potential behavioral
biomarkers can be researched, relying on the information available in the DSM and ICD.
Later, new biomarkers can be detected through the new data that will be gathered. Several
studies performed in recent years have already produced promising results regarding
digital biomarkers that can be used for MDD characterization and diagnosis. These
biomarkers include the utilization of a variety of data types to detect depressive behavior.
Mundt et al. and Zhang et al. [32–34] were able to extract features from voice samples and
use them to measure depression symptoms. Actigraphy was used to measure patterns
of motor activity and was employed for the development of digital biomarkers [35–37].
Tonon et al. [37] were able to use light exposure measurements to differentiate between
melancholic depression and non-melancholic depression patients. Jacobson et al. [36] were
able to draw associations between light exposure and depression severity. Saeb et al. [38]
found a correlation between the severity of depression symptoms and a number of features
that were extracted from mobile phone global positioning systems (GPS) and smartphones’
normal usage (usage duration and frequency). Dagum [39] analyzed the human–computer
interaction of normal smartphone usage to identify digital biomarkers associated with
cognitive function. Mandryk and Birk [40] conducted a literature review and suggested five
categories of potential biomarkers that can be deduced from data recorded from individuals
playing computer games.

Several apps for the passive collection of behavioral data via smartphones have already
been developed [40]. The Mobilyze! app, developed in 2011, includes machine learning
models for predicting patients’ moods [41]. Marzano et al. [42] developed a prototype
system app that was tested in a small trial and was shown to accumulate both quantitative
and qualitative data. Beiwe is a research platform that can passively collect various
behavioral data types from users’ smartphones and transfer this data to another server for
analysis. This app is currently only available for use by a small group of researchers [43].

A designated algorithm for analyzing the collected data is necessary for further devel-
opment. Lydon-Staley et al. [44] created a computational algorithm that applied network
science methodologies to a longitudinal behavioral database to learn about interactions
between psychiatric symptoms. As a result, Lydon-Staley et al. [44] offered a robust
framework to capture dynamic symptom networks.

The link between emotions and emotion regulation in psychopathology has been
demonstrated in the past [41]. The transition between different emotional states and moods
is substantial in psychopathology research. Therefore, digital biomarkers for emotional
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changes are essential. Research by Pratap et al. [43] found that mobility and smartphones’
normal usage has the potential to predict an individual’s mood state changes using per-
sonalized models. Further important work was published recently by Sultana, Al-Jefri
and Lee [45], in which machine learning algorithms were used to analyze varied data
recorded from individuals’ smartphones and smartwatches to determine emotional states
and transitions.

Combining omics data together with the collected behavioral data could be another
essential strategy to achieve better disease diagnoses. As genetic and proteomic biomarkers
for MDD are routinely revealed [42,46,47], this option is becoming a reality. Olmert
et al. [22] launched the Delta Trial, where blood spot samples and psychiatric digital
questionnaire answers were collected from patients. Both proteomic biomarkers and
symptomatic behavioral data were collected digitally and used to differentiate between
bipolar disorder and MDD patients [22].

3. Toward Personalized Psychiatry

Since MDD is only one example among many poorly defined and diagnosed mental
disorders, an innovative and fluidic approach to all mental health is necessary. Naming
a set of symptoms reported by a patient does not yield satisfying outcomes. There is a
wide spectrum of human behavior that cannot be expressed in one or two pathologies.
The standard diagnosis of comorbidities is evidence of this incorrect classification of
mental health disorders. Though personalized medicine exists in other fields [48–50],
psychiatry has been left behind. However, innovative personal psychiatry tools for the
treatment of MDD do exist [51–54]. Predictix is a decision-support tool that calculates the
likely effectiveness of several antidepressant medications for individual patients, based
on environmental and genetic input [54]. In an article that was accepted for publication
recently, Taliaz et al. [55] successfully used data from the Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) study to analyze the response patterns of patients to
antidepressant medications using machine learning algorithms. Expanding the applied
database of such a tool with data of different mental pathologies could allow the optimum
treatment to be predicted according to an individual’s specific parameters instead of
prescribing medications per diagnosed condition. Furthermore, diagnoses will be shifted
depending on the training and the background of the doctor, as was recently argued by
Perugi and Barbuti [19].

Analysis of longitudinal behavior allows for a better comparison between a patient’s
behavior in the present and their behavior in the past, as well as in a demographic context.
Sleep disorders demonstrate the importance of this feature. Insomnia is one of the most
common symptoms of MDD [56]. However, many studies have shown that sleep quantity
and quality differ among people of different ages [57–60]. Therefore, an integration of this
demographic information is crucial for an accurate diagnosis. A pilot clinical study to
ascertain the feasibility of this approach is recommended.

In the future, we also believe that behavioral data could provide a reference for
identifying biomarkers from other fields. A thorough understanding of the behavioral
characteristics of mental disorders has the potential to find correlations between behavioral
features and features from other areas (Figure 1c) and promote crosstalk between the
different areas, which would result in further expanding our knowledge in those areas
(Figure 1c).

As we have shown in this article, technologically, we already have the knowledge to
collect the necessary behavioral data in order to learn precisely about individuals’ behavior.
Therefore, personalized psychiatry should be pursued and become a standard soon.

4. Conclusions

Mental disorders are ambiguously defined. The currently available methods used
to diagnose mental disorders are limited, as they rely on patients’ subjective self-reports.
In this article, we supported these statements with examples from MDD. We suggest the
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use of smartphones and wearable devices to collect longitudinal data of patients’ behavior
passively. Several designated apps to collect this type of data have already been developed,
and digital biomarkers of MDD symptoms have already been identified. Algorithms and
computational methods for analyzing continuous behavioral data have also been published.
We believe all this gathered available knowledge should be integrated into one tool that
can assist in diagnosing mental health patients and help bring a much-needed paradigm
shift in psychiatric treatment approaches. With a better understanding of behavioral
data, an integrated tool may have the potential to identify new characteristics of disorder
subtypes and promote crosstalk, expanding our knowledge between and within other fields.
Furthermore, quantified longitudinal behavioral data can be used to determine a patient’s
diagnosis and to personalize treatment over time. This may help minimize the incorrect
classification of mental health disorders and the associated diagnoses of comorbidities. Of
course, rules and restrictions to preserve patients’ privacy must be established. Slavich
et al. [61] suggested some guidelines for the field of speech analysis that can be generalized
to other data types as well. These guidelines include informing patients of precisely what
data are collected using their wearable device and enabling patients to easily stop the
recording action of their device [61].

We support the RDoC framework to investigate psychiatric pathologies based on
integrating biological and behavioral data from various disciplines. However, as there is
a wide spectrum of human behavior that cannot be expressed in one or two pathologies,
today’s medical diagnoses (that rely mainly on observable symptoms) are limited. For
this reason, we believe that mental syndromes should be characterized primarily using
behavioral characteristics, and that behavioral data should be the field’s pillar.
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