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Abstract: Current biomedical imaging techniques are crucial for the diagnosis of various diseases.
Each imaging technique uses specific probes that, although each one has its own merits, do not encom-
pass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.).
Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare.
This bimodality can be achieved by successive image acquisitions involving different and indepen-
dent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by
using a single probe combining a complete set of physical and chemical characteristics, in order to
record complementary views of the same biological object at the same time. In this scenario, and
focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be
engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inor-
ganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole.
If in the first type of system, there is frequent concern that at some point the dye may dissociate from
the magnetic dipole, it may not in the second type. This review aims to present a summary of current
activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent
nano-objects.

Keywords: multimodal nanoprobes; MRI contrast agents; luminescent dyes; lanthanides; down-
conversion; up-conversion; colloidal chemistry

1. Introduction

Current biomedical imaging techniques are vital for the diagnosis of various diseases.
Each imaging mode has its own merits and disadvantages and uses specific probes ex-
hibiting particular physical and chemical properties. However, a single technique does
not encompass all the functionalities required for comprehensive imaging. For instance,
magnetic resonance imaging (MRI) has the advantage of being a non-invasive technique
for in vivo 3D-tomography, but it is limited by low target sensitivity. Also, optical imaging
(OI) is non-invasive and has the advantage of a high sensitivity and a high specificity, but
it is limited by the poor light tissue penetration. Most of the time, it requires appropriate
and expensive endoscopic optical fibers for local photoexcitation and/or detection.

Therefore, multimodal imaging methods, with enhanced signal sensitivity, better
spatial resolution, and the ability to relay information about biological systems at the
molecular and cellular levels are becoming important tools with an absolute necessity of
designing multimodal probes combining ideally, in single objects, all the desired properties.

Nanoparticles (NPs) as platforms bringing together several functionalities offer such
an opportunity. They can be easily produced by colloidal chemistry with different sizes
allowing thus a strict control of their size-dependent physico-chemical properties (surface
plasmon, quantum confinement, superparamagnetism) and then a strict control of their
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functionality. This functionality can be also tuned by replacing these NPs with their
hetero-nanostructured counterparts bringing complementary abilities.

In MRI applications, magnetic structures, here called ‘contrast agents’ (CAs), accelerate
the relaxation of water molecules by locally shortening the longitudinal T1 and transversal
T2 relaxation times of the nuclear magnetic moment of their 1H protons [1]. In practice,
paramagnetic species, mainly 3d- and 4f-block metal complexes [2], commonly called
transition metal and lanthanide complexes, are suitable for positive contrast (MR images
in which areas with low T1 are bright) while superparamagnetic ones, mainly Fe3O4 and
γ-Fe2O3 NPs [3], are suitable for negative contrast (MR images in which areas of low T2
are dark). These particles can serve as a core platform for the addition of other functional
moieties like fluorescent tags [4], radionuclides [5] or targeting biomolecules [6,7] to design
bimodal MRI and OI probes.

In OI applications, light nanosources—commonly called biolabels—allow illuminating
cellular and sub-cellular details. These sources are generally organic chromophores [8,9]
luminescent lanthanide (Ln) chelates [10,11] or intrinsically optically active inorganic
nanocrystals like metallic plasmonic particles (PPs) [12,13], semiconducting quantum dots
(QDs) [14,15], including carbon dots (CDs) [16], and Ln doped up or (down) conversion
ceramic nanoparticles, very often abbreviated as UCNPs and DCNPs [17]. All these dyes
can be combined in a single architecture with para- or superparamagnets to form bimodal
probes for both cancer cells MRI detection and subcellular fluorescence imaging. This was
for instance achieved by embedding organic chromophores in silica to form a luminescent
core on which magnetic iron oxide nanosatellites were attached [18] as well by coating
UCNPs or DCNPs with a silica thin layer embedding paramagnetic Gd complexes [19].

Focusing on these two functionalities—magnetic and optical ones—several efforts
have been carried out to build smart bimodal platforms, where simultaneous MR and
optical imaging are desired. The aim of this review is to highlight the different strate-
gies to engineer and prepare such dual probes and particularly those architected around
luminescent Ln-based dyes. The choice of these systems instead of others is motivated
by the exceptional biological, chemical, and physical properties of Ln light sources and
particularly those of UCNPs. UCNPs, in contrast to all the other dyes, operate through the
well-known up-conversion phenomenon, which is based on the absorption of lower-energy
photons by lanthanide centers located in the crystal lattice of an inert matrix, mainly fluo-
ride, oxyfluoride, or phosphate [17], and the emission of higher-energy photons thanks to
efficient internal energy transfers. In relation to their chemical composition, they exhibit
improved stability against photobleaching, photoblinking, and photochemical degradation,
while they operate at low energy excitation light, in the biological optical transparency
window, meaning their use without requiring any local photoexcitation instruments.

This review is thus organized into three main sections, a first one summarizing MRI
principle and remembering CA classification, a second highlighting the requirement for an
efficient OI and listing the existing Ln-based dyes, the molecular and the solid-state ones,
and finally, a third section specifically dedicated to the description of the bimodal MRI and
OI probes, constructed around these Ln emitting centers, with a special emphasis on their
chemical processing strategies.

2. MR Imaging and Contrast Agents

MR imaging is based on the magnetic nuclear resonance of water protons in the body.
With MRI, three-dimensional images of entire live specimens can be obtained with high
resolution and without the use of ionizing radiation. The MR contrast is essentially derived
from the environment variation of water protons leading to different signal intensities.

In practice, when a living body is placed in a large static magnetic field B0, many
of the free hydrogen nuclear magnetic moments align themselves with the direction of
the magnetic field. When a magnetic radio-frequency pulse BRF, with an appropriate
frequency (the gyromagnetic resonance frequency) is applied perpendicular to B0, the
nuclear magnetic moments of the hydrogen atoms tilt away from B0. At the end of the
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pulse, the magnetic moments are in the plane perpendicular to B0. They then relax to
realign themselves parallel to B0, by reducing their BRF induced transverse magnetization
component (Mxy) to zero and increasing their longitudinal magnetization component (Mz)
to its initial value, with characteristic T2 and T1 relaxation times, respectively.

The Bloch equations for the relaxation of the longitudinal (Mz) and transverse (Mxy)
components of the nuclear magnetization of water protons to their equilibrium state
indicate that the MRI signal is proportional to the proton density of the targeted tissues
and to the product (1−e−TR/T1 )−TE/T2 , where TR is the time of the BRF pulse and TE the
time between the application of the BRF pulse and the measurement of the response signal.
In the presence of CAs, the T1 and T2 relaxation times are significantly shortened, affecting
thus the MRI signal, inducing the desired water proton response contrasting.

The efficiency of CAs is usually expressed by the enhancement of the relaxation rate,
also called relaxivity, ri, defined according to the following equation:

(1/Ti) = (1/Ti)0 + ri[CA] (1)

where (1/Ti) is the inverse of Ti(=1 or 2) in the presence of CA, at a [CA] concentration, while
(1/Ti)0 is the inverse of Ti(=1 or 2) in its absence. It is generally stated in MRI textbooks that
the ratio r2/r1 determines whether a given CA is more suitable as a T1 (positive) or as a T2
(negative) MRI agent. When CAs affect longitudinal and transverse relaxivities to a similar
degree they are better suited for T1-weighted imaging and are commonly called positive
CAs, whereas when they preferentially increase transverse relaxivity, typically r2/r1 >>1,
they are better suited for T2-weighted imaging and are called negative CAs.

The interaction between CAs and water protons is of two types, depending on whether
the water molecule is directly attached to the CA or not. It is of inner-sphere type if
it proceeds through a direct water attachment and it is of outer-sphere type if it does
not (Figure 1), the former being more effective for positive CAs while the latter for the
negative ones.
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Figure 1. Variables contributing to CA relaxivity in the inner- (in blue) and outer-sphere (in black)
mechanisms. Reproduced from [20], with permission from RSC, 2009.

The Solomon–Bloembergen–Morgan equations are commonly used to describe the
relationship between variables contributing to the inner-sphere interaction and the relax-
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ivity [21,22]. They define the number of water molecules (q) directly attached to the CA,
the residence lifetime of inner-sphere water molecules (τm), and the rotational tumbling
time (τR) of the CA. Greater inner-sphere water access (i.e., higher q values) leads to larger
relaxivity values. A similar trend is true for τR, longer tumbling times yielding higher
relaxivity values. The relationship between τm and relaxivity is more subtle. Nevertheless,
it is accepted now that if τm is too small, the interaction between a water molecule and the
CA is too short for the full relaxivity potential to be achieved [2]. In practice, the relaxivity
is more often limited by slow exchange (due to a long τm) when only a limited number of
water molecules can be relaxed.

In the outer-sphere model introduced by Ayant et al. [23] and Freed et al. [24] for
paramagnetic agents, and adapted by Gillis et al. to superparamagnetic ones [25], the
increase in the relaxation rate 1/T2 compared to pure water originates from fluctuating
dipolar interactions between nuclear spins of water protons and the electronic magnetic
moment of the CAs. For a limited range of diameters called the ‘motional averaging regime’,
the CA can be considered immobile during TE compared to the random trajectories of
water molecules diffusing around the CA sphere. In this case, Vuong et al. have shown
that r2 follows a universal scaling law that is quadratic both with the magnetization
and with a, the radius of the outer sphere also called the relaxometric size, defined as
the minimum approach distance between H2O molecules and the CA center [26]. The
diffusional correlation time of outer-sphere water molecules (τD) can also contribute to the
CA relaxivity, even if the relationship between τD and r2 is not evident.

Finally, CAs must be non-toxic and they must be engineered accordingly. An agent
with a high relaxivity value allows reducing its dose and, thus, its potential toxicological
effect. These two criteria have to be absolutely respected to allow CA clinical use and
consequently to drive their design and synthesis [2].

2.1. Positive Contrast Agents

Positive CAs are mainly (Figure 2) paramagnetic metallic complexes. Their average
size is in the nanometer range and they can be easily distributed over the whole body by
intravenous administration. Since they are small, they can diffuse into the extravascular
media and may be eliminated by glomerular filtration.
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The most used paramagnetic cation for this purpose is Gd3+. This cation has a high
electronic magnetic moment thanks to its seven non-paired 4f electrons. When submitted to
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a strong static magnetic field, B0, its moment is aligned parallel to the direction of the field.
Its effective magnetic moment is 7.95 µB. Free Gd3+ are nephrotoxic and neurotoxic [27].
For these reasons, they are never used without strong chelation to polydentate hydrophilic
ligands (Figure 2) to make them as stable as possible in physiological media.

Other paramagnetic cations, chelated by the same kind of ligands, have also been
investigated as potential positive CAs. These cations are mainly from the first series of
d-block elements, like Mn2+ and Fe3+, which have an effective magnetic moment of 5.92 µB,
smaller than the 7.92 µB of Gd3+. This magnetization decrease is expected to decrease total
relaxivity. Typically, chelating Mn2+ by N,N’-dipyridoxylethylenediamine-N,N’-diacetate-
5,5’-bis(phosphate) (DPDP) forms a Mn-DPDP complex with a longitudinal relaxivity r1 of
1.6 mM−1.s−1 (T = 25 ◦C, B0 = 0.47 T), smaller than the usual 4 mM−1.s−1 of monomeric Gd
complexes within the same operating conditions [28,29]. Besides Gd3+, other paramagnetic
lanthanide cations were tested. The most commonly studied is Dy3+, which has the largest
effective magnetic moment value (10.65 µB) and which has been expected to allow reaching
higher longitudinal relaxivity values. In fact, its highest effective magnetic moment and
its shortest electronic relaxation time (~10−13 s), make it much more investigated for T2
contrast enhancement at ultrahigh field [30,31].

The longitudinal relaxivity of all these molecular complexes can be tuned by replacing
the conventionally used polydentate ligands with ones having a higher molecular weight
increasing thus the total tumbling time. It can be also increased by assembling the para-
magnetic centers in polymeric complexes [2]. More sophisticated assemblies can be also
built to increase r1. They consist of dispersing several monomeric Gd complexes based
on diethylene-triamine-pentaacetate (DTPA) or 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-
tetraacetate (DOTA) chelators into biocompatible polymers [32–36] or by attaching them
around hydrophilic dendimeric structures [37] (Table 1).

Compartmentalization of free or chelated paramagnetic cations, mainly Gd3+, was also
explored as chemical strategy to enhance r1 (Figure 3). Liposomes [38], carbon nanotubes
(CNTs) [39–41], or the cavities of certain proteins, like apoferritin [42,43] were used in
order to significantly increase the number of Gd-coordinated water molecules and then to
enhance the longitudinal relaxivity of the resulting architectures. Unfortunately, despite the
very promising physical properties measured on this new generation of probes, their weak
stability in biological media compromised their clinical use. Finally, with always the same
goal of increasing the number of interacting water molecules, biocompatible inorganic
particles, like silica or gold, were decorated by monomeric Gd-chelates (Figure 3), with
very encouraging results [44].
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Figure 3. Schematic representation of different monomeric Gd assemblies: (a) Liposomes encapsulating Gd-DTPA com-
plexes, (b) CNTs, and (c) apoferritin compartmentalizing free or coordinated Gd3+ ions in their cavities, and (d) gold
nanoparticles functionalized with Gd-DTPA complexes.
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Table 1. Longitudinal relaxivities r1 of different Gd-based CAs

Number
Gd3+/CA CA weight kD r1/CA

mM−1.s−1
r1/Gd3+

mM−1.s−1 T ◦C f RF MHz Ref.

Gd-DTPA 1 0.6 3.7 3.7 37 20 [2]

Gd-DOTA 1 − 4,2 4.2 25 20 [2]

Dextran-Gd-DTPA 15 75 57 11.0 37 20 [32]

Polylysine-Gd-DTPA 60 48.7 850 13.1 39 20 [35]

Albumin-Gd-DTPA 90 90 420 14.0 25 10 [45]

6-dendrimer-Gd-DTPA 170 139 5800 34.0 37 − [46]

Gd-NTCs − 0.044–0.049 173–164 40 60 − [47]

Gd-DOTA-Apoferritin 6 − 3.9 25 64 − [43]

Gd-Me2DO2A-Apoferritin 36 − 35.9 25 64 − [43]

The last family of positive CAs is that based on heavy paramagnetic inorganic NPs,
which have intrinsically high τR values. These particles are functionalized by hydrophilic
molecules or biomolecules to make them biocompatible. Most of them are 3d- and 4f-block
metal oxides like Mn3O4 [48], MnO [49], and Gd2O3 [50–52]. Their longitudinal relaxivity
depends mainly on their size, the spin of the metallic cation and the organic coating, which
should allow water to interact with the paramagnetic surface cations. Experimentally,
their r1 values were found to be of the same order of magnitude as those of molecular
CAs (Table 2). Recently, ultra-ultrasmall superparamagnetic iron oxide NPs (UUSPIOs)
with a very small size (less than 5 nm) and a very small magnetization (≤10 Am2.kg−1),
have been included in this last class of CAs [53,54]. Their measured r2/r1 values close to
1 explain their classification. They are not yet commercially available, but they would be
an excellent alternative to the more expensive gadolinium-based CAs, currently used and
still suspected of toxicity [55].

Table 2. Longitudinal relaxivity r1 for different paramagnetic inorganic NPs under different MRI
operating conditions

Size nm r1/Mn+ mM−1.s−1 T ◦C B0 T Ref.

MnO spheres
7

20
0.37
0.13 25 3.0 [49]

MnO hollow spheres 20 1.15 25 1.5 [56]

Mn3O4 spheres 9.8 1.31 25 3.0 [48]

Mn3O4 platelets 10 2.06 25 3.0 [48]

Gd2O3 particles 5 9.2 21–23 1.5 [52]

2.2. Negative Contrast Agents

Negative CAs are exclusively superparamagnetic NPs coated with hydrophilic ligands
or polymers to improve their ability to form stable aqueous colloids. Their introduction in
a solution or a tissue induces local magnetic field gradients, which accelerate the loss of
phase coherence of the water proton magnetic nuclear moments, improving MR contrasting
at their proximity [26,57].

These CAs are mainly based on iron oxide nanocrystals, which were marketed in the
2000–2010s, under various names (Feridex, Resovist, Sinerem, Lumirem, GastromMARK,
Sienna+, Feraheme . . . ) [58]. They are classified according to their average size and
their aggregation state (Figure 4). Usually, individually dispersed iron oxide cores with a
hydrodynamic diameter below 40 nm are referred as ultrasmall superparamagnetic iron
oxides (USPIOs), while multicore clusters or polycrystals with diameters in the 100–200 nm
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range are known as superparamagnetic iron oxides (SPIO) [59]. There are also well-shaped
and highly magnetized iron oxide single crystals, usually referred as monocrystalline iron
oxides (MIONs) [60]. This size classification is very important since it affects the total
magnetization of the particles and thus the r2 value. The larger the particle, the higher the
magnetization is and the higher magnetization, the higher r2 is (Table 3). It also defines the
ability of these particles to cross blood vessels, when they are intravenously administrated.
The commercial agent, Sinerem, which belongs to the USPIO class, may for instance cross
the damaged brain blood barrier, whereas Endorem, which belongs to the SPIO class, may
cross only liver vessels. It is, moreover, strongly uptaken by healthy Kupfer cells but not at
all by malignant liver cells, making it particularly useful for liver imaging.
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Figure 4. Schematic representation of the three main iron oxide-based contrast agents and selected
TEM images.

Non-iron oxide NPs have also been considered for MRI contrasting. In most cases,
they consist of superparamagnetic Ln substituted manganites, like La1-xSrxMnO3 [61–63]
and ferrites, like Zn1-xFe2+xO4 [64], MnFe2O4 [65], CoFe2O4 [66], Zn1-xCoxFe2O4 [67],
Zn1-xNixFe2O4 [68], and Zn1-xMnxFe2O4 [69] among others. Exchange-coupled magnetic
NPs, commonly called enhanced ferrite nanoparticles (EFNPs), consisting of a metallic core,
mainly iron, coated by a ferrite shell, mainly iron oxide, form another class of negative CAs.
Their structure allows increasing the total magnetization of the engineered particles and
prevents the oxidation of their highly magnetized metallic cores [70]. For comparison, such
EFNPs exhibit r1 and r2 relaxivities of 7.19 and 9.96 mM−1·s−1 (expressed per particle),
respectively, at room temperature for an applied B0 of 2.4 T. These values are higher than
those for commercial iron oxide-based CAs commonly used in human MR examinations if
expressed per particles.

Finally, d-block metal NPs, like Fe or Fe-Co, protected from air and water oxidation,
have been tested. These CAs have higher magnetization (typically 185 Am2 .kg–1 for
Fe-based NPs at room temperature) than all SPIO- and ferrite-based particles (typically
60–90 Am2 .kg−1 at room temperature) [71]. As a consequence, despite their very reduced
size, their r2 and r2 /r1 values are expected to be very high (Table 4).
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Table 3. Main characteristics of iron oxide-based negative CAs. Note, the reported r2 and r2/r1 values were expressed per
mM of iron atoms.

Composition Size nm r2 mM−1.s−1 r2/r1 T ◦C B0 T Ref.

SPIO
Fe2O3 NPs in Dextran 50–100 160 4.0 37 0.47

[72]
Fe2O3 NPs in carboxylate Dextran 30–50 190 7.9 37 0.47

USPIO Fe2O3 NPs in Dextran 17–20 53 2.2 37 0.47

MION Fe2O3 NPs in Dextran 18–24 35 2.2 37 0.47

Table 4. Main characteristics of non-iron oxide negative CAs

Composition Size nm r2 mM−1.s−1 T ◦C B0 T Ref

Manganite 57 nm sized La0.75Sr0.25MnO3 NPs coated with
a silica layer of 80–100 nm in thickness 150

580 a

540 a

520 a

20
20
20

0.5
1.5
3.0

[62]

Ferrite
4 nm sized CoFe2O4 NPs in carboxylate PEG 30 185 b 25 1.5

[73]
8 nm sized MnFe2O4 NPs in PEG-PCL 80 66 b 25 1.5

Fe Less than 10 nm sized Fe NPs coated by PEG 10 129 c 25 1.5 [74]

EFNPs Fe@NixFe3-xO4 NPs coated by PEG 15 9.96 d 25 2.4 [70]

Expressed per mM of (a) manganese atoms, (b) paramagnetic cations, (c) iron atoms, or (d) particles.

An important issue of negative CA design is their surface modification to make them
biocompatible for in vitro and in vivo uses. This modification usually involves: (i) the
synthesis of hydrophilic polymer brushes from the CA particle surface (‘grafting-from’
reactions), using different coupling ligands (silane, carboxylate, phosphonate . . . ) [75,76];
(ii) the attachment of preformed polymer brushes at the surface of the particles by different
surface reactions (click chemistry, diazonium chemistry . . . ) [77]; (iii) the self-assembly of
polymer chains with the magnetic particles, based mainly on electrostatic interactions [78],
leading to core@shell [79] or embedded [80,81] morphologies; (iv) the grafting of specific
molecules [82,83] or biomolecules [6,84] with targeting ability. This list is, of course, not
exhaustive but it gives an idea of the further research directions in the field of negative
CAs. The polymers most used are polysaccharides (Dextran, Alginate, Chitosan . . . ),
polyethyleneglycols (PEG), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA),
polycaprolactone (PCL), polyacrylic acid (PAA), certain polypeptides, and fatty acids, due
to their ability to increase the aqueous colloidal stability of the particles [72]. The targeting
biomolecules can be specific proteins like transferrin [84] and TRAIL [6], short peptides like
RGD [85,86] and Tat [87,88], or just small molecules like folic acid [83] and dopamine [82].

Surface modification may also involve an inorganic coating or embedding with inert
and hydrophilic silica [89–91] or hydroxyapatite [92], which may also serve as matrix for
drugs, or radioisotopes, transforming the initial CAs into theranostic agents.

3. Optical Imaging Probes

OI applied to living organs or cells has become a fundamental tool for imaging
functional lesions in vivo and in vitro. It offers the possibility of real-time spatio-temporal
monitoring of biological processes in a non-invasive way. This technique takes advantage
of the phenomenon of intrinsic luminescence induced by endogenous biological matter or
by exogenous species introduced near the biological structure to be imaged. Interestingly,
certain exogenous dyes, in addition, to be able to illuminate a given area of their biological
environment, they are able to express its physicochemical state, acting as metabolism
marker. Their optical signal may be thus correlated to the variation of biological parameters
like the pH and the calcium concentration [93–96].

Nowadays, OI is routinely used for in vitro observations, thanks mainly to fluores-
cence microscopy. However, its use for in vivo diagnostics is still in progress and to date,
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only endoscopic light exciting or detecting systems are used. Indeed, the incident as well
the emitted photon may be: (i) reflected by the surface of the tissue; (ii) absorbed by the
tissue, losing its energy; (iii) finally, scattered by the tissues. As a consequence, a loss of
coherence of the light occurs and it becomes impossible to know where the photons are
going out or coming from limiting the OI operating spectral range to the body transparency
window namely between 600 and 1000 nm (Figure 5) [97]. Anyway, technological advances
in the field of electronics, with the development of very high-resolution, ultra-sensitive
and very small CCD cameras as well as optical fibers allowed the fabrication and the
commercialization of endoscopic imaging systems, coming very close to the target tissue
and detecting directly, inside the body, the emitted photons. Systems adapted to a con-
ventional bronchoscope, in which the conventional beam is replaced by blue laser light
(442 nm), have been thus successfully used to image the lungs and bronchi. The emitted
light has been collected by means of an intensified CCD camera, connected to the image
beam of an endoscope. Optical imaging devices using endoscopic pathways and allow-
ing the measurement of the autofluorescence of some endogenous porphyrins have been
also proposed for urology, gynecology, and otorhinolaryngology [98–100]. More recently,
two low energy photon excitation technology has been developed, in replacement of the
conventional single high energy photon excitation one, making the dye photoexcitation
less-harmful and deep-penetrating, even carried out outside the body [101].

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 34 
 

 

 

photon excitation one, making the dye photoexcitation less-harmful and 

deep-penetrating, even carried out outside the body [101]. 

 

Figure 5. Absorbance of various tissue and blood components from 200 nm to 10 μm. The optical 

imaging window ranging from 650 to 1450 nm represents the range where tissue penetration is 

greatest, HbO2 and Hb referring to oxygenated and deoxygenated hemoglobin. Reproduced from 

[97] with permission from ACS, 2012. 

Exogenous dyes usually produce light locally after a photonic excitation. Each dye 

can be defined by its excitation and emission spectra, its lifetime (the time taken by the 

fluorophore to emit after the cessation of the excitation), and its quantum yield. In 

practice, the excitation wavelength chosen to trigger the reaction of a specific dye may 

lead to a ‘parasite’ luminescence of endogenous dyes, which must be discriminated to 

avoid OI artifacts. For such a purpose, light information is often processed as a function 

of time. Indeed, as soon as the excitation ceases, the fluorescence gradually fades, 

according to a variable time constant which depends on the nature of the fluorophore. If 

the exogenous dyes exhibit long relaxation times, longer than those of endogenous ones, 

one has to wait for the extinction of the endogenous fluorescence before opening the 

camera shutter [102,103]. Reversely, if their relaxation times are shorter, the camera 

shutter must be closed quickly, and the endogenous fluorescence contribution must be 

subtracted from the recorded signal. 

Finally, the quantum yield Φ of an exogenous dye, measures the ratio of the number 

of photons emitted to the number of photons absorbed during the lifetime of its excited 

state. It is usually defined by the equation 

Φ = kr/(kr + knr) (2) 

Where kr and knr are the rate constants of its radiative and non-radiative de-excitation 

after absorption of the incident photon. In practice, it is determined by comparing the 

absorption and emission spectra of a reference compound, excitable at the same 

wavelength as the dye and whose emission covers the same range as that of the 

compound of interest. The higher the Φ, the more efficient the exogenous dye is. In 

contact with physiological media, Φ may decrease drastically, reaching luminescence 

extinction. In the case of molecular dyes, this extinction is mainly due to the chemical 

reactivity of the fluorophores with free oxygen-based radicals. In the case of solid ones, it 

is much more due to the interaction of their organic coatings with the available 

bio-organics, leading to photon reabsorption. These differences justify the classification 

of all the optical imaging probes into two classes: molecular dyes, including organics and 

lanthanide chelates, and inorganic, mainly solids including PPs, QDs, CDs, DCNPs and 

UCNPs. However, for our purposes, we will classify all these agents into two main 

families, Ln-containing and Ln-free dyes. 

Figure 5. Absorbance of various tissue and blood components from 200 nm to 10 µm. The optical
imaging window ranging from 650 to 1450 nm represents the range where tissue penetration is
greatest, HbO2 and Hb referring to oxygenated and deoxygenated hemoglobin. Reproduced from [97]
with permission from ACS, 2012.

Exogenous dyes usually produce light locally after a photonic excitation. Each dye
can be defined by its excitation and emission spectra, its lifetime (the time taken by the
fluorophore to emit after the cessation of the excitation), and its quantum yield. In practice,
the excitation wavelength chosen to trigger the reaction of a specific dye may lead to a
‘parasite’ luminescence of endogenous dyes, which must be discriminated to avoid OI
artifacts. For such a purpose, light information is often processed as a function of time.
Indeed, as soon as the excitation ceases, the fluorescence gradually fades, according to a
variable time constant which depends on the nature of the fluorophore. If the exogenous
dyes exhibit long relaxation times, longer than those of endogenous ones, one has to wait for
the extinction of the endogenous fluorescence before opening the camera shutter [102,103].
Reversely, if their relaxation times are shorter, the camera shutter must be closed quickly,
and the endogenous fluorescence contribution must be subtracted from the recorded signal.
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Finally, the quantum yield Φ of an exogenous dye, measures the ratio of the number
of photons emitted to the number of photons absorbed during the lifetime of its excited
state. It is usually defined by the equation

Φ = kr/(kr + knr) (2)

where kr and knr are the rate constants of its radiative and non-radiative de-excitation after
absorption of the incident photon. In practice, it is determined by comparing the absorption
and emission spectra of a reference compound, excitable at the same wavelength as the
dye and whose emission covers the same range as that of the compound of interest. The
higher the Φ, the more efficient the exogenous dye is. In contact with physiological media,
Φ may decrease drastically, reaching luminescence extinction. In the case of molecular
dyes, this extinction is mainly due to the chemical reactivity of the fluorophores with free
oxygen-based radicals. In the case of solid ones, it is much more due to the interaction
of their organic coatings with the available bio-organics, leading to photon reabsorption.
These differences justify the classification of all the optical imaging probes into two classes:
molecular dyes, including organics and lanthanide chelates, and inorganic, mainly solids
including PPs, QDs, CDs, DCNPs and UCNPs. However, for our purposes, we will classify
all these agents into two main families, Ln-containing and Ln-free dyes.

3.1. Ln-Free Dyes

This luminescent agent family is rich. Their major representatives are organic chro-
mophores. Briefly, they consist of natural or synthetic conjugated organic molecules. Their
excitation is very fast (10–17 s) and their excited lifetime is of few nanoseconds [8]. Their
radiative relaxation leads to the emission of a photon of energy lower than that of the
one absorbed (Stoke displacement). Most of these molecular dyes are commercialized:
coumarins, fluoresceins, rhodamines, and cyanines. Their absorption and emission cover
the entire near-UV to near-IR spectral range (Figure 6). Their quantum yields are relatively
low, about 10–15% in visible light and 2–4% in IR [104,105].

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 34 
 

 

 

3.1. Ln-Free Dyes 

This luminescent agent family is rich. Their major representatives are organic 

chromophores. Briefly, they consist of natural or synthetic conjugated organic molecules. 

Their excitation is very fast (10–17 s) and their excited lifetime is of few nanoseconds [8]. 

Their radiative relaxation leads to the emission of a photon of energy lower than that of 

the one absorbed (Stoke displacement). Most of these molecular dyes are 

commercialized: coumarins, fluoresceins, rhodamines, and cyanines. Their absorption 

and emission cover the entire near-UV to near-IR spectral range (Figure 6). Their 

quantum yields are relatively low, about 10–15% in visible light and 2–4% in IR [104,105]. 

. 

Figure 6. Main families of organic chromophores and their emission wavelength ranges. 

These last years, dipyromethene borane derivatives, commonly known as bodipy, 

have emerged. Thanks to their higher quantum yields, approaching 100% for their 

aza-based compounds (Figure 7), and their emission wavelengths range between 520 and 

670 nm [106] with a life-time of some nanoseconds (from 3.9 ns in water to 5.7 ns in 

methanol), they have attracted a lot of interest. They suffer nevertheless from certain 

drawbacks: (1) their Stoke displacement is low, making it difficult to filter the scattered 

incident light (at the excitation wavelength of the system) and the emission signal; and (2) 

their absorption and emission bands are broad, making it awkward to use different 

bodipy markers simultaneously [106]. 

 

Figure 7. (a) Bodipy dye and (b) its aza derivative. Reproduced from [106], with permission from 

John Wiley and Sons, 2006. 

Ln-free dyes class includes nanosolids, PPs and QDs. PPs, mainly gold NPs, exhibit 

tunable optical properties including Mie scattering, surface plasmonic resonance (SPR), 

surface-enhanced luminescence and surface Raman scattering. They are used for 

high-sensitivity and high-resolution optical imaging [107–109]. Their surface plasmon 

resonance which corresponds to the interaction with the light of the free conductive 

electrons on their surface, is the major feature. It causes enhanced absorption and 

scattering intensities at the SPR wavelength. The intensity and position of the SPR can be 

controlled by the size and the shape of the PPs but also by the dielectric constant of their 

surrounding medium. The SPR wavelength is thus red-shifted with increasing the size of 

PPs, changing their shape from an isotropic to an anisotropic morphology (nanorods 

[110], nanostars [110,111]… Figure 8), or coating them with dielectric materials of high 

refractive index (iron oxide [112,113], polyvinyl pyrrolidone (PVP) [114,115]…). 

R

R’

R’’

Coumarines Fluoresceins Rhodamines         Cyanines

a) b)

Figure 6. Main families of organic chromophores and their emission wavelength ranges.

These last years, dipyromethene borane derivatives, commonly known as bodipy, have
emerged. Thanks to their higher quantum yields, approaching 100% for their aza-based
compounds (Figure 7), and their emission wavelengths range between 520 and 670 nm [106]
with a life-time of some nanoseconds (from 3.9 ns in water to 5.7 ns in methanol), they have
attracted a lot of interest. They suffer nevertheless from certain drawbacks: (1) their Stoke
displacement is low, making it difficult to filter the scattered incident light (at the excitation
wavelength of the system) and the emission signal; and (2) their absorption and emission
bands are broad, making it awkward to use different bodipy markers simultaneously [106].
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Figure 7. (a) Bodipy dye and (b) its aza derivative. Reproduced from [106], with permission from
John Wiley and Sons, 2006.

Ln-free dyes class includes nanosolids, PPs and QDs. PPs, mainly gold NPs, exhibit
tunable optical properties including Mie scattering, surface plasmonic resonance (SPR),
surface-enhanced luminescence and surface Raman scattering. They are used for high-
sensitivity and high-resolution optical imaging [107–109]. Their surface plasmon resonance
which corresponds to the interaction with the light of the free conductive electrons on their
surface, is the major feature. It causes enhanced absorption and scattering intensities at the
SPR wavelength. The intensity and position of the SPR can be controlled by the size and the
shape of the PPs but also by the dielectric constant of their surrounding medium. The SPR
wavelength is thus red-shifted with increasing the size of PPs, changing their shape from an
isotropic to an anisotropic morphology (nanorods [110], nanostars [110,111] . . . Figure 8),
or coating them with dielectric materials of high refractive index (iron oxide [112,113],
polyvinyl pyrrolidone (PVP) [114,115] . . . ).
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Besides, PPs show superior photostability, which means that they can serve as multi-
colored optical probes and sensors for in vivo real-time imaging. Additionally, the non-
toxic and chemically stable ones, like gold NPs, can be delivered into living organisms
non-invasively. They can be easily functionalized by various biotargets thanks to metal–SH
bio-conjugation, making them, gold PPs in particular, of primary importance for in vivo
and in vitro OI.

The last Ln-free dye type is that of QDs. QDs exhibit a strong emission resulting
usually from the excitation by photons of energy hυex higher than their band gap Eg.
This emission proceeds as radiative recombination of the photogenerated hole (in the
valence band) and the electron (in the conduction band) pair (exciton). The radiative
recombination of excitons can be direct (band-to-band) or indirect. In the latter case, lattice
defects or impurities (doping), associated with levels of energy located in the gap, act as
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recombination centers, and an intermediate step is involved in the return of the excited
electron from the conduction band to the valence band of the semiconductor. The surface
defects of the nanocrystalline semiconductor can be a preferred site for recombination. One
can very well imagine that this surface-related mechanism is important, maybe the most
important, to the point of greatly modulating the luminescence properties of this kind of
dye. Additionally, due to quantum confinement effect, ultrafine QD bands may split into
discrete levels and their band gap increases when the radius of the nanocrystals r decreases,
leading to Eg values higher than those of bulk counterparts [116]. The wavelength of
the band-to-band radiative de-excitation decreases, making any QD-based biolabeling
size-dependent (Table 5, Figure 9).

Table 5. Main spectroscopic characteristics of luminescent semiconducting nanocrystals for optical fluorescence imaging. ε
is the molar extinction coefficient associated with the main absorption, FWHM the width at half height of the emission band
and Φf the quantum yield.

QD λabsorption
(nm)

λemission
(nm)

FWHM
(nm)

ε

(M−1 cm−1)
Φf
(%) Ref.

CdS 350–470 370–500 ~30 1.0 × 105 (at 350 nm)
9.5 × 105 (at 450 nm)

≤60 a [118]

CdSe 450–640 470–660 ~30 1.0 × 105 (at 500 nm)
7.0 × 105 (at 630 nm)

65 a

8 a [119]

CdTe 500–700 520–750 35–45 1.3 × 105 (at 570)
6.0 × 105 (at 700 nm)

30 a

75 a [120,121]

PbS 800–3000 >900 80–90 − 26 b

70 c [122–124]

PbSe 900–4000 >1000 80–90 1.23 × 105 45 d [125,126]

InP 550–650 620–720 50–90 − 10–60 [127,128]

(a) in CH3OH, (b) in HEPES, (c) in C6H14, and (d) in CHCl3.
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Figure 9. (a) Absorption spectra, (b) normalized emission spectra, (c) Tauc plot obtained from diffuse
reflectance spectra, and (d) the comparison of the experimentally determined bandgap of CdSe QDs
with theoretically calculated values using Brus equation. Te emission spectra were recorded using an
excitation wavelength of 400 nm. The inset in (b) shows the value of the corresponding quantum
yield of different sized QD and the fat line (at 1.7 eV) in (d) indicates the bulk band gap value of
CdSe. The band gap is calculated experimentally from the Tauc plot and from the PL emission peak
position (d). Reproduced from [117], with permission from Nature Publishing Group, 2018.
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In practice, QDs are passivated by hydrophilic organic ligands, to improve the dis-
persion of the particles in aqueous media and minimize the non-radiative recombination
of the photogenerated exciton by interaction with the external environment. It should
be noted that organic ‘passivation’ is not always enough to avoid fluorescence extinction.
As an alternative, each QD can be replaced by a semiconductor-semiconductor core–shell
counterpart, whose quantum efficiency may exceed 50% [126,129–131]. Of course, the engi-
neered semiconducting hetero-junctions have to be finally surrounded by a hydrophilic
organic [132–134] or inorganic (mainly silica) [135,136] thin layer to make them soluble in
physiological media.

Despite all these very interesting optical properties, QDs have been seldom employed
in OI. Their toxic heavy metals composition with the risk of release of these elements makes
their use still controversial. Studies are underway to determine the dose effects for each
QD family, based on their size, chemical nature, and surface state [137–140]. Only efficient
clearance [141] may promote their application in clinic.

Recently a new class of metal free semiconductive NPs has emerged. It is that of
surface-passivated carbon dots (CDs). They have successfully been used as in vitro [16]
and in vivo [142] biolabels. To date, CDs are considered as safe materials, non-toxic towards
different cell lines even at high concentrations [143].

3.2. Ln-Based Dyes

The optical properties of Ln cations derive from the electronic transitions of the
excited state, populated under illumination, towards the ground state (f–f transitions),
either directly or indirectly by transiting towards excited levels of lower energies (Figure 10).
As a consequence, their emission bands are narrow and of specific energies [144]. Moreover,
their excitation life-times are longer, from a few microseconds to several milliseconds, than
those of organic chromophores. This property makes it easy to discriminate between their
luminescence signal and that of endogenous dyes [145,146].
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Figure 10. Partial energy diagrams for the lanthanide aquo ions. The main luminescent levels
are drawn in red, while the fundamental level is indicated in blue. Reproduced from [147], with
permission from RSC Publisher, 2005.

As biolabels, they are used as hydrophilic complexes (molecular dyes) or as lumines-
cent ceramic NPs.

3.3. Molecular Dyes

Ln cations are chelated to hydrophilic polydentate ligands to form stable complexes,
for which the energy of the involved f-f- transitions are weakly affected by either the cation
environment or the experimental measurement conditions [144,148]. Timely, to achieve
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their clinical use, these molecular edifices are upgraded by the covalent grafting of labeling
functions [149].

The design of this family of molecular dyes involves also two main improvements, in
relation to some intrinsic limitations. Indeed, the photoluminescence intensity of Ln cations
is weak [147]. The electric dipolar f-f transitions, at the origin of the luminescence spectrum,
are forbidden by the Laporte and sometimes spin multiplicity rules [149]. It results that
Ln3+ have extremely low extinction coefficients (few units M−1.cm−1 in the best cases)
and their direct excitation through these transitions is difficult and consequently their
photoluminescence is weak. This can be overcome by sensitizing the lanthanide cations
through a covalent modification of their ligand with some aromatic molecules, called
antenna, (Figure 11) having an appropriate electronic structure for fluorescence resonance
energy transfer (FRET) [150]. Secondly, the risk of their photoluminescence quenching
by the OH, NH, and CH oscillators in their inner coordination sphere is not negligible at
all [149,151]. To minimize this effect while obtaining extremely stable water-soluble edifices,
Ln coordination must be balanced between the strength of the electrostatic interactions
between Ln3+ and the ligands and steric or electrostatic repulsion interactions between
the ligands around the cations, while filling as much as possible the coordination sphere,
avoiding water bonding. There are essentially three strategies for such a purpose. The first
is to use highly pre-organized ligands featuring macrocycles such as triazacyclononane
or 1,4,7,10-tetraazacyclododecane (Cyclen) [152–154]. The second strategy is to provide
numerous negatively charged functions such as carboxylates or phosphonates [154,155]
(Figure 11).
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3.4. Solid Inorganic Dyes

Ln-doped up-conversion and down-conversion luminescent ceramic nanocrystals
(UCNPs and DCNPs) have been seriously considered for OI application. With an appropri-
ate surface modification, they may form an interesting class of inorganic dyes, particularly
UCNPs. In practice, they consist of a transparent crystalline host lattice that accommodates
the dopants. For high-yield light emission, the host lattice must closely match that of the
dopant ions, have low phonon vibration energies, and good chemical stability [156,157].
Based on these criteria, the most commonly used host lattices for the synthesis of UCNPs
are fluorides [158–160], oxides [161–163], and sometimes phosphates [164–166] (Table 6).
Fluoride matrixes are the most efficient UCNPs [167–169]. These are commonly doped
with two luminescent cations: the activator, emitting visible light and the sensitizer, ab-
sorbing the photoexcitation, and transferring the required energy to the activator (Table 6).
To minimize cross-relaxation energy loss, the concentration of the sensitizer is relatively
high (~20 mol. %), while that of the activator is low (below 2 mol. %) [169–172]. In this
mechanism, higher-energy photons are emitted by sequential absorption of lower-energy
photons (Figure 12) [17,173], leading to very strong emission and increasing the optical
detection sensitivity.
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Table 6. Optical characteristics of representative UCNPs

Host Lattice Sensitizer Activator Major Emission (nm) Ref.

NaYF4 Yb Er 518, 537 and 652 [169]
Er 540 and 660 [168]
Er 521, 539 and 651 [174]
Tm 450, 475 and 647 [168]
Ho 540 [175]
Ho 542 and 645, 658 [176]

LaF3 Yb
Er 520, 545 and 659 [177]
Tm 475 [177]
Ho 542 and 645, 658 [177]

CaF2 Yb Er 524 and 654 [178]

Y2O3 Yb
Er 550 and 660 [161]
Ho 543 and 665 [179]

LuPO4 Yb Tm 475 and 649 [166]
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Figure 12. Illustration of (a) down-conversion and (b) energy transfer up-conversion mechanism.
IEL: internal energy loss; GS: ground state; EL: energy level; NRET: non-radiative energy transfer;
hν1: incident light; hν2: emission light. Reproduced from [17], with permission from ELSEVIER
Publisher, 2012.

UCPNs exhibit great advantages over other types of fluorescent materials. Thanks
to their NIR excitation, they allow enhanced tissue penetration depths. Excitation by the
light of such low energy avoids DNA or RNA photo-damage. Moreover, the chemical
composition of the host and the nature of the dopant improve their stability against
photobleaching, photoblinking, and photochemical degradation, and significantly reduce
their cytotoxicity [17]. Finally, their optical properties do not depend on their size and
shape. The only requirement for their in vivo use is that they must be small enough and
almost uniform in size. As the particles are small, they are able to diffuse inside the body
and to reach the target organs.

Finally, the judicious surface functionalization of UCNPs allows in vitro and in vivo,
targeting and molecular events detection, making these objects not only useful for the
selective detection of cells, but also for the elucidation of biological processes. For in-
stance, polyethyleneimine-coated NaYF4:Yb/Er particles conjugated with folic acid were
employed for in vitro imaging of HT29 adenocarcinoma cells and OVCAR3 ovarian carci-
noma cells [180]. NaGdF4:Er/Yb particles functionalized with heparin and basic fibroblast
growth factor (bFGF) molecules were also employed for in vitro imaging of HeLa cells.
Heparin molecules not only provided water dispersibility, but their interaction with the
growth factor resulted in the required conformation of bFGF to interact with receptors
on the cell membrane of epithelial cancer cells, optimizing the targeting abilities of the
luminescent nanoprobes [181].
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4. Ln-Based Nanoprobes for Dual Magnetic and Optical Imaging

There are several ways to introduce bimodality in an imaging probe. They depend on
whether the magnetic and the luminescent species are distinct, just assembled in a common
compartment or if they form a single object. On this basis, there is a first classification of the
bimodal probes: probes in which the magnetic and luminescence properties come from two
distinct species, brought together only for this purpose, and probes in which the magnetic
and luminescence properties come from the same chemical object. In vivo, the former
dual probes may be dissociated and impacted by microenvironmental conditions (pH,
enzymatic activities), the optical label and the magnetic dipole, becoming tracked sepa-
rately, making the later cases much more suitable for the desired application. Among these
architectures, there are those constructed using micellar chemistry. In practice, luminescent
and paramagnetic Ln chelates are assembled within the same micellar structure [182,183]
as illustrated in Figure 13. There is also the possibility to interact simultaneously with
molecular chromophores and paramagnetic chelates with selected nanocontainers like
zeolites [184] or CNTs [185].
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twined hydrophobic tails in the interior and hydrophilic head groups at the exterior. Ln(III) = Eu(III),
Gd(III), or Lu(III). Reproduced from [182], with permission from RSC Publisher, 2016.

Let us focus on the ‘two-in-one’ bifunctional probes. There are several types: all-
molecular, hybrids, and all-inorganics. The first sub-family consists of polynuclear com-
plexes, involving both magnetic and luminescent lanthanide cations. They can be used
only as positive MRI contrast agents, and their optical properties are mainly of the down-
conversion type. The second sub-family is a kind of core–shell structure made from a
luminescent core, typically lanthanide-doped UCNPs, and a shell containing paramagnetic
Gd3+ complexes and reversely a magnetic one, mainly iron oxide NPs, and a shell of lumi-
nescent Ln3+ complexes covalently bonded to the former. Depending on their architecture,
they can proceed with up- or down-conversion luminescence while leading to positive or
negative MRI contrasting. They are again small and offer more versatility for both in vivo
and in vitro imaging. Within these sub-classes, there are also dual-Lanthanide-chelated sil-
ica particles [186–189]. The chelates can be embedded into the silica core or just attached to
its outer surface. The former configuration is much more appropriate for dual imaging since
it allows direct contact between water molecules and paramagnetic cations as it limits light
scattering with the silica matrix. Finally, the third sub-family includes two types: (i) doped
single crystals like Er-Tr or Ho doped superparamagnetic iron oxide Fe3O4 NPs [190,191],
Eu doped paramagnetic gadolinium oxide Gd2O3 NPs [192,193], or Gd co-doped UCNPs
and (ii) crystalline hetero-nanostructures like Fe3O4@LaF3:Ce,Tb [194,195], NaYF4:Yb3+-
Er3+@Fe3O4 [196] or NaYF4:Yb3+-Er3+@NaGdF4 [197,198] core–shell NPs. Even if both
kinds of probes combine high sensitivity of time-resolved fluorescence and high spatial res-
olution of MRI, there are some reports pointing out the possibility of a host lattice induced
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optical quenching in the former [199], making the latter much more studied. There is a vast
range of possibilities for this sub-family of probes thanks to the thousands of combinations
that can be made between the core and the shell, while remaining the resulting architectures
always small in size for improved in-body diffusion.

4.1. Molecular Dual Probes

Molecular dual probes consist of polynuclear complexes, in which both luminescent
and paramagnetic lanthanides are simultaneously chelated. The design of such architec-
tures is a real challenge for coordination chemists. Whereas the presence of at least one
inner-sphere water molecule is required for good MRI efficiency, it is not for non-quenched
luminescence imaging [200]. Some synthetic strategies were nevertheless proposed to over-
come this drawback. A versatile pyridine-based scaffold for Ln3+ complexation was for
instance constructed (Figure 14a,b) [201]. In this structure, the paramagnetic Ln cations, par-
ticularly Gd3+, are bishydrated, giving good MRI efficacy (a relaxivity r1 of 6.21 mM−1·s−1

at 500 MHz and 25 ◦C per Gd3+) while the luminescent ones, particularly Nd3+, are sen-
sitized by the aromatic pyridine moieties, tacking advantage from the resulting ‘antenna
effect’ to improve their photoconversion rate, compensating the quenching caused by the
two inner-sphere waters.
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Other derivatives of these pyridine-based ligands were prepared for the same purpose.
They were obtained by extending the pyridine group with a triazole ring (Figure 14c,d) [151]
or by replacing it by an isoquinoline (Figure 14e,f) [202]. The former compounds gave
quantum yields of 0.01% and 0.02% for the NIR-emitting Nd(III) and Yb(III) complexes, re-
spectively, while the latter gave slightly higher yields of 0.013–0.016% and 0.028–0.040% for
the same metal cations. In all cases the relaxivity of Gd(III) complexes was of the same mag-
nitude, ranging from 6 to 8 mM−1.s−1 at 20 MHz and 37 ◦C. NIR emission could also be ob-
served after complexation of the tripodal hydroxyquinolinate ligand (Figure 14g) to Nd(III)
or Yb(III) or that based on triazacyclononane and 8-hydroxyquinolinate/phenolate binding
units (Figure 14h), which are considered to be good sensitizers for luminescent lanthanide
cations, leading to quantum yields around 0.02%, as for the pyridine-based complexes.
Interestingly, these two ligands are not equivalent in their MRI applications. Indeed, while
the latter has a large r1 value for its bishydrate Gd(IIII) complexes of about 9.1 mM−1.s−1
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at 20 MHz, as a result of a long rotational correlation time, fast water exchange and slow
electronic relaxation, the former has not, due to a slow water exchange [203].

Encouraging results were also obtained by replacing linear polydentate ligands with
cyclic ones, involving aromatic moieties as bridging ligands (Figure 15) [204–209]. The
resulting macromolecule exhibits a characteristic slow tumbling with high longitudinal
relaxivity, due to the formation of nanosized aggregates. Their luminescence quantum
yields remain relevant taking advantage of the antenna effects of their aromatic moieties.
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Figure 15. Structures of DOTA-based ligands used to chelate both paramagnetic and luminescent lanthanides for bimodal
molecular imaging probes.

To date, the given above polydentate ligands have been principally bonded to only
one type of lanthanide cations, only luminescents or only paramagnetics. The combination
of the two types of cations would provide cocktail of paramagnetic/luminescent Ln3+

complexes, assumed to be good candidates for the development of efficient bimodal agents.
Very promising results have been obtained by using these ligands for f–d heteropolymetallic
complexes, like Gd3+ and Ru2+ or Gd3+ and Ti4+ ones [210,211].

Respecting this general chemical approach, more specific architectures started to be
proposed these last 5–6 years, based on the spatial separation of the luminescent and
the paramagnetic cation compartments. The f-f molecular architecture built by Debroye
et al. and abbreviated as (GdL)3Eu, is a good example (Figure 16). In this structure, three
DTPA have been chosen as Gd3+ chelating units, and have been linked to a central Eu3+

chelate, consisting of a para-substituted pyridine-2,6-dicarboxylate derivative, via an amide
bond, achieving bright-red luminescence with a quantum yield of 10% and an enhanced
longitudinal relaxation rate of 31 mM−1.s−1 per molecule at 40 MHz in water at 310 K [212].
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Figure 16. Schematic representation of the (GdL)3Eu, containing. Reproduced from [212], with
permission from ACS Publisher, 2014.

This spatial separation strategy was also successfully employed to build a new class
of dual probes that of lanthanide complex dendrimer conjugates. The paramagnetic and
luminescence properties of Dy(III) and Yb(III) were thus exploited by chelating them
with the all-oxygen-donor-hexadentate ligand TREN-bis(1-Methyl)-3,2-HOPO-TAM-NX
(X = 1, 2, or 3), in which TREN, HOPO, and TAM correspond to tris(2-aminoethyl)amine,
hydroxypyridinonate, and tris(hydroxyethyl)aminomethane, respectively. The resulting
complexes were subsequently conjugated to the esteramide dendrimer (Figure 17) to im-
prove bioavailability, solubility, and relaxivity [213]. In these structures, all the lanthanide
ions are peripheral, accessible to free water. Since they are also bishydrated their MRI
efficacy is good. The large scaffolding and mass of the dendrimer, to which up to eight
complexes may be covalently conjugated, increases the tumbling time of the complex and
contributes also to the improvement of the MRI contrast. The r1 value was 7.60 mM−1.s−1

at 27 ◦C for an applied static field of 1.41 T. The presence of water in the inner sphere of the
Yb3+ complexes, of course, reduces their NIR luminescence quantum yield, but does not
extinguish it. In mouse serum, the value was 0.17% [213]. Despite their ~40 kDa molecular
weight, these probes have been excreted by glomerular filtration over several days making
the engineered probes quite safe [213].
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The last strategy for engineering all-molecular bimodal probes is based on organic
light-emitting diode (OLED) and lighting device technology. It uses oligomers in which
specific lanthanide binding sites can be attached to a peripheral structure (Figure 18a) or
connected in series through bridging ligands (Figure 18b) along the oligomer chains. The
general idea of this strategy consists in exploiting well identified organic polymer scaffolds
for the selective sequestration of luminescent and paramagnetic lanthanides, separating
them from each other, and keeping the water molecules bonded to the paramagnetic ones
away from the complexation sphere of the luminescent ones [214]. Oligomeric ligands, L,
were obtained by coupling two tridentate 2,6-bis(benzimidazole-2-yl)pyridine binding units
at the 1 and 4 positions of a rigid phenyl spacer (Figure 19). Because of the small number
of torsional degrees of freedom imposed by the polyaromatic scaffold, L was reacted with
Ln(hfac)3 salts, where hfac- is the bidentate hexafluoroacetylacetonate anion, leading to a
linear saturated single-stranded complex [Ln2(L)(hfac)6]. In these architectures, there are
no water molecules directly attached to the lanthanide centers. The hydrophilic character of
the ligands involved, particularly hfac, allowed their indirect attachment through hydrogen
bonding, conserving a certain magnetic effect of the chelated paramagnetic cations on the
surrounding water molecules.
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Figure 18. Two different strategies for the introduction of lanthanide binding sites into molecular
multifunctional probes. The chelating units are (a) connected to the periphery (type I) or (b) in series
through bridging ligands (type II). Reproduced from [215] and [216], with permission from ACS,
2008, and RCS, 2011, respectively.
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Figure 19. Structure of ligands L resulting from Suzuki–Miyaura coupling of two tridentate 2,6-
bis(benzimidazole-2-yl)pyridine binding units at the 1 and 4 positions of a rigid phenyl spacer.
Reproduced from [214], with permission from ACS, 2011.

4.2. Hybrid Probes

Hybrid probes are produced by combining a luminescent inorganic particle with
molecular paramagnetic chelates or a paramagnetic or superparamagnetic inorganic parti-
cle with molecular luminescent chelates, in a core–shell type structure.

In the first case, Ln-doped UCNP cores have been conjugated to Gd complexes, as
reported by Carron et al. Citrate-capped 20 nm Yb3+- and Tm3+-doped NaGdF4 particles
were reacted with a mono-amino derivative of Gd-DOTA, leading to multiple paramagnetic
surface centers, with improved tumbling time and longitudinal relaxivity. The authors
reported a r1 value of 25 mM−1.s−1 per Gd3+ ion at 60 MHz and 310 K, seven times
larger than that of the Gd-DOTA precursor, which is 3.23 mM−1.s−1 under the same
conditions [217]. Moreover, the excitation of the nanoconstructs in the water at 980 nm
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resulted in an intense up-converted emission of Tm(III) at 800 nm. To increase the chemical
stability and the biocompatibility of this type of dual probes silica coating was used.
Typically, UCNPs were first prepared and then coated by a silica thin layer embedding
Gd-DTTA complexes as illustrated in Figure 20 [19].
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Figure 20. (a) Schematic illustration of single NaYF4@Si-DTTA-Gd3+ NPs. (b) DLS data of NaYF4

NPs before (dashed line) and after Si-DTTA-Gd3+ coating (solid line). (c,d) TEM images of NaYF4@Si-
DTTA-Gd3+ NPs at different magnification. Reproduced from [19], with permission from ACS
Publisher, 2009.

Conversely, about 10 nm-sized USPIOs particles were decorated with Eu(III) ions
encapsulated in a DO3A organic scaffold. The organic ligand was modified to bear an
ethoxysilane group which allows its attachment by sol-gel chemistry to the surface of an
iron oxide crystal [218]. The red luminescence emission of Eu(III) was found at 614 nm.
Relaxometric studies showed a r2 and a r2/r1 value of 114.8 mM−1.s−1 and 18.9 (per iron
atom), respectively, at 60 MHz and 27 ◦C in water, making them particularly valuable for
negative MRI contrasting.

To improve the biocompatibility of this type of bimodal probes, mesoporous silica
embedding of the iron oxide NPs was achieved, the silica matrix containing the luminescent
lanthanide complexes. Two morphologies were largely explored: magnetic multicore [219]
and single core [220] morphologies (Figure 21), the latter being much more suitable than the
former for the desired application due to the strong silica photo-scattering. By confining the
lanthanide-based molecular dyes at the extreme surface of the silica shell, photo-scattering
may be avoided or at least minimized improving thus the OI capability of the resulting
dual probes. Moreover, the size of the latter is significantly reduced compared to that of
the former, meaning better in-body diffusion after intravenous administration. Of course,
within these embedded multifunctional nanostructures, superparamagnetic iron oxide NPs
can be replaced by perovskite magnetite or spinel ferrite oxide NPs.
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Figure 21. Iron oxide NPs are embedded in a mesoporous silica matrix, in which lanthanide cations
are dispersed, within (a) a multicore and (b) a single core morphology.
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4.3. All-Inorganic Dual Probes

The last category of single objects for dual MRI and OI applications consists of all-
inorganic particles. These are of two types, single crystals, combining both optical and
magnetic properties, or core–shell crystalline structures concentrating each property in one
compartment, the core or the shell.

4.3.1. Single Nanocrystals

It is possible to have light sources and magnetic dipoles in a same matrix material by
inserting the desired components into a same nanocrystal. These probes are expected to
offer high photostability, a narrow emission band, and a broad absorption band, combining
the high sensitivity of time-resolved fluorescence with the high spatial resolution of MRI.
However, to date, most of the bifunctional nanocrystals synthesized to consist of down-
conversion emitters and iron oxide NPs. In addition to the fluorescence quenching by iron
oxide NPs, down-conversion fluorescence has some intrinsic limitations, such as autofluo-
rescence, low light penetration into the biological tissue, and photon damage risks to the
biological specimen. Tb-doped γ-Fe2O3 nanocrystals, combining superparamagnetism
and luminescence, were prepared and evaluated [221]. Functionalized by amino groups
they were dispersed in water as a stable colloid. They exhibited green photoluminescence
but only under UV excitation (235 nm). This feature prevents the use of such probes for
magnetic–fluorescent bimodal in vivo imaging and restricts them to in vitro imaging. The
same conclusions can be made concerning Dextran-coated Eu-doped (5 mol%) ultrasmall
iron oxide nanocrystals (hydrodynamic diameter between 20 and 40 nm) [191]. Indeed,
despite interesting superparamagnetic behavior with relatively high r1 and r2 relaxivity
values (15.4 and 33.9 mM−1.s−1 in the water at 0.47 T and 37 ◦C, respectively), their red
photoluminescence can not be used for in vivo and in vitro optical imaging, since it can
not be activated without a UV excitation (254 nm).

Replacing the superparamagnetic single crystals by paramagnetic or by diamag-
netic oxide substituted by luminescent Ln cations makes no difference. Down-conversion
paramagnetic Gd2O3:Tb3+ [222,223], Dy2O3:Tb3+ [224], and Ho2O3:Tb3+ [225] or diamag-
netic Y2O3:Gd3+-Eu3+ [226] nanocrystals suffer from the same limitations for in vitro or
in vivo imaging.

As an alternative, (Gd, Yb, Tb)PO4 nanocrystals were investigated as up-conversion
systems. They exhibit ultraviolet, blue, and green up-conversion emissions upon excitation
with a 980 nm continuous wave laser diode [227]. They are also efficient T2-weighted
contrast agents with a r2/r1 relaxivity ratio (per Gd atom) larger than 2, between 11 and
12 at 20 MHz and 300 K in water for free particles, and around 22 when the particles are
coated with Dextran. These results suggest that the lack of water molecules into the Gd
inner coordination sphere, capable of exchanging efficiently with the bulk water, leads
to inefficient T1 relaxation. In other words, the T2-relaxation process, which has a strong
outer-sphere contribution from field inhomogeneities created by the magnetized particles,
that the water protons experience as they diffuse nearby, appears to be more efficient,
particularly for the Dextran-coated particles. These results are very promising and open
real opportunities for efficient dual MRI and OI applications.

Other paramagnetic UCNPs were successfully employed as dual probes. Typically,
ultrasmall paramagnetic Gd2O3 oxide nanocrystals co-doped with luminescent Ln cations
like Gd2O3:Yb3+-Er3+ [222,228], Gd2O3:Yb3+-Ho3+ [228], and Gd2O3:Yb3+-Tm3+ [228]
proved to be suitable for the desired application. All exhibit strong visible light emis-
sion after NIR excitation (Figure 22) and relatively high longitudinal relaxivity, ranging
from 13 to 16 mM−1.s−1 (per Gd atom), in water at 3.0 T and 310 K. The r1 value of these
contrast agents is proportional to the number of hydration water molecules, which corre-
sponds directly to the number of surface unpaired electrons of Gd3+ ions. Compared to
the standard Gd-DTPA agent, which has only one Gd3+ ion coordinated to only one water
molecule, the Gd2O3:Yb3+-Ln3+ particles have all their surface Gd3+ ions available to bind
several water molecules.
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Figure 22. Up-conversion fluorescence images for Gd2O3:Yb3+-Ln3+ (Ln = Ho, Er or Tm) colloids
under excitation at 980 nm, obtained using a digital camera without any filter. Reproduced from [228],
with permission from DOVE Press Publisher, 2016.

Within the same strategy, co-doped diamagnetic nanocrystals like LaF3:Yb3+-Ho3+

were also used. They offer both up-conversion properties and MRI contrast capabilities.
Their measured in water r1 and r2 reached a value of 0.12 and 28.18 mM−1.s−1 per Ho, at
11.0 T (500 MHz) and 27 ◦C [229].

4.3.2. Core–Shell Crystalline Hetero-Nanostructures

Structures involving a superparamagnetic iron oxide core coated by an up-conversion-
type crystalline shell like Fe3O4@NaYF4:Yb3+-Er3+ [195], Fe3O4@NaYF4:Yb3+-Tm3+ [230],
Fe3O4@LaF3:Ce3+-Tb3+ [194] and Co0.16Fe2.84O4@NaYF4:Yb3+-Er3+ [230] have been suc-
cessfully engineered (Figure 23).
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Figure 23. TEM micrographs of representative (a) Fe3O4@NaYF4:Yb3+-Er3+ and (b) Fe3O4@NaYF4:
Yb3+-Tm3+ superparamagnetic up-converting core–shell particles. Reproduced from [195] and [230],
with permissions from RCS, 2004, and ACS, 2016, respectively.

Conversely, UCNPs surrounded by superparamagnetic iron oxide nanosatellites have
been also prepared. Typically, NaYF4:Yb3+-Er3+ particles, about 100 nm in size, were
cross-linked to Fe3O4 particles (less than 10 nm) forming architectures (Figure 24a) ex-
hibiting both significantly intense red emission under NIR excitation (980 nm) and super-
paramagnetic behavior at room temperature, with a saturation magnetization of about
9 emu.g−1 (per mass of powder) [196]. Similar architectures with a richer iron oxide content
and then a larger magnetization value have been also prepared using the polyol process
(Figure 24b) [231] and successfully evaluated for dual imaging, replacing the luminescent
NaYF4:Yb3+-Er3+ UNCP core by a NaYF4:YEu3+ DCNP one.
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Figure 24. TEM images of (a) NaYF4:Yb3+-Er3+@Fe3O4 and (b) NaYF4:Eu3+@Fe2O3 particles. Re-
produced from [196] and [231], with permissions from John Wiley and Sons, 2014, and MDPI, 2020,
respectively.

Focusing on UCNP cores, hetero-nanostructures have been also built by growing
epitaxially a paramagnetic shell of the same crystallographic type. The first reported system
is that of NaYF4:Yb3+-Er3+@NaGdF4 nanoconstructs [197,198], which have the advantage of
less surface optical quenching thanks to the spatial isolation of the luminescent core from its
environments. Similar architectures were prepared based on singly Er-doped paramagnetic
NaGdF4:Er3+@NaGdF4:Er3+ core-shell particles [232]. By adjusting the Er concentration in
the shell and in the core, for example, 10% in the core and 12 at % in the shell, the active
shell may play the role of a sensitizer for the luminescence of the Ln3+ cations in the core
(Figure 25). Green and red emissions were thus obtained under a 1540 nm excitation thanks
to this process [232]. Of course, the availability of Gd3+ ions at the probe surface makes the
engineered core–shell particles valuable for inner-sphere magnetic interaction with water
molecules and, therefore, efficient positive MRI contrasting.
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Figure 25. Energy transfers and de-excitations involved in NaGdF4:12%Er3+@NaGdF4:10%Er3+

active-core/active-shell NPs under 1540 nm excitation. Reproduced from [232], with permission
from Beilstein-Institut Publisher, 2017.

5. Conclusions

After introducing the basic principles of MRI and OI and describing the various probes
used to enhance image contrast in one case and provide a light source in the other case,
we have reviewed the different nanometric magnetic and luminescent architectures that
can be used simultaneously for bimodal imaging, focusing on the lanthanide luminescence
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phenomenon within single objects. We have classified the corresponding bimodal probes
into three families, the all-molecular ones, the hybrids, and the all-inorganic ones. Each of
them has advantages and drawbacks for in vivo dual imaging but, in all the cases, their
optical properties remain excellent, particularly when they involve the up-conversion
feature. Their fluorescence intensity, brightness, photostability, the width of excitation
wavelength window and narrow emission window, etc. are often good, making them very
efficient biomarkers. This is particularly true when they can be excited by NIR light to
avoid tissue scattering and limit luminescence quenching in an aqueous environment. The
engineered probes may also be efficient MRI contrast agents, taking advantage of high
molecular weight and then a long tumbling time, a high exposed surface and therefore a
large number of interacting water molecules, a high concentration of paramagnetic cations
in a small volume which gives high field inhomogeneity, and other factors reinforcing the
contrast. Finally, dual imaging contrast agents could provide diagnostic information at the
early stages of certain diseases and avoid invasive procedures, since they overcome the
low sensitivity of MRI and the low detection limit of OI.
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