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Abstract: Surface acoustic wave (SAW)-based sensors have become highly valued for their use as
nanosensors in industrial applications. Accurate prediction of the thermal stability is a key problem
for sensor design. In this work, a numerical tool based on the finite element method combined with
piezoelectric Lagrangian equations has been developed to accurately predict the thermal sensitivity
characteristics of surface acoustic wave devices. Theoretical analysis for the geometric nonlinearity
contributing to the frequency–temperature characteristic and material constants’ dependency on
temperature were taken into consideration. The thermomechanical equilibrium equation built on the
three-dimensional finite element method (3D-FEM) mesh node took mesh movement into account
because thermal expansion was employed. The frequency–temperature characteristics of different
SAW modes, including Rayleigh waves and leaky waves excited on a piezoelectric substrate of quartz
or lithium tantalate, respectively, were calculated. The theoretical accuracy of the proposed numerical
tool was verified by experiments.

Keywords: Lagrangian equations; three-dimensional periodic SAW structure; geometric nonlinearity;
thermal expansion; the frequency–temperature characteristics

1. Introduction

The miniaturization of sensors has attracted much attention in several important applications,
especially in industries such as biological and medical fields [1], radio frequency (RF) devices for
5G [2–4], and space exploration [5]. Surface acoustic wave (SAW)-based sensors, including temperature
sensors and non-temperature sensors, are expected to achieve a nanoscale structure with the rapid
development in micro/nanoscience and semiconductor technology [6–9], and are widely used for
humidity [10,11], temperature [12,13], and pressure [14] sensing applications. Moreover, traditional
sensing technology mostly faces problems in terms of wired installation and power supply requirements.
SAW-based sensors have the advantages of being wireless and battery-free, and do not need a separate
power supply, which makes wireless installation at particularly inaccessible locations possible [15].
Since the photolithography technique allows for a submicron-scale line width [16], miniaturized
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SAW devices can be readily fabricated. Therefore, SAW-based sensors have become highly valued
as nanosensors in industrial applications. Nevertheless, the frequency–temperature characteristic of
SAW-based sensors calls for intensive study. For sensor design, accurate prediction of the thermal
stability is a key problem. However, accurate prediction of the thermal behavior of SAW-based
sensors is difficult because previous theoretical work has made a series of hypotheses related to
homogeneous physical fields along the aperture direction, geometric linearity, rectangle geometrical
shapes of electrodes, and so on.

The frequency–temperature characteristic of surface acoustic waves excited on piezoelectric
substrates has been studied using different methods [17–20]. During the early stage of research,
studies were mainly concerned with the dependency of crystal cuts and propagation directions on
temperature in a SAW device [21,22]. Campbell and Jones [23] proposed a general approach in which
the electrode mass load is taken into account and the material constant of the electrode and piezoelectric
substrate is used as a function of temperature. Yong et al. [18,24,25] studied the frequency–temperature
behavior of quartz by means of building piezoelectric Lagrangian equations performed with the
two-dimensional periodic finite element method (2D-FEM) model and three-dimensional FEM model
(3D-FEM) of a SAW structure. Finite element analysis (FEA) and a boundary integral method (BIM)
were developed by Pastureaud et al. [20], where Green’s function and harmonic admittance as a
function of the temperature and an infinite and periodic structure were assumed. Finite element
analysis/the boundary element method (FEA/BEM) combined with material coefficient perturbation has
been investigated by Garcia et al. [26] based on a two-dimensional finite element analysis of periodic
structures. Wang et al. [27] extended the FEM/BEM method to include the electrode Lame constant with
temperature dependency, except for the mass load and the numerical result was in good agreement with
experimental results. In our work [28], by considering the material parameters and thermal expansion,
FEM commercial software COMSOL Multiphysics was utilized to analyze the frequency–temperature
response of SAW temperature sensors. The methods reported in the above previous works offer
solutions for prediction of frequency–temperature characteristic, but they ignored the nonlinear effect
owing to temperature-induced thermal stress and strain tensors. Lately, a remarkable solution of
a weak form of nonlinear FEM model for calculating the thermal sensitivity on arbitrary layered
structures has been reported [29], which demonstrated that the nonlinear effect caused by thermal
stress and strain tensors between the substrate and electrodes is not negligible.

Therefore, this paper aims to develop a geometric nonlinearity FEM model (GN-FEM) for accurately
predicting the frequency–temperature characteristic of SAW-based sensors. First, a quasi-3D periodic
SAW structure is analyzed on the basis of piezoelectric Lagrangian equations. The proposed GN-FEM
is employed to establish the thermomechanical equilibrium equation for the moving mesh node of
the FEM model. Meanwhile, the material constants, including elastic constant, coupling constant,
dielectric permittivity constant, and density, as well as the thermal stress and strain of the substrate
and electrode as a function of temperature, are considered. Furthermore, the trapezoid shape of the
electrode combined with practical processing technology is taken into account. Finally, the relative
frequency shift of SAW devices with different piezoelectric materials is investigated to verify the model.
The calculated frequency–temperature characteristics are in good agreement with the experiment results.
Meanwhile, the dependencies of the relative frequency shift, turnover temperature, and temperature
coefficient of frequency (TCF) value on the metallization ratio and electrode thickness are analyzed,
which provide the solution for the design of SAW-based sensors.

The remainder of this paper is divided into three sections. The second section is devoted to a
theoretical analysis of geometric nonlinear models for the frequency–temperature behavior of SAW
devices based on Lagrangian equations. In the third section, the relative frequency shift, the turnover
temperature, and the TCF value obtained from the theoretical calculation of different mode waves are
predicted and compared with the experimental results. Finally, conclusions are discussed in detail in
the last section of the paper.
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2. Theoretical Analysis of the Frequency–Temperature Behavior Characteristic

2.1. Thermal Sensitivity Equations of the Piezoelectric Substrate

The piezoelectric constitutive relation of displacement and electric field can be expressed as:

Ti j = ci jklSkl − eki jEk (1)

Di = eki jSkl + εikEk (2)

where Ti j and Skl are the stress and strain tensors, respectively; ci jkl, eki j, and εik are the stiffness constant,
piezoelectric stress constant, and dielectric permittivity constant, respectively; and Di and Ek are the
electric displacement vector and electric field, respectively.

According to the electrostatics, the relations between the electric displacement Di, electric field Ek,
electric potential φk, and charge density ρs are defined by:

D = εE (3)

∇·D = ρs (4)

E = −∇φ (5)

where ∇ is the Laplace operator.
Because of thermal expansion or contraction at a given temperature, deformation of the SAW

structure occurs, leading to the mesh node of the FEM model moving in a certain direction.
The geometric nonlinear relation between the thermal strain tensors and partial displacement can be
expressed as [30,31]:
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The relation of strain and displacement with the combination of the thermal expansion coefficient
is given by:

Si j =
1
2

(
αkjuk,i + αkiuk, j

)
, (12)

where α represents the thermal expansion coefficients.
On the other hand, the material parameters, including the elastic constant, coupling constant,

dielectric permittivity constant, and so on, as a function of temperature, can be written as [24,27]:

cθi jkl = ci jkl + c(1)i jklθ+ c(2)i jklθ
2 + c(3)i jklθ

3 (13)

eθi jk = ei jk + e(1)i jk θ+ e(2)i jk θ
2 + e(3)i jk θ

3 (14)
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εθik = εik + ε
(1)
ik θ+ ε

(2)
ik θ

2 + ε
(3)
ik θ

3 (15)

αθik = δik + α
(1)
ik θ+ α

(2)
ik θ

2 + α
(3)
ik θ

3 (16)

ρθ = ρ+ ρ(1)θ+ ρ(2)θ2 + ρ(3)θ3 (17)

rθ = r + r(1)θ+ r(2)θ2 + r(3)θ3 (18)

gθ = g + g(1)θ+ g(2)θ2 + g(3)θ3 (19)

θ = (T − T0) (20)

where c(n)i jkl is the nth-order temperature coefficient of elastic constants, e(n)i jk is the nth-order temperature

coefficient of piezoelectric coupling constants, and ε
(n)
ik is the nth-order temperature coefficient

of dielectric permittivity constants. δik is the Kronecker delta and α
(n)
ik represents the nth-order

temperature coefficients of thermal expansion. ρ(n) denotes the nth-order temperature coefficient of
the density. r(n) and g(n) denote the nth-order temperature coefficient of the first and second Lame
constant of electrode metal, respectively. T0 is the reference temperature (T0 = 25 ◦C) and θ is the
temperature difference.

The motion Equation (1) and electrostatics Equation (2) must satisfy Newton’s equations and
Maxwell’s equations, respectively. If there is no external force applied, the equilibrium equation of the
piezoelectric relation can be described as below:

∇
′T = ρ

..
u (21)

∇dD = 0 (22)

2.2. Quasi-Three-Dimensional FEM Modeling

The Quasi-3D FEM method is an effective tool for analyzing piezoelectric devices. Figure 1a
shows an illustration of the finite-length three-dimensional structure of SAW devices. In order to
simplify the solution and achieve a calculation of the thermal sensitivity of SAW devices under the
condition of ensuring a good enough accuracy, the finite-length 3D-FEM model was decomposed into
a single finger structure with half period interdigital transducer (IDT) p (2× p = λ, where λ is the SAW
wavelength), electrode width a, and thickness h, as shown in Figure 1b. Besides, we assumed that the
periodic boundary condition was set to the side of the model for extending it in the X-direction to
infinity. On the other hand, a substrate with a perfect matching layer set to the bottom for absorbing
the wave propagated into the substrate was constructed. Additionally, it can be seen that the geometric
shape of the electrode is trapezoid for coinciding with practical processing and the mesh size of the
region below the electrode is smaller than others of the substrate due to the energy of the acoustic
surface wave mainly focusing on the surface of the piezoelectric medium.

According to Figure 1b, the periodic boundary condition employed on the model side of the single
finger reveals that the displacement and electric potentials vector located on the left side (A) has an
antisymmetric relation with the vector located on the right side (B), so the relation of the displacement
and electric potentials vector can be written as:

ux

uy

uz

φ


A

= −


ux

uy

uz

φ


B.

(23)
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Figure 1. Schematic diagram of the three-dimensional model. (a) The geometrical structure of SAW
devices; (b) quasi-3D FEM mesh model of SAW devices.

3. Results and Discussion

The development of SAW-based sensors on quartz substrates was partially driven by the
requirement for wireless temperature measurement systems due to the availability of temperature
compensated cuts and the good sensitivity to strain [32,33]. The fundamental material constants,
the third-order material constants, and the temperature coefficients of quartz and aluminum were
taken from the reference [24]. The thermomechanical equilibrium equation based on the geometric
nonlinearity of the quasi-3D FEM model, including thermal stress and strain tensors, was solved by the
finite element method. The trapezoidal angle of the electrode shape was set to about 7◦ according to
the SAW devices fabricated and the reference temperature was set to room temperature (T0 = 25 ◦C).

3.1. Simulation of Rayleigh-Type Acoustic Surface Wave Devices Excited on Quartz

A half-wavelength FEM model of the frequency–temperature behavior of quartz with a thickness
of 8 λ and perfect matched layer (PML) with a thickness of 3 λ was modeled. In this case, 2p was
7 µm, the normalized electrode thickness h/2p was 1.8%, and the normalized metallization ratio,
namely a/p, ranged from 0.3 to 0.7. The cut angles ranged from 35.0◦ to 37.0◦ in increments of 1◦

and included 42.75◦. Correspondingly, the finite element mesh of the periodic 3D-FEM model was
made of free tetrahedral elements and the discretization was set as the quadratic serendipity element
in this analysis, in which about 34,902 triangular elements, about 902 quadrilateral elements, and a
degree of freedom (DOF) of about 751,146 could be obtained. For electrical boundary condition,
the exciting voltage V = 1× exp( jωt) is performed on the electrode, where ω is the angular frequency.
Therefore, the relative frequency shift of the quartz substrate was investigated as shown in Figure 2. It is
obvious that the metallization ratio has a great influence on the relative frequency shift characteristic.
The turnover temperature of quartz with cut angles ranging from 35.0◦ to 37.0◦ is within the range of 0 to
40 ◦C, while the turnover temperature of 42.75◦ cut quartz is less than −40 ◦C. Therefore, SAW devices
on quartz with a cut angle range of 35.0◦ to 37.0◦ are suitable for processing into SAW based
non-temperature sensors, such as SAW filters. Meanwhile, the SAW devices on 42.75◦ cut quartz are
suitable for processing into SAW-based temperature sensors.
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Figure 2. The relative frequency shift of quartz with different metallization ratios. (a) 35.0° Y-X quartz; 
(b) 36.0° Y-X quartz; (c) 37.0° Y-X quartz; (d) 42.75° Y-X quartz. 

According to the numerical analysis above, the relation between the turnover temperature of 
quartz with different cut angles and the electrode metallization ratio is illustrated in Figure 3. The 
results showed that the turnover temperature gradually decreases with the increase of the 
metallization ratio and cut angle of quartz. On the other hand, when the parameter of the cut angle 
and metallization ratio is set to points A, B, and C, the corresponding cut angle and metallization 
ratio are suitable parameters for designing non-temperature sensors such as SAW filters or 
resonators, because the turnover temperature is near room temperature. 
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Figure 2. The relative frequency shift of quartz with different metallization ratios. (a) 35.0◦ Y-X quartz;
(b) 36.0◦ Y-X quartz; (c) 37.0◦ Y-X quartz; (d) 42.75◦ Y-X quartz.

According to the numerical analysis above, the relation between the turnover temperature of
quartz with different cut angles and the electrode metallization ratio is illustrated in Figure 3. The results
showed that the turnover temperature gradually decreases with the increase of the metallization ratio
and cut angle of quartz. On the other hand, when the parameter of the cut angle and metallization
ratio is set to points A, B, and C, the corresponding cut angle and metallization ratio are suitable
parameters for designing non-temperature sensors such as SAW filters or resonators, because the
turnover temperature is near room temperature.

Furthermore, a half-wavelength FEM model of SAW with the same parameters as listed above
was analyzed, with the electrode thickness h/2p ranging from 0.01 to 0.05 λ in an operating temperature
range of −40 to +100 ◦C. In this case, the normalized metallization ratio a/p was fixed at 0.5. The relative
frequency shift of the quartz substrate as a function of temperature was drawn and is presented in
Figure 4. It was found that the electrode thickness has a larger effect on the relative frequency shift
than that of the metallization ratio, and the SAW devices on the quartz substrate can not only be used
to fabricate SAW-based temperature sensors, but also non-temperature sensors, by means of adjusting
the electrode thickness. Moreover, only when the electrode thickness h/2p increases from 0.01 to 0.04 λ

does the turnover temperature of quartz with cut angles ranging from 35.0◦ to 37.0◦ exist within the
range of 0 to 40 ◦C.
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SAW-based non-temperature sensors with a good frequency–temperature characteristic were 
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Figure 4. The relative frequency shift of quartz with different electrode thicknesses. (a) 35.0◦ Y-X quartz;
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Based on the calculated relative frequency shift curve shown in Figure 4, the dependence
of the turnover temperature on the electrode thicknesses is obtained. As shown in Figure 5,
the turnover temperature monotonically decreases with increasing electrode thickness for cut angle of
Y-X 35◦~36◦ quartz and the values for the turnover temperature decrease with increasing cut angle.
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In addition, by comparing Figures 3 and 5, the variation of electrode thickness has a larger effect on
the frequency–temperature characteristic than that of the metallization ratio. When the parameters of
the cut angle and electrode thickness are set to points A, B, and C, the best parameters for designing
SAW-based non-temperature sensors with a good frequency–temperature characteristic were obtained,
and the turnover temperature was near room temperature.
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Figure 5. Turnover temperature of quartz with different cut angles and IDT with the electrode thickness.

3.2. Experiment of Rayleigh-Type Acoustic Surface Wave Devices Excited on Quartz

To confirm the validity and accuracy of the proposed method based on the simulation presented
above, one-port SAW resonators were fabricated. Figure 6 shows an optical image and the measured
frequency response of a one-port SAW resonator based on quartz. The device parameters for this SAW
resonator are given in Table 1. As shown in Figure 6b, there exists obvious resonance, and the resonant
frequency is 521.437 MHz at a temperature of 25 ◦C, and that at 100 ◦C is decreased to 524.275 MHz.
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Figure 6. (a) Optical image and (b) the measured frequency response of a one-port SAW resonator
based on quartz.
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Table 1. Detailed information on the above experimental sample.

Parameter Value Description

p 3 µm Grating pitch
a/p 0.5 Metallization ratio

h/(2p) 1.8% Metal thickness of electrodes
n_IDT 150 Number of IDT
n_GR 40 Number of grating reflectors

W 80 p Aperture
Cut 42.75◦ Cut angle of Y-X quartz

For demonstration, experimental samples fabricated on a piezoelectric substrate of quartz with
rotated Y-cut angles of 35◦, 36◦, 37◦, and 42.75◦ were investigated. In this case, Rayleigh wave was
excited. To obtain their temperature behavior, those devices were tested at an operating temperature
ranging from −40 to +100 ◦C. The thickness of the aluminum electrode h/2p was 1.8%, the pairs of IDT
were 150, and the number of grating reflectors was 35 on both sides of the IDT. The aperture width
of the resonator was 32 λ and the metallization ratio of the IDT and reflector was 0.5. The relative
frequency shift of the numerical and experimental result is shown in Figure 7. The relative frequency
shift curves increase first to the maximum and then decrease with increasing T, except for the curve for
the case of 42.75◦-YX◦ quartz.
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Figure 7. Comparison of the theoretical result and the experimental relative frequency shift of the
quartz resonator. (a) 35.0◦ Y-X quartz; (b) 36.0◦ Y-X quartz; (c) 37.0◦ Y-X quartz; (d) 42.75◦ Y-X quartz.
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As shown in Figure 7a, the relative frequency shift characteristic of the 35◦-YX◦ quartz resonator
at 417 MHz was investigated. The difference of the turnover temperature between the measured
results (30.2 ◦C) and the GN-FEM numerical results (29.9 ◦C) is 0.3 ◦C, while that of FEM/BEM is about
40.02 ◦C. Figure 7b shows the dependency of the relative frequency shift characteristic on the 36◦-YX
quartz. The difference of the turnover temperature obtained from the experimental results (19 ◦C) and
the GN-FEM theoretical results (19.9 ◦C) is 0.9 ◦C, and that of FEM/BEM is about 30 ◦C. As for the
37◦-YX◦ quartz, the relative frequency shift characteristic’s dependency on temperature is illustrated
in Figure 7c. The turnover temperature of the measurement (9.7 ◦C) is 0.3 ◦C greater than that of the
GN-FEM analytical results (10 ◦C), and that of FEM/BEM is approximately 20 ◦C. Lastly, the relative
frequency shift curve of the 42.75◦-YX◦ quartz resonator is plotted in Figure 7d. It can be seen that the
trend of the relative frequency shift of the experimental result follows that of the proposed theoretical
result, but the intersection point of the two curves pictured by the experimental result and FEM/BEM
method occurred at about 47 ◦C. However, Figure 6 shows that the measured relative frequency shift is
in good agreement with that of the proposed methods and the discrepancies between them are less
than ± 1 ◦C. The proposed theoretical analysis for Rayleigh-type SAW-based sensors can be used to
accurately predict the frequency–temperature characteristic.

3.3. Simulation of Leaky-Type Surface Acoustic Wave Devices Excited on Lithium Tantalate

It is known that a leaky acoustic surface wave propagates on the surface of a semi-infinite
piezoelectric substrate with bulk acoustic waves radiating into the substrate, but the leaky wave
excited on lithium tantalate (42◦ Y-X LT) or LST quartz (17◦ Y-X quartz) is usually utilized for most
radio-frequency designs [20,27]. In this work, a half-wavelength FEM model of the thermal sensitivity
used a 42◦ Y-X LT thin plate as the piezoelectric substrate, with a thickness of 3 λ, and PML with
a thickness of 2 λ was modeled. The wavelength λ, namely 2p, was set as 4 µm. The electrode
film was polycrystalline Al metal with a thickness h/2p of 0.08 and the electrode metallization ratio
a/p was set to range from 0.4 to 0.8. The finite element mesh comprised free tetrahedral elements
and the discretization was set as a quadratic serendipity element, including about 13,514 triangular
elements, about 392 quadrilateral elements, and a degree of freedom (DOF) of about 166,512. Material
constants with a temperature dependency and the thermal expansion were taken into consideration.
The fundamental material constants and the nth-order temperature coefficients of LT were taken from
Murota and Shimizu [22]. Without losing generality and the purpose for confirming the validity of
the GN-FEM model, the relative frequency shift of the resonance frequency of 42◦ Y-X LT and its TCF
value with a metallization ratio dependency was investigated as shown in Figure 8.
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Moreover, the same FEM model with an electrode thickness h/2p ranging from 0.06 to 0.1 in an
operating temperature range of 25 ◦C to + 145 ◦C was analyzed. The relation of the relative frequency
shift with different electrode thicknesses and temperatures was drawn and is presented in Figure 9.
It was found that the curve of the TCF value is not linear; that is to say, the variation of the electrode
thickness has a larger effect on the relative frequency shift than that of the metallization ratio.
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3.4. Experiment of Leaky-Type Surface Acoustic Wave Devices Excited on Lithium Tantalate

As shown in Figure 10, the experimental data taken from Pastureaud et al. [20] and the numerical
result calculated by the FEA/BIM method were compared. It was found that the simulation results
calculated by the GN-FEM model are more consistent with the experimental data than those of the
FEA/BIM model. Furthermore, the relative frequency shift with temperature dependency is not strictly
linear, because the geometric nonlinearity factor and the high-order temperature coefficients of material
constants are taken into consideration in the FEM model. Nevertheless, the good agreement between
the numerical analysis and experimental results confirms the efficiency of the proposed theoretical
analysis for investigating the thermal sensitivity of leaky-type SAW-based sensors.
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4. Conclusions

In conclusion, a numerical analysis was developed in this study to accurately predict the
frequency–temperature characteristic of SAW-based sensors using the periodic 3D-FEM model,
which includes the geometric nonlinear effect caused by thermal expansion of the electrodes and
piezoelectric substrate. SAW-based sensors on quartz or LT thin plates were investigated and the
relative frequency shifts as a function of the cut angle, metallization ratio, and electrode thickness were
calculated. This investigation provides important guidance for SAW-based sensor design. For example,
the calculation results show that the SAW devices on quartz with cut angles ranging from 35.0◦ to
37.0◦ are suitable for use as non-temperature sensors, such as SAW filters, and those on 42.75◦–cut
quartz are suitable for application as temperature sensors. The frequency–temperature laws of the
proposed theoretical result were in good agreement with those of the experimental results. More
significantly, the stiffness matrix, mass matrix, and damp matrix of the FEM model as a function
of the temperature can be obtained. This means that the dependency of the admittance, phase
velocity, and electromechanical coupling factor on the temperature can be further analyzed. In future
work, the proposed method can be extended to accurately predict temperature behavior for full-scale
SAW-based nanosensors using the latest algorithm of hierarchical cascading technology (HCT).
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The following abbreviations are used in this manuscript:

SAW Surface acoustic wave
RF Radio-frequency
3D-FEM Three-dimensional FEM model
2D-FEM Two-dimensional periodic FEM
FEA Finite element analysis
BIM Boundary integral method
BEM Boundary element method
GN-FEM Geometric nonlinearity model of finite element method
TCF Temperature coefficient of frequency
LT Lithium tantalate
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