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ABSTRACT The effects of  tight junction structure on water and solute fluxes 
across proximal tubular epithelium were examined with fiber-matrix equations 
previously derived by Curry and Michel (1980. Microvascular Research. 20:96-99). 
Using plausible estimates of  tight junction fiber length and width the model pre- 
dicts solute (Ps) and water permeability (Lp) coefficients that agree with the mea- 
sured values. When fiber-matrix and pore models were compared for physiologi- 
cally relevant ranges of  matrix void fraction (80-98%) and pore radii (0-20 J~), the 
fiber-matrix model predicted a 10-fold higher Lp/P, ratio. Lp/Ps was most sensitive 
to small changes in tight junction structure when void fractions exceeded 90%. 
Void fractions of  96.5% and 97.1% predicted previously measured values for Lp 
and solute permeabilities in rat and rabbit proximal tubules. These values are con- 
sistent with void fractions and permeabilities of  artificial membranes. The fiber- 
matrix tight junction model was incorporated into a model of reabsorption from 
the rat proximal tubule developed by Weinstein (1984. American Journal of Physiol- 
ogy. 247:F848-F862.) A void fraction of 98% predicted the experimental results 
for isosomotic reabsorption driven by active transport. Changing void fraction 
over the range of 97-99% produced a 50-75% change in predicted volume re- 
absorption with active transport. According to the fiber-matrix model: (a) solute 
permeabilities alone cannot be used to predict Lp, (b) previously measured solute 
permeabilities in the proximal tubule are compatible with significant water reab- 
sorption through a water-permeable tight junction, and (c) hydraulic and solute 
permeabilities may be sensitive to small changes in tight junction fiber length and 
diameter or ionic strength within the tight junction. 

I N T R O D U C T I O N  

In this paper  we describe the application of  a fiber-matrix model to the question of  
paracellular fluid and solute transport  in the proximal tubule. The relative impor- 
tance of  paracellular and transcellular pathways for water reabsorption is unre- 
solved (Diamond, 1979). Preisig and Berry (1985) argued that the pore  size and area 
of  the tight junct ion are too small for  there to be significant flow through the para- 
cellular pathway in proximal tubules. In their analysis, using the Pappenheimer  pore  
model (Pappenheimer et al., 1951), they estimated pore  dimensions f rom the per- 
meabilities of  lipophobic nonelectrolytes (Preisig and Berry, 1985). Since the 
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hydraulic permeability of  the tight junction calculated using this pore model was less 
than the experimentally measured values for proximal tubules they concluded that 
tight junctions cannot be the primary route for transepithelial fluid movement. 

According to Preisig and Berry (1985), the inapplicability of  Poiseuille's equation 
to very small pores forces one to conclude that the movement of  water across tight 
junctions is strictly diffusive. However, as will be shown below, theoretical argu- 
ments indicate that Poiseuille's equation underestimates flow through fiber-matrix 
membranes. This fact has been confirmed experimentally by showing that pore 
models underestimate bulk fluid flow and diffusion through ultraporous mem- 
branes (Yasuda et al., 1971), cartilage (Maroudas, 1970), and the junctions between 
endothelial cells (Curry and Michel, 1980). 

A recent review of  the structure, biochemistry, and assembly of  epithelial tight 
junctions summarizes the limited knowledge of  the structure (Gumbiner, 1987). 
Freeze-fracture shows the tight junctions as a belt-like set of strands, running paral- 
lel to the luminal surface, which may be likened to a set of  o-rings making up the 
seal surrounding a rotating shaft. Internally the strands are believed to be made up 
of a glycoprotein mesh cross-linked by calcium and linked to carbohydrate moieties 
bound to the membranes of  the adjoining cells (Hayward and Hackemann, 1973; 
Oschman, 1978; Griepp et al., 1983). It is these attachment sites that one observes 
in freeze-fracture micrographs of  the tight junctions (Gumbiner, 1987). The func- 
tional properties of  the tight junction appear to be related to both the structure and 
the number of strands. For the most part the strands run parallel to the epithelial 
surface, so the number of  strands will determine the effective thickness of  the tight 
junction. The hydraulic and solute permeabilities of  the tight junction are thus 
determined by both the internal composition of the strands and the number of 
strands. However, one cannot determine the detailed structure of  the proteins mak- 
ing up tile tight junction strands from the freeze-fracture images (Gumbiner, 
1987). 

Movement of solutes through such a protein mesh may be described by para- 
phrasing the description of  Yasuda et al. (1971) for water-swollen polymer mem- 
branes. They visualize that pores or channels in the membrane are mobile in size 
and location and that the size and shape of  these solvent-filled pores change contin- 
uously. The geometry of  the polymer network sets the upper  limit for the size and 
shape of permeating molecules and passage through the membrane depends on the 
probability that the permeant molecule finds at its location a suitable hole. The 
pores of this concept are described as "the 'free-volume element' since the total 
amount  of  such pores or channels in a unit volume of  the membrane represents the 
ratio of  free volume accessible to the transport of  the permeant" (Yasuda et al., 
1971). This concept of  the fiber-matrix membrane has been used by Curry and 
Michel (1980) and independently by Yasuda et al. (1971) to describe volume and 
solute fluxes throught the intercellular gap between endothelial cells and across arti- 
ficial porous membranes. In this model the equations for hydraulic permeability 
coefficient (Lp), the solute permeability coefficient (Ps), and the solute reflection 
coefficient (or), show a remarkable consistency in that, once one of these transport 
coefficients has been determined the other two transport coefficients fit the experi- 
mental data for capillary endothelium. 
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EQUATIONS 

The combined set of  equations to describe solute and volume flow across a fiber- 
matrix membrane was developed by Curry (1980) and Curry and Michel (1980) 
f rom the work of  Ogston et al. (1973) on solute permeability, and Kozeny (1927) on 
hydraulic permeability. Essentially identical expressions were independently devel- 
oped by Yasuda et al. (1971). The approach used to describe the solute permeability 
for a fiber-matrix membrane is based on the conventional expression for solute per- 
meability in homogenerous nonporous membranes, where the solute permeability is 
a function of  the solute diffusivity in the membrane, Din, and the solute partition 
coefficient for the membrane-bathing solution interface, K: 

Dmg 
e~= a--x- ' (i) 

where Ax is the membrane thickness. From Curry and Michel (1980) one can obtain 
equations describing both the solute diffusivity, Din, in the fiber matrix as well as the 
solute partition coefficient K, i.e., 

and 

(2) 

(3) 

where Do is the solute diffusivity in the bulk medium, ~ is the void fraction of  the 
membrane, a is the solute radius, and rf is the fiber radius. The void fraction can he 
expressed as a function of  the fiber radius, rf, and the length of  the fiber per unit 
volume of  fiber matrix, h 

E = ( 1  - zr~l), ( 4 )  

Curry and Michel (1980) used these expressions for K and D,, in the conventional 
permeability expression along with a term for the fractional area of  the total epithe- 
lium composed of  the permeable matrix, A/, to arrive at an expression describing 
the permeability coefficient for the total epithelium: 

AfD o exp [-lr~176 (a + rf) - 7rl(2arf + a2)] 
P, = (5) 

Ax 

The corresponding equation for the pore model is 

Ps = Np~rr~D~ (1 - a/rp) ~ (6) 
Ax 

in which for the case of  cylindrical pores (1 - a/rp) 2 is the steric exclusion factor to 
account for the interaction of  the solute with the pore walls having radius rp (Curry, 
1984). Np is the number  of  pores in the membrane. 

For volume flow through the fiber matrix Curry and Michel (1980) used the Car- 
men-Kozeny equation (Bear, 1972; Massey, 1983) originally developed to describe 
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fluid flow through random arrays of  macroscopic fibers, but applicable to the 
microscopic mesh of  gel-like structures. The expression for the hydraulic permeabil- 
ity (normalized to the total membrane area) is 

A l e 3 #  
Lp Ax(l - r (7) 

where ~ is the bulk fluid phase viscosity, and K is the Kozeny constant, which is a 
function of the "tortuosity" and shape of  the membrane channels. ~ has been exper- 
imentally shown to vary from 2.0 to 6.0 (Adamson and Curry, 1982) for a large 
variety of  porous structures (Carman, 1937; Curry and Michel, ] 980), but reaches 
values of  13.0 for calcined alumina membranes in which the fibers are arranged 
parallel to the membrane surface (Leenaars and Burggraaf, 1985). For hyaluronic 
acid gels of  very high void fraction, K has been found to have a value of  2.0 (Adam- 
son and Curry, 1982). 

The corresponding expression for the pore model is 

(8) Lp = Ax8~I. 

Curry and Michel (1980) used the expression of  Anderson and Malone (1974) and 
Anderson (1981) to estimate the reflection coeffieient, i.e., 

(r = (1 - K) ~, (9) 

where K is the partition coefficient of  the solute between the bulk solution and the 
pore. Eq. 9 was shown by Anderson (1981) to be theoretically valid for a variety of  
pore geometries subject to a number of  assumptions, where K is calculated using 
(1 - a/rp) 2. However, he points out that the derivation of  Eq. 9 assumes " . . .  the 
pores have a capillary structure, rather than say, a fibrous mat of  very high void 
fraction" and that at present no corresponding expression exists for fiber-matrix 
membranes. Idol and Anderson (1986) have shown experimentally that for poly(sty- 
rene sulfate) membranes the experimental data for the reflection coefficient does 
not fit the "hard sphere" cylindrical-pore model from which Eq. 9 is derived. A 
similar lack of  fit is seen in polymer reverse-osmosis membranes, where given the 
size of  the pores, Eq. 9 does not predict the almost perfect solute rejection that is 
observed (Wiggins, 1988). Curry (1980) accurately estimated reflection coefficients 
in cellophane and wet gel membranes using Eq. 9, however, the coefficients for 
small radii solutes in Visking cellulose membranes were substantially underesti- 
mated. As Idol and Anderson (1986) point out, the problem with applying Eq. 9 to a 
fiber-matrix or a microporous membrane is not entirely due to the inapplicability of 
Eq. 9, but to the use of  either Eq. 2 or the term (1 - alto) ~ to predict the partition 
coefficient. Both estimate the partition coefficient from strictly steric influences but 
do not take into account the exclusion (or inclusion) of  the solute from the mem- 
brane by chemical or solvation effects. Mardsen (1985), Ling (1987), and Browne et 
al. (1982) have all shown that in highly water-swollen matrix gels, the partition coef- 
ficients of  low molecular weight solutes are not predictable from Eq. 2. For exam- 
ple, the partition of  sugars increases the more highly swollen the matrix becomes 
(Mardsen, 1965; Ling, 1987), a result opposite to that predicted by Eq. 2. 
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In spite o f  the lack of  an appropriate  expression for the reflection coefficients, 
Eqs. 5 and 7 have been shown to provide a quantitative and consistent description 
of  the hydrostatic flow and solute diffusion through fiber-matrix membranes,  
including a number  o f  different types of  capillary endothelium and water-swollen 
polymer membranes.  

Eq. 7 predicts that the hydraulic permeability of  a membrane  will approach infin- 
ity as the void fraction, ~, approaches unity and Yasuda et al. (1971) have shown that 
the value of  the hydraulic permeability does increase exponentially as the void frac- 
tion approaches 1.0 in artificial water-swollen polymer membranes.  This cannot  
occur in epithelial membranes  because friction with the walls o f  the "macropore"  
limits the hydraulic permeability (Idol and Anderson, 1986). 

All calculations were solved on a VAX 750 computer ,  in double precision, with 
the C programming language. Plots were generated with the AT&T S graphics pack- 
age. 

R E S U L T S  

Evaluation of the Transport Parameters 

Artificial membranes. Before examining the application of  the fiber-matrix 
model to the proximal tubule we tested its applicability to aritficial membranes  to 
see if we could generate a set o f  t ransport  parameters  that are close to the experi- 
mentally determined values. Curry (1980) under took a similar analysis and generally 
obtained a good fit between experimental  data and the fiber-matrix model. Tables I 
and II  are the results f rom applying the fiber-matrix and the pore  models to a Syl- 
vania wet gel membrane  and Visking dialysis tubing. The fiber-matrix hydraulic per- 
meability coefficient was calculated f rom Eq. 7. To calculate the hydraulic perme- 
ability we required values for the void fraction, e, the radius of  the fibers making up 
the structure of  the membrane,  the area of  the membrane,  and the thickness of  the 
membrane.  In both cases the fiber radius we chose was 6 .0  x 10 -8 cm because this 
is similar to the fiber radius of  methyl cellulose (Ogston et al., 1973). The thickness 
of  the membrane  was taken f rom the work of  Ginzburg and Katchalsky (1963). The 
fractional area of  the membrane  was 1.0 since in both  cases the membranes  under  
study by Ginzburg and Katchalsky were a single homogeneous phase. The viscosity- 
term, 7, is the same as that for water at 25~ The value of  e is a function of  the fiber 
radius rf and the fiber length per  unit volume of  fiber matrix, l. Since we had a good 
estimate of  rf, the only remaining unknown was l. We therefore chose to use l as a 
fitting parameter ,  adjusting its value, and as result the value of  ~, until our  predicted 
value of  the hydraulic permeability matched the experimental values given by Ginz- 
burg  and Katchalsky (1963). The permeabilities and reflection coeff• o f  glu- 
cose, sucrose, and urea  were then calculated using Eqs. 5 and 9. To calculate the 
permeability coefficients the only additional parameters  required were the solute 
diffusivities. Eqs. 6 and 8 were used to calculate the solute and hydraulic permeabil- 
ities o f  the membranes  according to the pore  model. The pore  radius (rp) was 
adjusted to account  for  the measured hydraulic permeability and the solute perme- 
abilities and reflection coeffieients were then calculated assuming this pore  radius. 
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The reflection coefficients for the pore  case were determined f rom Eq. 9, using the 
expression (1 - a/rp) ~ for the partition coefficient. 

For the Sylvania wet gel membrane  (Table I) both the pore  and fiber-matrix mod- 
els provide reasonable estimates of  the sucrose and solute permeabilities and reflec- 
tion coefficients once the hydraulic permeability has been matched to the experi- 
mental values. The estimated values of  the urea permeabilities were not as close to 
the measured values. However, urea, because of  its structure (Shieh and Lyman, 
1979), may break the bound water structure within the hydrophilic regions, and 
thus pass more readily through the membrane,  be it pore  or  fiber matrix. More 
importantly, the results for the Visking dialysis membrane  shown in Table II  illus- 
trate the major problem with the application of  the pore  model in membrane  trans- 
port  studies. The predicted permeabilities for glucose and sucrose are three and two 
times greater  than the experimental values. To accurately (i.e., to within a few per- 
cent) fit the solute permeability data to the pore  model, pore  radii one-third of  that 
required to fit the hydraulic permeability are needed. Reduction of  pore  radii to 
account for the measured solute permeabilities would lead to a predicted hydraulic 
permeability an order  of  magnitude smaller than that measured. In other  words, 
one cannot calculate pore  radii f rom solute permeability data to estimate the 
hydraulic permeability of  a particular membrane,  a fact which has been demon- 
strated in other membranes (Maroudas, 1970; Yasuda et al., 197l; Curry and 
Michel, 1980; Idol and Anderson, 1986). Thus the approach taken by Preisig and 
Berry (1985) is not valid. It should be noted, however, that this applies to the fiber- 
matrix model as well, i.e., the void fraction cannot be estimated from the solute 
permeability, even though a particular void fraction can fit both solute and hydrau- 
lic permeability data. 

Tight Junction Epithlium 

The flow across tubular epithelium has been extensively modeled by others, but as 
stated in the introduction there is considerable controversy as to the role of  the 
tight junct ion in accounting for both solute and volume flow. We wished to investi- 
gate whether or  not the tight junct ion could account for the observed permeabilities 
of  the entire tubule epithelium. 

To model the flow through the tight junct ion of  proximal tubules several input 
parameters  were required for the model equations. The viscosity ~ is that of  water at 
37~ the fractional area of  the membrane  composed of  the tight junct ion was taken 
to be 0.005% similar to that used in other  models of  the proximal tubule (Weinstein, 
1982; Preisig and Boony, 1985). The values of  a and Do are chosen from the litera- 
ture and are given in Tables I I I  and IV. The value of  ~ is 2, the value determined by 
Adamson and Curry (1982) for hyaluronic acid gels. The value of  rf was chosen to be 
similar to the fiber radii of  hyaluronic acid (5.9 • 10 -8 cm) and sulfated proteogly- 
cans (5.1 • 10 -8 cm) (Ogston et al., 1973), which are components  of  the loose inter- 
cellular mesh and would be expected to be of  similar radius as the fibrous proteins 
making up the strands of  the tight junction that one observes in freeze-fracture 
studies. It is important  to note that the tight junct ion molecular structure at the 
microscopic level, at which the fiber-matrix model is applicable, is not comparable 
to the morphology observed using freeze-fracture techniques. We are applying the 
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T A B L E  l I I  

Calculated and Experimental Values f o r  I9 ,  and P,. Proximal Convoluted Tubule o f  the Rat  

871 

Molecular 
Solute Diffusivity radius P, (fiber) P~ (exp) 

x 10 ~ on2.s-I nm x 10" on.s  -~ x 1 ~  on.s  -t  
Mannitol 0.673* 0.40* 1.2 1.5* 

Sucrose 0.521" 0.45* 0.92 "T 
Raffinose 0.458* 0.60* 0.78 

Inulin 0.130* 1.50* 0.15 
Na + 1.78 | 0.361 3.3 21.1 ~ 
CI- 2.72 s 0.181 5.6 32.31 

Lt, , cra.s -I  (on HzO) - t  1.60 x 10 -7 Fiber-matrix model 
Lp, on.s  -t  (on 1120) - t  1.64 x 10 -7 Experimental* 

The hydraulic permeability coefficient was calculated from Eq. 7. The solute permeability coefficients were cal- 
culated from Eq. 5. A/is 5.0 x 10 -s, Ax is 2.0 x 10 -s cm, rlis 8.0 x 10 -s cm, the water viscosity is 9.16 x 10 -6, 
and K is 2. The calculated value of  ~ was 0.965. 
*Ullrich, 1973. 
tNo detectable permeability. 
IRenkin and Curry, 1979. 
ISchafer and Andreoli, 1979a. 
1Fr6mter et al., 1973. 

f i b e r - m a t r i x  m o d e l  t o  t h e  m o l e c u l a r  s t r u c t u r e  w i t h i n  t h e  s t r a n d  ( o r  o - r i n g )  a n d  n o t  

t o  t h e  c o l l e c t i o n  o f  s t r a n d s  o n e  o b s e r v e s  w i t h  f r e e z e - f r a c t u r e .  I n  o u r  m o d e l ,  a n  

i n c r e a s e d  n u m b e r  o f  s t r a n d s  is e q u i v a l e n t  t o  a n  i n c r e a s e d  t i g h t  j u n c t i o n  t h i c k n e s s .  

T h e  v a l u e  o f  r w a s  a d j u s t e d  i n  t h e  s a m e  m a n n e r  a s  t h a t  u s e d  t o  f i t  t h e  d a t a  o f  t h e  

a r t i f i c i a l  m e m b r a n e s ,  i .e . ,  b y  a d j u s t i n g  t h e  l e n g t h  l o f  f i b e r s  p e r  u n i t  v o l u m e  o f  

m e s h .  

T A B L E  I V  

Calculated and Experimental Values for  Lp, and P~. Proximal Convoluted Tubule o f  the Rabbit 

Molecular 
Solute Diffusivity radius P, (fiber) P, (exp) 

x 10 ~ on2.s-I nm x 105 on.s -l  x 10 ~ cm.s -I 
Mannitoi 0.673* 0.40* 1.3 - -  
Sucrose 0.521" 0.45* 0.96 0.69 t 
Raffinose 0.458* 0.60* 0.80 - -  
Inulin 0.130* 1.50* 0.16 - -  
Na + 1.78 ! 0.361 3.4 2.31 

Cl- 2.72* 0.181 5.4 2.6-5.61 

Lp, cra.s -~ (craHzO) -s  2.40 x 10 -7 Fiber-matrix model 
Lp, on.s  -I (onH20) -I 2.45 x 10 -7 Experimental data: 

The hydraulic permeability coefficient was calculated from Eq. 7. The solute permeability coefficients were cal- 
culated from Eq. 5. A/is 5.0 x 10 -s, Ax is 2.0 x 10 -5 cm, r/is 8.0 x 10 -s cm, the water viscosity is 9.06 x 10 -8, 
and ~ is 2. The calculated value o f t  was 0.971. 
*Ullrich, 1973. 
tSchafer and Andreoli, 1979b. 
IRenkin and Curry, 1979. 
IValue for NaCI from Schafer and Andreoli, 1979a. 
IHolmberg et al., 1981. 
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In the cases discussed we have ignored the role of  the lateral intercellular space in 
providing a significant barrier  to either solute diffusion or volume flow. I f  one cal- 
culates the hydraulic permeability of  the lateral intercellular space, using a pore 
model and realistic estimates of  the fractional area of  the lateral intercellular space 
and the epithelial thickness, the hydraulic permeabilities are an order  of  magnitude 
greater  than those measured in the epithelial membranes  (Berry, 1983). A similar 
calculation for the solutes indicates that the permeability of  the lateral intercellular 
spaces is an order  of  magnitude greater  than the epithelial values (Schafer and 
Andreoli, 1979a). Since the tight junct ion and lateral intercellular space are series 
resistances, there would have to be at least an order  of  magnitude decrease in the 
solute and hydraulic permeabilities of  the lateral intercellular spaces before a detect- 
able effect on the total epithelial permeability could be observed. It is therefore 
unlikely that the lateral intercellular space provides significant resistance to flow or 
is a significant factor in regulating transport. 

The restriction imposed on the hydraulic permeability by the walls of  the "macro-  
pores"  containing the fiber-matrix structure will also be insignificant for "macro-  
pore"  radii >70 A. 

For the fiber-matrix model it can be seen that there is good agreement  between 
the calculated and observed value of  the hydraulic conductivity, Lp, and the perme- 
ability coefficients, Ps, for those solutes that cross the proximal tubule only via the 
paracellular pathway (Tables I I I  and IV), especially when one examines the range of  
experimental  values f rom which the reported mean values are derived. It  also pre- 
dicts values for the permeability coefficients of  CI and Na close to the experimental 
values observed in the rabbit proximal tubule (Table IV), which is in agreement  with 
the belief that the passive ion transport  involves an extracellular route (Schafer and 
Andreoli, 1979b). For the rat tubule, the predicted ion permeabilities are similar to 
mannitol, but an order  of  magnitude less than the observed permeabilities, indicat- 
ing that the transcellular ion permeability may be significant. This is at odds with the 
belief that passive ion transport  is exclusively via the paracellular pathway in the rat 
proximal tubule (Fr6mter, 1979). However, it would explain the order  of  magni- 
tude difference between the ion and mannitol permeabilities. 

As discussed earlier, the use of  both Eq. 9 and Eq. 2 to predict the reflection 
coefficients is highly questionable for a high-void fraction fiber-matrix membrane  
(Anderson, 1981). This was experimentally shown by Idol and Anderson (1986) who 
developed a physical model of  a tight junctional structure filled with a polymer 
mesh. They formed high void-fraction fiber-matrix membranes  of  poly(styrene sul- 
fate) in large pores (29-140 nm) track-etched in mica membranes.  They then com- 
pared the hydraulic permeabilities and the thiourea solute permeabilities of  the 
pores with and without the polymer mesh. In addition, they measured the sieving 
coefficient for thiourea in some of  the polymer-filled pores. We applied Eq. 7 and 
Eq. 8 to Idol and Anderson's  data on the reduction of  hydraulic permeability due to 
the presence of  the polymer mesh to estimate the void fraction of  the three pores of  
their Table IV. The void fraction values were calculated by setting the ratio of  Eqs. 7 
and 8 equal to the reduction in the measured hydraulic permeability due to the 
presence of  the polymer mesh, and solving for the corresponding values of  e. Eq. 7 
was multiplied by 0.68 to correct for the noncircular cross section of the pore. The 
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total membrane  area was set equal to unity by making Af equal to one in Eq. 7, and 
adjusting the number  of  pores, Np, in Eq. 8. Fig. 1 is a plot o f  the measured reflec- 
tion coefficient against the calculated void fractions. The reflection coefficients and 
the hydraulic permeability data are taken f rom Table IV of  Idol and Anderson 
(1986). The reflection coefficients predicted f rom Eqs. 2 and 9 for these void frac- 
tions were all <<0.1, whereas the measured reflection coefficients range f rom 0.16 to 
0.49. Similarly, application of  Eqs. 2 and 9 to the tight junct ion predicts reflection 
coefficients <<0.1, whereas the repor ted  values for  the solutes in Tables I I I  and IV 
range f rom 0.5 to 1.0. Given that the tight junct ion is a complex glycoprotein struc- 
ture, that Eq. 2 ignores all but the steric interactions between solute and fibers, and 
that there is no formal justification for  using Eq. 9 where a fiber matrix is assumed, 
it is apparent  that Eqs. 2 and 9 cannot  accurately predict the reflection coefficients 
o f  actual junctional membranes.  The formal development and testing of  an expres- 
sion for  the reflection coefficient in fiber-matrix membranes  is still required (Ander- 
son, 1981), therefore we have not included the reflection coefficients in Tables I I I  
and IV. 

o 

r 
0 

,et 
0 

0 .965  

i i t i 

0.975 0.905 0.995 

FIGURE 1. A plot of the measured values 
of the reflection coefficient of thiourea 
against the void fraction of a polymer mesh 
membrane. The reflection coefficients are 
taken from Table IV of Idol and Anderson 
(1986). The void fraction values were calcu- 
lated by setting the ratio of Eq. 7 and Eq. 8 
equal to the reduction in the measured 
hydraulic permeability due to the presence 
of the polymer mesh, and solving for the 
corresponding value of ~. Eq. 7 was multi- 
plied by 0.68 to correct for the noncircular 
cross section of the pore. 

The calculated void fractions for the tubule tight junctions, 0.965 and 0.971, may 
appear  to be extremely high, however, they are less than that of  the hyaluronic acid 
gel studied by Adamson and Curry (1982) (~ = 0.987). 

The predictions of  the fiber-matrix and pore  models were directly compared  by 
plotting the ratio of  the hydraulic and solute permeability coefficients over the full 
range of  the void fraction and over a wide range of  pore  radii. Fig. 2 is a plot of  the 
Lp/Ps ratio vs. the void fraction (fiber-matrix model) and the pore  radius (pore 
model). The most important  feature of  this plot is that for the physiologically rele- 
vant ranges of  radii and void fraction, the hydraulic permeability relative to the sol- 
ute permeability is 10- to 100-fold greater  with the fiber-matrix model. Fig. 2 indi- 
cates why the pore  model cannot  account for both  the hydraulic permeability and 
the observed solute permeability of  the proximal tubule. For the pore  model to fit 
the mannitol and hydraulic permeability data for  the rat proximal tubule the Lp/P, 
ratio must be ~1.5 • 10 -~ (dashed line in Fig. 2), a value for which the mannitol 
curve (C) of  the pore  model does not approach for any physiologically realistic pore  
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radii. The mannitoi curve (C) for the fiber-matrix model reaches this value at a void 
fraction of  ~0.98. 

Another relevant feature of  the fiber-matrix membrane model is that solute per- 
meability is a function of  the void fraction over the entire range of  possible values, 
even at very high void fractions. Such a dependency of  solute permeability on void 
fraction has been observed by Ito (1961) for oxygen, nitrogen, and carbon dioxide 
transport through poly(vinyl alcohol) and cellophane membranes. The permeability 
of  the smaller solutes is independent of pore radii except for pores of  dimensions 
similar to the solutes, in which case the interaction between the walls of the pore 
and the solute must be taken into account (see Pappenheimer, 1951). 

Fig. 2 also shows why we did not use the solute permeability as the fitting param- 
eter to estimate the void fraction of  the proximal tubules of Tables I I I  and IV, and 

Fiber-Matrix Pore Model 
A 

A 

. . . .  

0.80 0.85 0.90 0.95 1.00 0 5 10 1 S 20 

E pore radius (A) 

FIGURE 2. A plot of the cal- 
culated hydraulic permeability 
Lo (cm. s -1) divided by the cal- 
culated solute permeability 
Ps(cm. s wl) against the fiber- 
matrix void fraction and pore 
radius, for inulin (curve A), 
raffinose (curve B), mannitol 
(curve C), and sodium (curve 
D). The hydraulic and solute 
perrneabilities as a function of 
the void fraction were calcu- 
lated with Eqs. 5 and 7. The 
hydraulic permeability and the 
solute permeabilities as a func- 
tion of pore radii were calcu- 
lated with Eqs. 6 and 8, with 
Af = Np~rr2p, and (1 - a/rp) 
assumed to be unity. The sol- 
ute diffusivities and molecular 
radii are those given in Table 
III. 

then estimate the hydraulic permeabilities. Because the solute permeability does not 
vary as much as the hydraulic permeability with changes in void fraction, a reason- 
able fit to mannitol, NaCI, or sucrose permeability can be made with void fractions 
ranging from <0.90 all the way to 1.0. The predicted values of  Lp would then range 
over several orders of  magnitude. Just as in the case of  the pore model, it is inap- 
propriate to use a solute permeability to estimate a hydraulic permeability. 

Application of the Fiber-Matrix Model to Reabsorption from the Proximal Tubule 

A model describing salt and volume reabsorption from the rat proximal tubule has 
been developed by Weinstein (1984). The model incorporates neutral active salt 
transport and passive reabsorptive forces due to asymmetrical salt solutions and 
oncotic and hydrostatic pressures. His model includes the cell membrane transport 



FRASER AND BAINES Transport in Renal Tubules 875 

coefficients (L~n, P~ll, tr~eu), as well as the transport coefficients of  the basement 
membrane (L~, Pbm, ~ ) ,  and the tight junct ion (Ltj, Ptj, 'rtj)- The model allows the 
values of  L,j, P~j, and a 0, predicted from the fiber-matrix model, to be directly 
inserted into the volume-flow equation developed by Weinstein, and the response of  
the tubule to changes in the void fraction to be examined. We have replaced the 
transport coefficients chosen by Weinstein for the tight junct ion by those calculated 
using the fiber-matrix model, but we have adopted his values for  the transport coef- 
ficients of  the cell and basement membranes including the large transcellular 
hydraulic permeability. It should be noted that Weinstein's chosen value for the cell 
membrane hydraulic permeability was 4.3 x 10 -7 cm3.s -~ m m H g .cm  -~, 2.6 times 
the value predicted by the tight junction model at a void fraction of  0.965 
(Table III) and larger than that reported for proximal tubule epithelium (Tables III 
and IV). 

The equation derived by Weinstein for the volume reabsorption from the rat 
proximal tubule is 

Jv = Lp[Trs -- 71"lure + RTa(C,  - CIm) + RTaC] .  (10) 

Lp and a are composite transport coefficients incorporating the cell, basement, and 
tight junctional hydraulic and salt permeabilities and reflection coefficients, i.e., 

= L,~,(Plum + Pbm) (11) 
2 Lp Plum + Pbm + RTLepltClrlumCo 

PbmO'lum 
(12)  

P i m +  P~m, 

with 

and 

Ll~Lt~ (13) 
tepit Llum + Lt~ ' 

Llum = Ltj + Lcen, (14) 

LtjLcen (15) 
Ptum = Ptj + P~n + (trtj - aceu) ~ RTCo Ltj + Lc~ll ' 

Lceuacen + Ltfft) 
alum = (16)  

L~n + Ltj 

Clum is the luminal salt concentration, C, is the peritubular salt concentration, ~qum is 
the luminal oncotic concentration, Co is a reference osmolality, ~rs is the peritubular 
oncotic concentration, and C is the active transport coefficient. 

As part of  his study Weinstein (1984) investigated the effects of  varying the 
oncotic and active driving forces on the reabsorption, with a fixed set of  transport 
coefficients. To investigate the effect of  tight junct ion structure on the volume reab- 
sorption, we varied void fraction under  four different conditions (Fig. 3). Curve A is 
for  active transport, with an isotonic luminal perfusate and a 5 mOsmol oncotic 
gradient due to an impermeant solute on the peritubular side of  the epithelium, 
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curve B is for active t ranspor t  with a 2 mOsmoi  hypotonic  luminal  perfusate,  curve 
C is for active t ranspor t  with an isotonic luminal  perfusate,  and  curve D is for active 
t ranspor t  with a 2 mOsmol  hyper tonic  luminal  perfusate.  

A void fraction of  0.98, close to the values used in Tables I I I  and  IV, predicts a 
volume flux of  - 6 0  n l , c m - 2 - s  - l  for active t ranspor t  with an isotonic luminal  per- 
fusate, essentially identical to that measured  in proximal convolu ted  tubule  of  the 
rat (Schafer and  Andreol i ,  1979a). Varying the void fraction over the range  of  0 . 97 -  
0.99 results in a 5 0 - 7 5 %  change in volume reabsorpt ion,  de pe nd i ng  on  the driving 
forces responsible,  indicat ing that net  fluid reabsorpt ion  could be significantly 
inf luenced  by small variations in tight j u n c t i o n  void fractions no  mat te r  what the 
na tu re  of  the driving force. At high void fractions (>0.99) the reabsorpt ion  will 
essentially cease as a result  of  the increased permeabil i ty  of  salt a n d / o r  water 

> 

A 

i i i i i 

0.94 0.95 0.96 097 0.98 0.99 1.00 

E 

FIGURE 3. Steady-state volume reabsorp- 
tion from rat proximal tubule as a function 
of the void fraction, 4. The curves were cal- 
culated from Eqs. 10-16. The values of L,p 
Ptp and atj, were calculated from Eqs. 5, 7, 
and 9 as for Tables III and IV. The values 
of the other parameters were taken from 
Weinstein (1984). Lce, = 4.3 • 10 -7 
cm~.s -1 mmHg.cm -~, Lbm = 6.7 X 10 -6 
cm3"s -1 mmHg "cm-2, Pce, = 3.1 • 10 -l~ 
e r a ' s - l ,  Pbm = l 1.7 • 10 -4 cm.s -l, ac~u = 
1.0, Ohm = 0.0, C = 1.6 • 10 -2 mmoi, Co = 
290 mOsmol. Curve A is for active trans- 
port, with an isotonic luminal perfusate 
and a 5 mOsmol oncotic gradient due to an 
impermeant on the peritubular side of the 
epithelium, curve B is for active transport 
with a 2 mOsmol hypotonic luminal per- 
fusate, curve C is for active transport with 
an isotonic luminal perfusate, and curve D 
is for active transport with a 2 mOsmol 
hypertonic luminal perfusate. 

th rough  the tight j unc t i on ,  and  the co r respond ing  diffusive or convective backflux. 
U n d e r  such condi t ions  the active t ranspor t  canno t  genera te  a salt gradient  to drive 
the overall volume reabsorpt ion.  

D I S C U S S I O N  

We have shown that a f iber-matrix model  for m e m b r a n e  t ranspor t  fits measure-  
ments  made with both  artificial membranes  and  the proximal  tubule  epithel ium. 
The  ability of  the fiber-matrix model  to represent  the proximal tubule  data does no t  
prove that the majori ty of  volume flow across the proximal epi thel ium occurs via the 
tight j u n c t i o n  only that the tight j u n c t i o n  is capable of  allowing for such a flow. As 
Diamond  (1979) has po in ted  out,  the a rguments  as to the route  of  transepithelial  
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volume cannot be resolved with current experimental techniques. The measurement 
of  cell membrane and transepithelial hydraulic permeability are performed by 
imposing osmotic gradients across the epithelium and monitoring the volume flow. 
However, the true osmotic gradient existing across the epithelium is a function of  
the unstirred diffusion layers at the membrane surfaces. In the absence of  knowl- 
edge of diffusional and polarization delays or resolution of osmotic transients in the 
renal tubules, one cannot determine the true osmotic gradients, therefore no accu- 
rate calculation of  the hydraulic permeability coefficient is possible. 

The major consequence of a tight junction transport conforming to a model as we 
have proposed is that subtle changes in the structure of  the tight junction could 
change both hydraulic and solute permeability, thereby providing a mechanism for 
precise control of epithelial transport driven by both active and passive 
mechanisms. 

The fiber-matrix model has been applied to model flow only across the tight junc- 
tional structure of the kidney nephron. Application of the model to transport across 
other epithelial membranes especially the kidney glomerulus is warranted. The 
fiber-matrix model is an attractive model to apply to the cell membranes since it can 
explain the high hydraulic permeability of  these membranes, without the necessity 
of large porous structures. The lipid-protein cell membranes and the cellular cyto- 
plasm are both examples of  fiber-mesh/gel membranes and the application of  the 
fiber-matrix model flow equations may be appropriate. Any change in the hydration 
state and/or  structure (i.e., void fraction) of  the cell membranes or the cytoplasma 
would be expected to have a dramatic effect on transcellular permeabilities. Ionic 
composition, chelators, and proteins in solutions could modify the permeability of 
membranes to water and solutes. Especially interesting is the possibility that changes 
in the osmotic pressure could directly regulate the void fraction, as has been 
observed in biological, fiber-mesh gels (Douzou, 1987). Changes in ionic strength 
and, as a result, differences in the void fraction of  the tight junction, could explain 
differences in the permeability of  superficial and deep nephrons and differences 
between convoluted and pars recta tubules. 
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