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Abstract 

Background:  Electronic health record (EHR) prediction models may be easier to use in busy clinical settings since 
EHR data can be auto-populated into models. This study assessed whether adding functional status and/or Medicare 
claims data (which are often not available in EHRs) improves the accuracy of a previously developed Veterans Affairs 
(VA) EHR-based mortality index.

Methods:  This was a retrospective cohort study of veterans aged 75 years and older enrolled in VA primary care 
clinics followed from January 2014 to April 2020 (n = 62,014). We randomly split participants into development 
(n = 49,612) and validation (n = 12,402) cohorts. The primary outcome was all-cause mortality. We performed logistic 
regression with backward stepwise selection to develop a 100-predictor base model using 854 EHR candidate vari-
ables, including demographics, laboratory values, medications, healthcare utilization, diagnosis codes, and vitals. We 
incorporated functional measures in a base + function model by adding activities of daily living (range 0-5) and instru-
mental activities of daily living (range 0-7) scores. Medicare data, including healthcare utilization (e.g., emergency 
department visits, hospitalizations) and diagnosis codes, were incorporated in a base + Medicare model. A base + func-
tion + Medicare model included all data elements. We assessed model performance with the c-statistic, reclassification 
metrics, fraction of new information provided, and calibration plots.

Results:  In the overall cohort, mean age was 82.6 years and 98.6% were male. At the end of follow-up, 30,263 par-
ticipants (48.8%) had died. The base model c-statistic was 0.809 (95% CI 0.805-0.812) in the development cohort and 
0.804 (95% CI 0.796-0.812) in the validation cohort. Validation cohort c-statistics for the base + function, base + Medi-
care, and base + function + Medicare models were 0.809 (95% CI 0.801-0.816), 0.811 (95% CI 0.803-0.818), and 0.814 
(95% CI 0.807-0.822), respectively. Adding functional status and Medicare data resulted in similarly small improve-
ments among other model performance measures. All models showed excellent calibration.

Conclusions:  Incorporation of functional status and Medicare data into a VA EHR-based mortality index led to small 
but likely clinically insignificant improvements in model performance.
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Introduction
Accurate prediction of an individual’s life expectancy can 
inform many clinical decisions, including cancer screen-
ing, medication management for chronic conditions, 
and advance care planning [1, 2]. While many mortality 
indices have been developed among community-dwell-
ing older adults, they are often underused for several 
possible reasons: time burden associated with obtaining 
necessary variables and inputting them into a calculator, 
lack of knowledge about their availability on sites such 
as ePrognosis, and discomfort among clinicians in dis-
cussing prognostic estimates with patients, families, and 
caregivers [3–5]. The increasing availability of electronic 
health record (EHR) data allows for the creation of auto-
mated prediction models that rely on the vast number of 
clinical data elements in the EHR [6]. Thus, EHR-based 
life expectancy calculators may facilitate the uptake of 
prediction models by eliminating the need to manually 
input data.

One notable EHR-based mortality prediction model 
developed within the Veterans Affairs (VA) healthcare 
system is the Care Assessment Need (CAN) score, which 
provides risk estimates for hospitalization, death, and 
either hospitalization or death at 90 days and 1 year [7]. 
The original goal of this score was to identify high-risk 
patients enrolled in VA primary care clinics to improve 
care coordination and better target resources. Given 
that the focus of the CAN score is on 1-year mortality 
risk, it is unclear if the CAN score is applicable to clini-
cal decisions such as cancer screening which require life 
expectancy estimates at longer time horizons. Therefore, 
we recently developed a life expectancy calculator using 
EHR data in adults 50 years and older at VA primary care 
clinics that was specifically designed to provide individu-
alized longer-term life expectancy predictions to help 
guide screening and prevention decisions [8]. The final 
model included 93 predictors across a variety of domains, 
including demographics, diseases, medications, labs, vital 
signs, and healthcare utilization. The model performed 
comparably to other long-term mortality risk tools with 
an integrated area under the receiver operating charac-
teristic curve (iAUC) value of 0.816 and good calibration 
across 1 to 10 years of mortality prediction.

However, one limitation of this life expectancy cal-
culator is that information on functional status, such 
as dependencies in activities of daily living (ADLs) and 
instrumental activities of daily living (IADLs), was not 
included. Functional impairments have been repeatedly 
shown to improve mortality predictions in non-EHR 

based mortality indices involving community-dwelling 
older adults in part because they represent the end-
impact of several chronic diseases [9–11]. However, this 
information is often not easily extractable or universally 
collected in EHR data, making it challenging to incor-
porate into EHR-based mortality prediction models. 
In 2009, the VA Office of Geriatrics and Extended Care 
encouraged clinics to assess functional status during pri-
mary care appointments in patients aged 75 years and 
older through questions regarding assistance with ADLs 
and IADLs, resulting in many VA medical centers rou-
tinely collecting ADL/IADL data [12]. Thus, we sought 
to determine whether incorporating functional status 
into an EHR-based mortality index improves prediction 
accuracy.

In addition to functional status, Medicare claims data is 
a second potential data source outside the VA EHR which 
may improve prediction model accuracy. While the VA 
health care system is the largest integrated health care 
system in the United States, many veterans supplement 
their healthcare through Medicare services outside the 
VA [13, 14]. Adding Medicare data to a VA EHR-based 
prediction model requires additional effort to obtain and 
link the data elements. To help guide future researchers 
on how much improvement can be expected by incorpo-
rating Medicare data to EHR data, we compared the pre-
dictive accuracy of EHR-based prediction models with 
and without Medicare data.

To determine whether the improvements in predic-
tion accuracy with the addition of functional measures 
and Medicare data justify the additional data collection 
and data linkage burdens, we sought to compare model 
performance measures across four EHR-based mortality 
prediction models developed in veterans aged 75 years 
and older: 1) a base model utilizing only VA EHR data, 
2) a base + function model incorporating EHR + func-
tional data, 3) a base + Medicare model incorporating 
EHR + Medicare data, and 4) base + function + Medicare 
model incorporating EHR + functional+Medicare data.

Methods
Study population
Our study population included a nationally representa-
tive sample of veterans aged 75 years and older enrolled 
in VA primary care clinics in 2014 (n = 62,014). We 
restricted our population to 49 VA medical centers that 
collected data on functional measures. We defined an 
index visit for individuals in our cohort as the first pri-
mary care visit between January 1, 2014 and December 
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31, 2014. We used a 1-year “look-back” period from the 
date of the index visit in 2014 to assess six domains of 
predictor variables: demographics, disease diagnoses, 
medication use, laboratory results, vital signs, and health-
care utilization. We incorporated a split-sample design in 
which 80% of the full cohort were randomly sampled for 
model development (n = 49,612) and the remaining 20% 
for model validation (n = 12,402).

Our primary outcome was all-cause mortality over 
the enter follow-up period. Follow-up data on mortality 
was collected using the Veterans Health Administration’s 
Vital Status File through April 2020 as this was the latest 
date that we had information on an individual’s date of 
death. This method of mortality ascertainment has been 
shown to have high accuracy in previous studies [15, 
16]. Each participant had between 5 years and 4 months 
(December 31, 2014 - April 30, 2020) and 6 years and 
4 months (January 1, 2014 - April 30, 2020) of potential 
follow-up time over the study period. The median and 
mean years of potential follow-up time were 5.98 and 
5.94 years, respectively.

Candidate variables
We obtained 854 predictors from the EHR for the base 
model, including 2 demographic variables (age/gender), 
271 disease diagnosis codes from inpatient and outpa-
tient VA data files classified using the Healthcare Cost 
and Utilization Project (HCUP) Clinical Classifications 
Software (CCS), 365 medication classes classified as any 
use in the past year, 88 laboratory tests, and 9 vital signs 
[17]. For EHR utilization data, we created 119 types of 
healthcare visits, such as emergency department (ED) 
visits, hospitalizations, and various types of outpatient 
appointments, categorized as 0, 1 or > 1 visits. For missing 
data, we performed single stochastic mean imputation 
using a regression equation with all variables with any 
missingness included. Variables with missingness were 
pulse (n = 561; 0.9%), temperature (n = 3852; 6.2%), respi-
ration (n = 3251; 5.2%), weight range (n = 17,811; 28.7%), 
weight change (n = 17,941; 28.9%), systolic blood pres-
sure (n = 545; 0.9%), and body mass index (n = 25,330; 
40.8%). Additional details regarding these EHR candidate 
predictors are provided in the Supplementary Meth-
ods (Additional File 1) and the previously published life 
expectancy calculator [8].

Functional variables
At the VA sites that assessed functional status, clini-
cal staff were prompted via dialog boxes to ask yes or 
no questions about dependencies in ADLs and IADLs. 
An example question might be, “Is the person able to 
take a bath/shower/sponge bath without the assistance 
of another person?” with answers dichotomized as “Yes, 

able to bathe independently” or “No, not able to bathe 
independently.” Five questions were asked related to 
ADLs, including bathing, eating, toileting, dressing, 
and transferring. Seven questions were asked related to 
IADLs, including managing finances, managing medi-
cations, going shopping, using the telephone, prepar-
ing food, doing housekeeping, and doing laundry. ADL 
scores (range 0-5) and IADL scores (range 0-7) were cal-
culated with higher scores indicating a greater number 
of dependencies (ADLs) or needing help (IADLs). The 
answers were compiled into the Corporate Data Ware-
house Health Factors Domain Dataset.

Medicare data variables
We examined the inpatient, outpatient, and carrier 
Medicare files to obtain Medicare utilization data and 
diagnosis codes generated when veterans obtained ser-
vices outside of the VA. Medicare data was obtained 
through the VA Information Resource Center’s VA/Cent-
ers for Medicare and Medicaid Services (CMS) Data for 
Research Project. The six Medicare utilization data vari-
ables included ED visits, hospitalizations, outpatient vis-
its, length of stay (LOS) at a skilled nursing facility (SNF), 
duration in days of home health services, and number of 
durable medical equipment (DME) received in the year 
prior to the index date. The variables corresponding to 
number of ED visits, hospitalizations, and outpatient 
visits in the year prior to the index date were catego-
rized as 0, 1, or > 1 visit. LOS at a SNF was categorized 
as either 0 for no days spent at a SNF, 1 for LOS between 
1 and 10 days, 2 for LOS between 11 and 20 days, 3 for 
LOS between 21 and 30 days, and 4 for LOS greater than 
30 days. Duration in days of home health (HH) services 
was categorized as 0 for no HH visits, 1 for 1-20 days, 2 
for 21-40 days, 3 for 41-60 days, and 4 for greater than 
60 days. The number of DME received within the one-
year period was categorized as 0 for no DME received, 
1 for 1 item received, 2 for 2-3 items received, 3 for 4-8 
items received, and 4 for greater than 8 items received. 
Medicare diagnosis codes were classified using the 
HCUP CCS and combined with VA EHR diagnosis codes. 
Most Medicare diagnosis codes included in the predic-
tor pool overlapped with the VA disease diagnosis codes. 
When compared to the VA diagnosis codes, there were 
six unique Medicare diagnosis codes (female infertility, 
abruptio placenta, polyhydramnios, respiratory distress 
syndrome, hemolytic jaundice, and drowning/submer-
sion) that were additionally added although likely not rel-
evant in our population.

Statistical analysis
We first examined baseline characteristics in the devel-
opment and validation cohorts. To build a base model 
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using the development cohort (n = 49,612), we per-
formed multivariable logistic regression with backward 
stepwise selection using a p-value greater than 0.001 for 
removal of variables. We chose not to use machine learn-
ing models based on previous work using VA EHR data 
and because in data settings such as ours with ample 
sample size (“large N, small p”), studies suggest tradi-
tional regression methods are equivalent to more opaque 
machine learning methods [18–20]. To facilitate com-
parison across the four models, we forced the backward 
stepwise selection procedure to include 100 final vari-
ables in each model. We chose to create a 100 predictor 
model due to results from our previously published life 
expectancy calculator using VA EHR data, where our 
least absolute shrinkage and selection operator (LASSO) 
Cox proportional hazards regression with a Bayesian 
information criterion (BIC)-optimized lambda suggested 
that a 100 predictor model appropriately balanced model 
bias and variance [8].

The base model only considered VA EHR predic-
tors, and we did not include any functional measures 
or Medicare data variables. We repeated the variable 
selection process in the development cohort to create 
three additional 100-predictor models: base + function 
model (which included EHR variables and ADL/IADL 
scores as candidate predictors), base + Medicare model 
(which included EHR and Medicare utilization vari-
ables and diagnosis codes as candidate predictors), and 
base + function + Medicare model (which included EHR 
variables, ADL/IADL scores, and all Medicare data vari-
ables as candidate predictors).

We assessed the incremental value of additional pre-
dictors (functional status and Medicare data) to the 
base model in several ways. We compared the concord-
ance statistic (c-statistic) across the four models, which 
assesses a model’s ability to separate individuals who 
did and did not have the event of interest. To assess for 
overfitting, we re-calculated the c-statistic in our valida-
tion cohort. We calculated reclassification measures such 
as the net reclassification improvement (NRI) and inte-
grated discrimination improvement (IDI) [21, 22]. NRI 
measures the degree to which the additional measures 
were able to appropriately reclassify individuals who did 
and did not die. We pre-specified a two-category index 
with cut-off at 0.50 as we felt that this would represent 
a meaningful threshold for thinking about average life 
expectancy. The IDI reflects the difference in discrimi-
nation slopes between the base model and the model 
including the additional measures. It serves to quantify 
the value of added measures by calculating improve-
ments in sensitivity and specificity integrated over all 
possible cut-offs. We also calculated the fraction of new 
information provided, which refers to the proportion of 

variation explained by additional predictors when added 
to the base model [23]. Calibration, which refers to the 
agreement between observed outcomes and predictions, 
was assessed visually by plotting the predicted probability 
of mortality (x-axis) by the observed proportion of mor-
tality (y-axis) [24]. All statistical analyses were conducted 
using SAS version 9.4 (SAS Institute, Inc) and R version 
4.03 (R Project for Statistical Computing). Additional 
details regarding the statistical analysis are provided in 
the Supplementary methods (Additional File 1).

Results
Baseline characteristics were similar in the development 
(n = 49,612) and validation (n = 12,402) cohorts (Table 1). 
The mean age was 82.6 years and 98.6% were male. There 
was a high prevalence of common medical conditions 
such as hypertension (76.5%) and diabetes (35.8%). The 
median number of ADL and IADL dependencies was 0 
with 92.9 and 70.2% of patients reporting no ADL and 
IADL dependencies in the development cohort, respec-
tively. The distribution of ADL and IADL scores is shown 
in Supplementary Table S1. By the end of follow-up in 
April 2020, 30,263 participants (48.8%) had died.

Roughly 40% of our cohort had Medicare data avail-
able (n = 20,058 (40.43%) in the development cohort and 
n = 5045 (40.68%) in the validation cohort). The distri-
bution of specific Medicare variables is shown in Sup-
plementary Table S2. For example, related to healthcare 
utilization, ~ 20% had at least 1 ED visit and ~ 11% had at 
least 1 hospitalization. When Medicare diagnosis codes 
were added to the existing VA diagnosis codes, the per-
centage of individuals with certain diagnoses increased 
slightly (Supplementary Table S3). For example, in the 
development cohort, 8.9% had diagnosis codes for con-
gestive heart failure using VA data only which increased 
to 12.2% using VA and Medicare data.

The 100-predictor base model included 2 demographic 
predictors (age/gender), 35 diagnosis codes, 24 medi-
cations, 23 laboratory values, 7 vital sign values, and 9 
EHR-derived healthcare utilization predictors (Fig.  1, 
Supplementary Table S4 and S5). ADL and IADL scores 
were selected in the final base + function and base + func-
tion + Medicare models. Three Medicare utilization vari-
ables were selected in the base + Medicare model, and 
2 Medicare utilization variables were selected in the 
base + function + Medicare model. Adding Medicare 
diagnosis codes resulted in more diagnosis code variables 
being included in models, with the number of diagnosis 
codes selected increasing from 35 in the base model to 42 
in the base + Medicare model and 41 in the base + func-
tion + Medicare model.

The c-statistic of the base model was 0.809 (95% CI 
0.805-0.812) in the development cohort and 0.804 (95% 
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CI 0.796-0.812) in the validation cohort. Adding func-
tional variables and/or Medicare data resulted in slightly 
higher c-statistics (Table  2). For example, the validation 
cohort c-statistics of the base + function, base + Medi-
care, and base + function + Medicare models were 0.809 
(95% CI 0.801-0.816), 0.811 (95% CI 0.803-0.818), and 
0.814 (95% CI 0.807-0.822), respectively.

The reclassification table comparing the base model 
with the base + function + Medicare model is shown 
in Table 3. Using a threshold of 50%, the NRI for death 
was 0.0028, meaning that 28 out of 10,000 persons were 
correctly reclassified by the base + function + Medicare 
model as having died. Similarly, the NRI for not dying 
was 0.0131, meaning that 131 out of 10,000 persons were 
correctly reclassified by the base + function + Medicare 
model as surviving to end of follow-up. The overall sum-
mary NRI (0.0028 + 0.0131) was 0.0159 (p < 0.001). The 
overall IDI was 0.0176 (p < 0.001). Values for the NRI and 
IDI comparing the base model with base + function and 
base + Medicare models were similar (Supplementary 
Table S6). Adding functional measures, Medicare data, 
or both resulted in small improvements in the fraction of 
new information provided, ranging from 0.028 to 0.058 
(Supplementary Table S7). Calibration plots for all four 
models suggested close agreement between the observed 
and predicted probability of mortality across the full risk 
spectrum (Supplementary Figs. S1-4).

Discussion
Incorporating functional measures (ADL and IADL 
scores) and Medicare data (Medicare utilization vari-
ables and diagnosis codes) to a VA EHR-based mortality 
index involving veterans aged 75 years and older enrolled 
in primary care clinics resulted in slight improvements 
in the c-statistic, reclassification indices, and fraction of 
new information provided. However, the improvements 
in these measures were small and of questionable clini-
cal relevance. These findings have important implica-
tions for deciding which predictor variables to include 
in EHR-based prognostic models. Documenting func-
tional status with ADL/IADL scores imposes additional 
time burdens for staff and is not uniformly assessed dur-
ing healthcare visits. Similarly, additional resources are 
required to link Medicare data to the existing VA EHR. 
The small improvements in model performance seen in 
this study with these data elements may not be worth the 
added time and effort to include within EHR-based mod-
els unless already incorporated for other purposes.

Previously published non-EHR based mortality indi-
ces in community-dwelling older adults commonly 
include a measure of functional status [3, 11]. Func-
tional impairments are clearly important for identifying 
high risk populations and are associated with numerous 

Table 1  Selected baseline characteristics in the development 
and validation cohorts

Abbreviations: ACE Angiotensin converting enzyme, ADL Activities of daily 
living, BMI Body mass index, IADL Instrumental activities of daily living, IQR 
Interquartile range, SBP Systolic blood pressure, SD Standard deviation, VA 
Veterans Affairs

Characteristic Development 
cohort (n = 49,612)

Validation 
cohort 
(n = 12,402)

Demographics

  Age in years, mean (SD) 82.6 (4.8) 82.5 (4.8)

  Male 48,918 (98.6%) 12,204 (98.4%)

Vital Signs

  BMI ≥30 9278 (18.7%) 2332 (18.8%)

  SBP ≥140 mmHg 14,877 (30.0%) 3793 (30.6%)

Medications

  Lipid lowering agents 27,138 (54.7%) 6797 (54.8%)

  ACE inhibitors 12,552 (25.3%) 3200 (25.8%)

  Beta blockers 17,563 (35.4%) 4304 (34.7%)

  Oral hypoglycemics 7343 (14.8%) 1861 (15.0%)

Chronic Conditions

  Hypertension 37,927 (76.5%) 9507 (76.7%)

  Hyperlipidemia 35,420 (71.4%) 8872 (71.5%)

  Diabetes mellitus 17,736 (35.8%) 4360 (35.2%)

  Congestive heart failure 6046 (12.2%) 1430 (11.5%)

  Dementia 4616 (9.3%) 1167 (9.4%)

VA utilization

  Emergency department visits

    0 43,986 (88.7%) 10,982 (88.6%)

    1 3134 (6.3%) 787 (6.4%)

     > 1 2492 (5.0%) 633 (5.1%)

  Hospitalizations

    0 47,174 (95.1%) 11,758 (94.8%)

    1 1794 (3.6%) 473 (3.8%)

     > 1 644 (1.3%) 171 (1.4%)

Functional scores, median (IQR)

  ADL score (range, 0-5) 0 (0-0) 0 (0-0)

  IADL score (range, 0-7) 0 (0-1) 0 (0-1)

Medicare linkage available 20,058 (40.4%) 5045 (40.7%)

Medicare utilization

  Emergency department visits

    0 39,643 (79.9%) 9938 (80.1%)

    1 5870 (11.8%) 1504 (12.1%)

     > 1 4099 (8.3%) 960 (7.7%)

  Hospitalizations

    0 44,236 (89.2%) 11,120 (89.7%)

    1 3749 (7.6%) 899 (7.2%)

     > 1 1627 (3.3%) 393 (3.2%)

Mortality at follow-up

  Year 1 3969 (8.0%) 993 (8.0%)

  Year 2 8137 (16.4%) 2021 (16.3%)

  Year 3 12,503 (25.2%) 3101 (25.0%)

  Year 4 16,720 (33.7%) 4155 (33.5%)

  Year 5 20,738 (41.8%) 5185 (41.8%)
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adverse health outcomes, including mortality, hospital 
admissions, nursing home placement, caregiver burn-
out, and decreased quality of life [9, 25–27]. However, 
non-EHR based mortality indices typically only include 
a small number of variables compared with the poten-
tially hundreds of variables in EHR-based indices. Thus, 
our results, where the addition of functional meas-
ures improved model performance only slightly, may 
be because most of the predictive power of functional 
measures was already captured with the many other 
EHR data variables included in the model. For exam-
ple, healthcare utilization variables in the EHR such as 
home and community assessments, enrollment in home 
based primary care, or visits to the social worker may 

help to identify an individual with functional impair-
ment at higher risk for mortality. In contrast, functional 
measures may improve model performance in non-
EHR models since there are fewer alternative variables 
whose predictive power substantially overlaps with 
functional measures.

Despite including only individuals aged 75 years 
and older, our cohort was relatively free of ADL and 
IADL dependencies (median of 0 with 92.9 and 70.2% 
of patients reporting no ADL and IADL dependen-
cies, respectively). Our finding that functional status 
as measured by reported ADL/IADL dependencies did 
not significantly improve mortality prediction accuracy 
therefore may be most relevant when targeting a general 
primary care population with longer life expectancies. 
This is aligned with the primary goal of our originally 
developed life expectancy calculator which was to aid in 
discussions about longer term clinical decisions, such as 
cancer screening [8].

While Medicare data did not dramatically increase 
model performance measures, it did alter the compo-
sition of predictors included in the final models. The 
inclusion of a greater number of diagnosis codes in 
the base + function + Medicare model compared with 
the base model (41 vs. 35, respectively) suggests that 
Medicare diagnosis codes may add predictive value 
to the diagnosis codes domain. For example, a patient 

Fig. 1  Number of predictor variables selected within each of the 100 variable models. Abbreviations: c-statistic, concordance statistic; EHR, 
electronic health record. * For the base model and base + function model, diagnoses codes were obtained only from Veterans Affairs electronic 
health record data. For the base + Medicare and base + function + Medicare models, diagnosis codes were obtained from the Veterans Affairs 
electronic health record and Medicare sources

Table 2  Concordance statistics for the four models in the 
development and validation cohorts

Abbreviations: c-statistic Concordance statistic

Model c-statistic (95% CI)

Development cohort Validation cohort

Base model 0.809 (0.805, 0.812) 0.804 (0.796, 0.812)

Base + function model 0.814 (0.810, 0.818) 0.809 (0.801, 0.816)

Base + Medicare model 0.813 (0.810, 0.817) 0.811 (0.803, 0.818)

Base + function + Medicare 
model

0.818 (0.814, 0.822) 0.814 (0.807, 0.822)
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hospitalized at a non-VA hospital for a medical condition 
that predicts high mortality, such as septic shock, may 
now be included within this diagnosis code class through 
the Medicare diagnosis code. Enriching the VA diagnosis 
codes with Medicare diagnosis codes allows more diag-
nosis codes to be included in the final model. However, 
since the models incorporating Medicare data perform 
similarly to models without Medicare data, our results 
suggest that Medicare data may not be necessary for 
accurate VA EHR mortality prediction models. This may 
be due to the fact that when EHR models include nearly 
100 predictor variables, VA EHR data elements may be 
able to (indirectly) account for risk factors from Medi-
care-funded healthcare. For example, even if veterans 
receive most of their care outside the VA, some comor-
bidities that are strongly predictive of mortality, such as 
cancer, may still be entered into the VA EHR during a 
yearly primary care visit. Similarly, veterans who receive 
most of their care outside of the VA may access the VA 
for medications or labs which would allow our model to 
identify the veteran as higher risk.

In addition to the data linkage burdens associ-
ated with adding Medicare data to the existing VA 
EHR, another issue with using Medicare data is that it 
is not available in real time. There is typically a 1- to 
2-year lag period before the information is available to 

researchers due to the data processing requirements. 
Given the small incremental value of adding Medicare 
data shown in this study, it is likely not worth waiting 
for this additional data when up-to-date information is 
already available in the EHR.

Our study has a few important limitations. First, our 
results speak most directly to VA EHR mortality predic-
tion models in older adults. The VA patient population 
is known to have important differences in sociodemo-
graphic factors, health status, and medical resource 
use compared to the general patient population [28]. 
Similarly, the individuals enrolled in the specific VA 
primary care clinics that collected information on 
functional status used in this study may not necessar-
ily be representative of the wider national VA cohort. 
Additional studies in non-VA populations, within dif-
ferent EHR environments, and focused on different 
clinical outcomes are needed before we can confidently 
extrapolate our findings to non-VA EHR prediction 
models. Second, the functional status assessment based 
on reported ADL/IADL impairments collected during 
these healthcare visits may not be reflective of an indi-
vidual’s true severity of functional impairment. How-
ever, previous studies have identified VA functional 
status data as having moderate agreement with a refer-
ence standard assessment from trained research assis-
tants [12].

Table 3  Reclassification table comparing the base model with the base + function + Medicare model

A risk threshold of 50% was used to calculate the net reclassification improvement for the base model compared with the base plus functional measures plus 
Medicare data model (base + function + Medicare model).

Abbreviations: NRI Net reclassification improvement
a The improvement in classification among individuals who died during follow-up is defined as the number of deaths correctly reclassified as higher risk (in 
boldface = 1106) minus the number of deaths incorrectly reclassified as lower risk (in italics = 1038) divided by the total number of deaths (24,286). Therefore, the NRI 
for events was 1106 – 1038 / 24,286 = 0.28%
b The improvement in classification among individuals who survived during follow-up is defined as the number of non-events correctly reclassified as lower risk (in 
boldface = 1099) minus the number of non-events incorrectly reclassified as higher risk (in italics = 766) divided by the total number of people who survived (25,326). 
Therefore, the NRI for non-events was 1099 – 766 / 25,326 = 1.31%
c Overall NRI of 0.0159 is the sum of the net percentages of patients that were correctly reclassified (into higher or lower risk depending on whether they subsequently 
did or did not die) by the model that incorporated function and Medicare data (base + function + Medicare model) compared to the base model

Reclassification table for individuals who did and did not die on follow-up

Individuals who died 
during the follow-up 
period

Base model Base + function + Medicare model

< 0.5 ≥0.5 Total

< 0.5 6492 1106 7598

≥0.5 1038 15,650 16,688

Total 7530 16,756 24,286

NRI for events (death)a 1106 – 1038 / 24,286 = 0.28%

Individuals alive at the 
end of follow-up

< 0.5 18,959 766 19,725

≥0.5 1099 4502 5601

Total 20,058 5268 25,326

NRI for non-events (survived)b 1099 – 766 / 25,326 = 1.31%

Overall net reclassification improvementc 0.0028 + 0.0131 = 0.0159

Integrated discrimination improvement 0.0176
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Conclusions
Overall, we found that incorporating functional measures 
and Medicare data to an EHR-based mortality prediction 
model among VA primary care patients aged 75 years and 
older did not substantially improve model performance 
measures. This finding is important given that collecting 
information on functional status and linking Medicare 
data may be burdensome. While our findings should be 
replicated in settings outside the VA, researchers devel-
oping EHR-based prediction models in large popula-
tions with many predictor variables may be able to forego 
including functional measures and Medicare data with 
minimal losses in predictive accuracy.
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