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Abstract

Background: Despite the common experience that interrupted sleep has a negative impact on waking function, the
features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In
this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-
wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have
been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often
complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-
exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble
power laws by appearing linear on a log-log plot.

Methodology/Principal Findings: To characterize the parameters that may allow these distributions to mimic one another,
we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated
distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for
the ‘‘incorrect’’ model over a range of parameters. The ‘‘zone of mimicry’’ of parameters that increased the risk of mistakenly
accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions.

Conclusions/Significance: Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics
(self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and
pathological sleep architecture.
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Introduction

Although it has been understood for decades that sleep is

comprised of transitions among sub-stages of rapid eye movement

(REM) and non-REM (NREM) sleep, whether the temporal

dynamics of these transitions is important for restorative functions

remains obscure. Interestingly, recent analysis demonstrates that

standard metrics used to summarize sleep architecture in clinical

studies (sleep efficiency, percentages of each stage) fails to identify

differences in fragmentation caused by medically severe sleep

apnea [1,2]. This suggests that alternative measures are necessary

to better characterize sleep architecture and its fragmentation in

disease. Recent work suggests that human and animal sleep

architecture dynamics can be quantified by methods emphasizing

stage transition probabilities [1,2,3,4,5,6,7,8]. These methods

assess transitions mainly via the distribution of bout lengths of

individual sleep-wake stages, which are clearly non-Gaussian. The

distribution of bout lengths of sleep has been described as an

exponential process in mice, rats, cats, and humans [3,4,6], while

the distribution of wake bout lengths has been described as either

exponential [6], or, more commonly, as a power law across these

species [3,4]. Some data in fact suggests that newborn rodents

exhibit exponential distribution of waking bouts, which then

evolves into a power law distribution as the animal matures [9].

Although a flip-flop neuronal circuit model has been proposed to

control the transitions between sleep and wake (and a separate flip-

flop switch for transitions between NREM and REM sleep) [10],

modeling linking these neural circuits to the fine structure of sleep

architecture is lacking.

Improved quantification of sleep architecture holds promise for

correlating sleep disruption with daytime symptoms and different

pathological causes of fragmentation. Understanding sleep-wake

transitions also has implications for modeling sleep architecture

dynamics. Power laws and exponentials are apparent in many

aspects of biology, from molecular to system levels, but may have

distinct mechanistic implications. Power law distributions are
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thought to arise from multiple interacting components of a

complex system, and observations of such systems often follow a

similar profile across multiple measurement scales (‘‘scale-free’’

patterns). Examples of scale-free patterns include stock market

fluctuations (similarly jagged over minutes, days, or years),

pulmonary branching patterns, activity level fluctuations, and

heart rate variability [11,12,13]. Exponential processes imply

probabilistic state transitions typically governed by a constant rate

of change over time. For example, state transitions in enzymes and

ion channels typically exhibit exponential kinetics. The distribu-

tion of sleep-wake transitions may thus hold important clues to

understanding the mechanisms underlying sleep architecture in

health and disease.

We ask therefore, under what conditions one distribution is

likely to be mistaken for the other in terms of fitting, and consider

the effects of sample size and the parameters of the distributions

using simulation methods. We hypothesize that with relatively

small sample sizes (such as that which might be typical of 1–14

clinical sleep study nights), it is likely that statistical testing will

yield an acceptable fit for a power law distribution, even if the true

underlying model is multi-exponential, and vice versa. We further

hypothesize that certain combinations of exponential distributions

will be particularly susceptible to mistaken acceptance of power

law fitting.

Materials and Methods

We are primarily concerned with two distributions commonly

used to describe the lengths of sleep and wake bouts. A power law

function has the general form f(x) = cx2a, where c is a constant,

and a is the ‘‘scaling factor’’, that is, the slope of the line seen on a

log-log plot. An exponential function has the general form f(x) =

ae(2x/t), where a is the relative contribution of the given

exponential component (see below), and t is the time required

for the function to decay by 63%, and thus is a measure of the rate

of decay (smaller numbers indicate faster decay rates). The

simulations and analysis below were performed using R.

Kolmogorov-Smirnov test of goodness of fit
We follow Clauset et al [14] in using the Kolmogorov-Smirnov

(KS) test, a non-parametric test of goodness of fit, used for

assessing the probability that a sample of observations was drawn

from a given population distribution (whether empirically

measured or mathematically generated). In other words, the test

asks if the observations in the population and the observations in

the sample follow the same statistical distribution. Although the

KS test can be used to compare two empirically observed samples,

in our simulations we refer to the ‘‘population distribution’’ as the

standard against which sample observations are compared.

The cumulative distribution function (CDF) is defined as the

probability (y-axis) that an event is shorter than or equal to a given

bout length (x axis). The KS test statistic, do, measures the

maximum vertical distance (maximum difference in cumulative

probability) between the observed sample CDF and the given

population CDF. The logic of the test is that if the sample CDF is

drawn (statistically) from the same distribution as the population

CDF, then the CDFs will be close and thus do will be small. If do is

not small, then this is considered evidence that the sample

observations are not distributed according to the population CDF

under consideration [15].

This type of analysis requires a sense of how far from zero do can

be expected to fall. For most observed sample distributions, the

distribution of do is not known, and therefore must be established

by simulation methods. In the parlance of hypothesis testing, the

null distribution of do should be specified, and then experimental

observations can undergo comparison testing via KS. Below we

establish criterion for rejecting the null hypothesis (that two

distributions are not different) through numerical simulation

methods (that is, drawing random variables from pre-specified

population distributions).

Algorithm summary: (Supplemental Figure S1) For each

combination of sample size and parameter values examined, we

iterated over the following five steps 1000 times, in order to

estimate a p-value:

1) Draw a test sample from a known distribution: either a

power law random number generator, or an exponential

random number generator with one, two, or three

exponential components.

2) Fit the test sample to the other (incorrect) distribution and

estimate the KS test statistic, do.

3) Generate 100 reference sample datasets from random

number generators with distributions defined by the fitted

functions used in step 2.

4) Re-fit each of these 100 reference sample datasets to the type

of distribution from which they were drawn in step 3, and

estimate the test statistic for simulated data, ds. The ds values

define the range of expected deviation from the distribution

fitted in step 2, given its parameters and sample size.

5) Compare d0 to each of the 100 values of ds from step 3, to

estimate a p-value for the proposition that the test sample

from step 1 was drawn from the distribution fitted in step 2

(p = fraction of the time do#ds).

The output of each iteration is a p-value, calculated by

comparing one test sample to 100 random samples drawn from

the incorrect distribution. We use p = 0.05 as the critical value for

statistical rejection of the fitted model. Our results report the

probability of failing to reject the incorrect model as the fraction of

the 1000 iterations for which p.0.05. In the results section, each

data point plotted in the figures and each entry in the tables

represents the results from one run of 1000 iterations for the

specified combination of parameter values and sample size.

Fitting a power law function to samples drawn from
exponential distributions

Test samples of data were randomly drawn from the sum of

either two or three exponential distributions. Each test sample was

fitted to a power law distribution, and the goodness of fit was

evaluated by the KS method. We systematically varied the

proportion of observations drawn from each exponential distribu-

tion and its decay parameter, t (the average duration of an

observation), in order to determine the goodness of fit of the power

law function over a spectrum of parameter values. The number of

observations included n = 40, n = 160, n = 320 and n = 640 (except

in some cases to maintain equal proportions, we used n = 39,

n = 159, n = 318 and n = 639).

Note that the methods of Clauset et al [14] for fitting power laws

to empirical data include an estimation of a lower threshold of

event duration, below which the distribution does not exhibit

power law behavior. For our simulated sleep bouts, following this

threshold method resulted in good but meaningless estimates of fit

due to discarding a large portion of the sample data. Accordingly,

we fixed the lower threshold to one epoch to standardize the

comparison of fit across the parameter space as well as to

guarantee that the fit of the entire sample was considered.

Sleep Architecture Dynamics
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Fitting exponential functions to samples drawn from a
power law distribution

We generated sleep bouts as random values drawn from a

power law distribution with a scaling exponent (a) of 3, each of

which is referred below as a ‘‘test sample’’. We set a= 3 to ensure

adequate dispersion of the duration distribution given our binning

routine (1 epoch bin width, all fractions rounded down). We then

collected these simulated bouts into frequency-duration histograms

(see below), in preparation for three separate fitting routines: a

single exponential function, the sum of two exponential functions,

and the sum of three exponential functions of x. For example, the

form of the three-exponential function is f(x) = a1e(2x/t1) + a2e(2x/t2)

+ a3e(2x/t3), where ai is the relative contribution of the ith

exponential term to the distribution, defined by the y-intercept of

that component of the multi-exponential equation. t is the time-

invariant rate of change of the function, and is sometimes called the

scaling factor of the exponential term. Although exponential

functions typically contain a constant term to account for a y-axis

offset, this parameter was forced to zero in this analysis, given that

there is no biological basis for postulating a constant minimum

frequency for all possible sleep durations (this constraint does not

affect the arguments presented here). We also limited analysis to

only decaying functions with a positive estimate of t (such that the

exponent –x/t remained negative).

The shortest state defined by convention in human sleep studies

is 30 seconds, or one ‘‘epoch’’, which is the unit of time used in

these simulations. In generating random data, we discarded values

less than 1 epoch; in other words, n values reflect the number of

draws $1 epoch. Although rounding does occur in clinical scoring

(minimum threshold 0.5 epoch to score a stage), we did not round

fractional state durations. However, the 1-epoch width of bins in

our frequency-duration histograms effectively rounded down any

fractional state durations, similar to Clauset et al [14]. Each

simulated sample of bouts was binned, and the resulting

histograms were fit using exponential models via the non-linear

least-squares Levenberg-Marquardt algorithm (LMA) (http://

cran.r-project.org/web/packages/minpack.lm/index.html; ac-

cessed 1/12/10). We maintain bins of constant width, rather than

logarithmically increasing widths. Logarithmic binning compresses

long duration events into relatively fewer bins, by comparison. As

the number of observations per bin is lower for longer durations

using constant bin width, this could theoretically result in longer

observations carrying disproportionate weight in the model fitting.

This might make a good fit with an exponential function even less

likely, because even a few events of exceptionally long duration

(expected in a power law, and not in an exponential distribution)

would influence the fitted line. Therefore, constant bin widths

would be the more conservative test for a good exponential fit to

power-law distributed data.

Fits that violated our biologically imposed constraints (positive A

values and positive t values) were discarded. We implemented the

fitting routine in two different ways. We first considered 1000

consecutive sample datasets, and the probability of rejecting the

exponential fits refers only to the subset of 1000 for which

exponential fitting converged within our constraints. Fitting with

the sum of three exponentials is more likely to include a

component that violates our constraints. If there were a systematic

relationship between non-convergence and the distribution of bout

lengths in the sample, then the results for the three-exponential

function would have more of these samples excluded, confounding

comparison between the results for one, two and three

exponentials. To address this potential bias, we also analyzed

the first 1000 samples for which all three exponential functions

converged according to our criteria.

The fitted probability mass functions were normalized in order

to represent them as fitted probability density functions (PDFs).

These PDFs were then used to generate random values distributed

according to the fitted exponential functions with the R

implementation of the Unuran universal number generator

(http://cran.r-project.org/web/packages/Runuran/; accessed 1/

12/10) in order to generate the simulated data sets for the KS test

(that is, generation of a distribution of ds values). We investigated a

range of sample sizes: n = 40, n = 160, and n = 640. This range was

chosen to parallel approximately the number of sleep-wake

transitions observed in a single night (40 or fewer), and to

compare with the number of transitions that might occur with

pathological fragmentation and/or multiple nights of observation.

Results

Although several groups have reported mono-exponential fitting

to observed bouts of sleep across species, we have recently

demonstrated that the distribution of human sleep sub-stages

(REM and NREM) is not captured by a mono-exponential model.

Specifically, two (REM) or three (NREM) exponential terms were

required to fit these distributions, suggesting multiple distinct stage

transition time scales [2]. This is of potential interest for statistical

as well as biological reasons: 1) mono-exponential fitting of multi-

exponential distributions is biased towards brief bout lengths,

which dominate frequency distribution histograms, 2) long

duration bouts may represent more stable (less fragmented) sleep

bouts, and 3) the multi-exponential pattern suggests multiple

control points, possibly consistent with neuro-anatomic data

suggesting that there are multiple wake- and sleep-promoting

nuclei in the mammalian brain.

The rules governing the timing of sleep-wake stage transitions

remain unknown. Given the potential clinical importance of

fragmentation (mainly attributed to brief transitions to wakefulness

that interrupt sleep continuity), characterizing these patterns

empirically from hypnogram data is worthwhile. Consider a

simplified model of sleep architecture consisting of two states (sleep

and wake) with fixed transition probabilities (a first order markov

process). In this setting, the distribution of sleep (and wake) bout

lengths is predicted to be mono-exponential. Figure 1A illustrates

simulated transitions between a single sleep state and a single

Figure 1. Example of a random fragmentation process. Simple
first order Markov transitions between two states (S and W), which
generates a one-exponential distribution of sleep states (when n = 400
or 4000). The data are plotted as a binned frequency histogram with
arbitrary units of bout duration; inset shows the same data on a semi-
log plot, in which mono-exponential distributions appear linear.
doi:10.1371/journal.pone.0014204.g001
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interrupting wake state, which results in mono-exponential

dynamics as expected. Several groups have reported sleep bout

duration to follow an exponential distribution [3,4,6].

In contrast to the simple shape of a mono-exponential function,

a collection of sleep bouts drawn from a multi-exponential

distribution can appear linear on a log-log plot, a feature typically

considered characteristic of a power law distribution. This is

shown in the log-log frequency histogram of Figure 2A. This

distribution was formed by three distinct mono-exponential

distributions, which are shown separately in Figure 2B. For visual

comparison, panels A and B are overlaid in Figure 2C,

demonstrating how the three components combine to mimic a

power law distribution. Here we specifically chose the parameters

of the three exponential components such that the overall

distribution would appear linear on a log-log frequency-duration

histogram (t values are 1, 6, 60; relative number of observations

are 47.4%, 34.2%, 18.4%; total observations = 38000). To

determine the parameters supporting such a similarity between

power law and multi-exponential distributions, we simulated sleep

bouts using systematic combinations of sample size and parameter

values spanning one-, two-, and three-exponential processes.

KS approach: power law fitting of samples drawn from a
combination of two exponential distributions

We conducted simulations to answer the following question:

over what range of parameters might a two-exponential process be

reasonably fit by a power law function? Thus, we generated

sample data sets by varying the exponential decay constant (t) and

the relative proportion of two independent exponential generators.

We also varied the total number of observations to determine the

impact of sample size on model fitting; these values approximate a

single night (40) or multiple nights (160, 320, 640) of stage

transitions typical of standard human polysomnograms. In each

simulation, the fast t was fixed at 1 epoch, and the value of the

second (slow) t varied from 2 to 60 epochs (y-axis). Frequency-

duration histograms of the simulated bouts were subjected to

fitting by a power law model, which in this case of exponential

data, is by definition ‘‘incorrect’’. The relative proportion of the

faster t1 is given on the x-axis (and refers to the number of draws

from the fast t1 generator). Therefore the degenerate cases of a

single exponential process are shown on either extreme of the x-

axis (when the relative proportion of the fast t1 events is either 0 or

1). The z-axis is the color-scaled probability that the KS routine

failed to reject the wrong model, in this case, a power law model fit

to the double exponential generated data. A value of zero (green)

means the power law fitting was always rejected, while a value of 1

(red) means that the power law was never rejected. Thus, the z-axis

is a measure of the extent to which the exponential distributions

can mimic a power law.

For n = 40 observations (Figure 3A), as the contribution of the

fast t component increases, the probability that a power law model

is not rejected increases, reaching a plateau near relative

proportions of 0.6 to 0.9, followed by a sharp decline as the

proportion approaches 1. This general pattern holds for a range of

values of the slow t2 when n = 40 (that is, the zone of mimicry is

broad). However, when the number of observations is increased to

160 (Figure 3B), the main region in which KS fails to reject the

power law model is limited to when t2 is between ,10–30 epochs.

When the number of samples is increased to 320 (Figure 3C), a

further decrease in mimicry is seen, and mimicry is negligible

when n = 640 (Figure 3D). These results emphasize the impor-

tance of sample size when estimating model goodness-of-fit at

these relatively small but clinically relevant sample sizes. Example

distributions from the green (power law rejected) and red (power

law not rejected) regions of the landscape are shown in Figure 4.

Ordinary least squares (OLS) approach: power law fitting
of samples drawn from a combination of two
exponential distributions

We repeated power law fitting of the same simulations as in

Figure 3 using the OLS method to test the goodness of fit (as is

typically performed in the literature [3,8]). Note that whereas the

KS method yields a probability that the sample was drawn from a

power law distribution, the R2 from an OLS analysis measures the

amount of variation in the sample that is explained by a power law

model. The R2 cannot therefore be used to accept or reject a

hypothesis via threshold or cut-off values in the same manner that

is commonly implemented with a p-value. In Figure 5, the results

of OLS fitting are shown for the two-exponential parameter space,

with the R2 value on the z-axis, when n = 40 (Figure 5A) and

n = 640 (Figure 5B). The high R2 values (red) indicate that the

power law model explains most of the sample variation across the

entire parameter landscape (the data mimic a power law across the

parameter space), despite the distribution being drawn from a two-

exponential distribution. Comparing these results to those from

Figure 2. Multi-exponential data can mimic a power law. This frequency histogram appears linear on the log-log plot, which is typical of a
power law distribution. The distributions of the three distinct one-exponential generators used to create the distribution shown in panel A include a
fast (blue), intermediate (green) and slow (red) exponential decay constant, in arbitrary units of duration. Panel C shows the overlap of panels A and B.
doi:10.1371/journal.pone.0014204.g002
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the KS test, it is clear that the R2 from the OLS approach is not an

appropriate measure of goodness-of-fit under these conditions.

KS approach: power law fitting of samples drawn from a
combination of three exponential distributions

We next evaluated the range of parameters within which a

three-exponential process is well-fit by a power law model. In one

set of simulations, we held the t values for the three exponential

functions constant (t1 = 1, t2 = 5, t3 = 25), and systematically

varied the proportion of observations drawn from each function.

In each case, we evaluated the goodness of fit of a power law

model with the KS method. The probability of failing to reject the

power law model is shown for n = 40 (Figure 6A), n = 160

(Figure 6B), n = 320 (Figure 6C), and n = 640 (Figure 6D)

observations. To represent the proportional contribution of all

three functions on only two axes, we define the x and y axes as

representing ratios: the x-axis shows the ratio of the number of

draws from the t2 exponential function to the number of draws

from the t3 (slowest) exponential function; the y-axis shows the

ratio of the number of draws from the t1 (fastest) exponential

function to the number of draws from the t2 exponential function.

In this manner, all combinations in the parameter space can be

visualized. When n = 40, the (incorrect) power law model is not

Figure 3. Fitting a power law model to two-exponential data. Panels A–D show the probability of failing to reject the incorrect power law model,
for two-exponential data of increasing sample sizes (n = 40–640), In each panel, t1 = 1 (the fast exponential), t2 is varied (y-axis; the slower exponential), and
the relative contribution of each exponential t is given on the x-axis. The probability of rejecting the power law fit is color coded on the z-axis.
doi:10.1371/journal.pone.0014204.g003
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rejected throughout most of the parameter space; the power law fit

was mainly rejected when the contribution of t1 was low,

especially when t2 was also low. As the number of samples

increased, the initially broad range of failure to reject became

narrower, with a peak occurring when t1:t2 was ,2–16, and t2:t3

was ,1–0.25. Like the two-exponential simulations, when n = 640,

there was minimal chance of failing to reject the power law model.

In a complementary set of simulations, we held the number of

draws from each exponential function constant and in equal

proportions (1:1:1). We varied instead the decay constants for the

middle (t2) and slowest (t3) decaying exponential functions, while

keeping t1 fixed at 1. The probability of rejecting the power law

model is shown when the total number of observations was n = 39

(Figure 7A), n = 159 (Figure 7B), n = 318 (Figure 7C), and n = 639

(Figure 7D). As expected, failure to reject the power law model was

most apparent when n = 39; in this condition, the highest

probability of failing to reject the power law fit was seen when

t2 was between ,2–10 epochs, and was fairly insensitive to

Figure 4. Representative data sets from two-exponential data. Frequency histogram examples of a single trial from the ‘‘green’’ zone of Figure 3B
(left) and from the red zone (right). In the green zone, the power law is rejected, while in the red zone, the power law model is acceptable (fails to be rejected).
doi:10.1371/journal.pone.0014204.g004

Figure 5. Ordinary least squares fitting of power law model to two-exponential data. For n = 40 (A) and n = 640 (B), the explained variation
(R2) from the (incorrect) power law model is high for all parameter values when the OLS method is used.
doi:10.1371/journal.pone.0014204.g005
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changes in the value of t3. When n = 159, the zone of failure to

reject the power law was concentrated around t2 values of ,2–5,

again fairly insensitive to the values of t3. For larger sample sizes,

there was minimal chance of failing to reject the power law model.

Fitting exponential functions to samples drawn from a
power law distribution

We next performed simulations to answer the converse

question: given a known power law distribution of data, what is

the likelihood of incorrectly accepting exponential fitting? To

accomplish this, we generated random draws from a power law

distribution, and determined the probability of rejecting one-, two-,

or three-exponential model fits to the data, using the KS method

(see methods). We evaluated total sample sizes of n = 40, n = 160,

and n = 640. We performed this analysis with two different criteria

related to convergence of the fitting algorithm. In the first, we

analyzed 1000 simulated data sets, and included the result in the

calculation of probability of rejecting the exponential model only

when the fitting routine converged for each exponential model (that

is, a subset of the 1000 simulated data sets). In the second, we

continued running simulations until all three exponential models

converged for a total of 1000 data sets, to avoid potential bias

Figure 6. Power law fitting of three-exponential data (fixed t, variable contributions). A–D show the probability of failing to reject the
(incorrect) power law fit of three-exponential data with increasing sample size (n = 40–640). The t values were fixed (1, 5, and 25 epochs), while their
proportions are varied as shown by the x- and y-axes. The probability of failing to reject the power law model is color coded in the z-axis.
doi:10.1371/journal.pone.0014204.g006
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introduced by failure to converge (that is, more than 1000

simulations were required). As reported in Table 1, the probability

of rejecting the incorrect exponential models was similar using each

of these two criteria.

Surprisingly, even the mono-exponential model cannot be

rejected in a substantial portion of trials if the power law

distribution is under-sampled (n = 40), while increasing to n = 160

leads to 90% rejection levels, and n = 640 leads to nearly 100%

rejection. The two- and three-exponential models were acceptable

in nearly all of the under-sampled (n = 40 and n = 160) trials. Even

when n = 640, the three-exponential fitting was not rejected in over

80% of trials. This suggests some asymmetry of the goodness of fit

testing: whereas increased sample size minimizes incorrect power

law fitting of a multi-exponential process at sample sizes of n = 640

(Figures 3,6,7), power law data could still be incorrectly fitted with

multi-exponential functions in a majority of trials due to the larger

number of free parameters (Table 1).

Discussion

Measurements that characterize sleep architecture according to

state transition dynamics may capture the elusive concept of sleep

Figure 7. Power law fitting of three-exponential data (fixed contributions, variable t). A-D show the probability of failing to reject the
(incorrect) power law fit of three-exponential data with increasing sample size (n = 39-639). The t values are varied as shown by the x and y-axes. The
proportion is fixed at 1:1:1. The probability of failing to reject the power law model is color coded in the z-axis.
doi:10.1371/journal.pone.0014204.g007
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continuity (or fragmentation) better than routine clinical statistics

such as stage percentages or sleep efficiency. Analysis of sleep-wake

state transition probabilities in animal and human studies suggests

that the temporal stability of certain stages is approximated by either

an exponential or a power law model. Our results emphasize that

the distinction between a power law and multi-exponential process

is not always straightforward – visually or statistically. By simulating

sleep bout lengths based on a variety of known distributions

(exponential or power law), we determined goodness of fit by the KS

method for the incorrect model: power law for a known exponential

distribution, and exponential for a known power law distribution.

The parameter landscape under which the incorrect model

provided a good fit of the data (that is, ‘‘zones of mimicry’’)

corresponded closely to the t values for multi-exponential fitting of

wake and NREM sleep bouts observed in our analysis of Sleep

Heart Health Study subjects [2]. For example, the t values for wake

bouts were approximately 0.6, 3, and 14 epochs, and those of

NREM bouts were approximately 2, 8, and 44 epochs.

Several practical challenges exist regarding the quantification of

sleep architecture dynamics. Our study does not directly address

whether the power law or multi-exponential model is appropriate

for any given experimental dataset (where the true distribution is

not known). Importantly, our results show that the commonly used

OLS fitting method [3,8] is not suited to measuring goodness of fit

of power and multi-exponential models when the underlying

distribution is known, consistent with Clauset et al [14]. Two other

practical challenges involve sample size and accuracy of

identifying state transitions experimentally. Given the difficulty

in obtaining multiple nights of PSG data from individual patients,

it is particularly important to recognize that the zones of mimicry

are highly sensitive to sample size, and thus fitting of clinical PSG

data should be approached with caution.

Brief transitions are subject to inter-rater variability in manual

scoring and to ‘‘rounding’’ criteria in scoring guidelines. Since

brief transitions contribute not only to the steep decay portion of

the frequency-duration histograms, but also to the tail portions (by

interrupting otherwise long bouts), these fitting methods may be

particularly sensitive to accurate determination of brief transitions.

Pooling clinically similar subjects may address the sample size

challenge, but introduces uncertainty in terms of inter-individual

heterogeneity and therefore in the observed statistical distribution

of the data. Longitudinal home monitoring of sleep-wake stages is

not currently available.

It has been suggested that sleep-wake architecture resembled the

dynamics seen in some models of self-organized criticality: in

avalanche models, the duration of the avalanche events followed a

power law (and was thus likened to wake durations), while the time

between avalanches followed an exponential distribution (and was

thus likened to sleep durations) [4]. This interpretation has the

appeal of reflecting distinct dynamics regulating sleep and wake

transitions, and may also reflect species-specific sleep stability that

may relate to metabolic factors (although the analysis of sleep

across species remains controversial [16,17]). However, in studies

reporting power law dynamics of wake distributions, fits were

limited to the linear-appearing portions of complex frequency-

duration histograms [4,8]. An alternative interpretation is that a

multiple exponential model accounts for the entire distribution of

the frequency duration histogram. Therefore, a systematic

approach toward empiric data for which the true generator

process is unknown, such as sleep and wake bout distributions,

should be considered. Because of the possible relevance of the

longest (stable) and shortest (fragmentary) duration sleep or wake

bouts to the restorative properties of sleep, we suggest that the

entire distribution of state durations should be represented by

modeling methods. Although some have postulated time-varying

or semi-Markov models for sleep-wake architecture, a simple first

order time invariant Markov model might also account for the

complexity of empiric sleep-wake distributions [18,19,20]. It is also

interesting to consider that a system of exponential generators

could interact in a manner that would produce power law-like

dynamics [21]. For example, Blumberg et al argued that the

immature rodent brain exhibits exponential dynamics that evolves

into power law dynamics in the adult [9]. Interestingly, Bernstein’s

theorem [22], an application of the Laplace transform, states that

any purely monotonic function can be expressed as a sum of

exponentials. Since power law models exhibit a monotonic

distribution, it is perhaps not surprising that such a process could

be well-described by a sum of exponential decay functions. The

converse is that a sum of exponential functions can appear to be

power-law-like.

The implication for sleep, and indeed perhaps any setting in

which random processes may self-organize, is that asking whether

a distribution is either exponential or a power law may be less

informative than asking about the specific organization of

component exponentials, how it occurs, and how it can be

disrupted in disease. For example, our simulations clearly

demonstrate certain combinations of decay time and proportion

are best at producing power-law-like patterns. This may have

implications for the orchestration of physiological processes, each

of which may be fundamentally exponential, but may coordinate

into power law dynamics. Future research could test this

hypothesis that component exponential processes organize into a

power law in physiological systems such as sleep-wake timing (for

example, the developmental evolution reported in [3]). An

extension of such a hypothesis is that certain sleep pathologies

may be related to disruption of such coordinated behavior.

Our current study focused on the question of model fitting, and

raised cautionary insights about certain distributions mimicking

one another from a fitting standpoint. The related question of

model choice is also of interest, but not directly addressed by our

analyses: given an empiric set of observations, which model is

more likely to explain the data. This question is best undertaken

with the guidance of (preferably strong) a priori reasons to postulate

the expected or ‘‘true’’ distribution, such as exponential or power-

law (and not both in the sense of multiple exponentials organized

into a power-law). Unfortunately, there are reasonable arguments

to consider power law and multiple exponential models for the

distribution of sleep-wake duration distributions. Moreover, the

models are not nested and in fact have quite distinct parameters,

Table 1. Fraction of samples for which exponential fitting is
not rejected.

n = 40 n = 160 n = 640

one exponential 0.900 (448) 0.127 (914) 0.000 (1000)

0.882 * 0.141 * 0.000 *

two exponentials 1.000 (405) 0.980 (904) 0.549 (999)

1.000 * 0.972 * 0.542 *

three exponentials 1.000 (377) 1.000 (884) 0.828 (996)

1.000 * 0.999 * 0.826 *

Note: a number in parentheses after the result indicates the number of data
sets out of the first 1000 simulations that fit our inclusion criteria.
*indicates that the reported result is based on 1000 total data sets for which the
one-, two- and three-exponential models all fit our inclusion criteria.

doi:10.1371/journal.pone.0014204.t001
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and therefore model choice is not straightforward. Clauset et al.

recommended Vuong’s likelihood ratio test for evaluating non-

nested hypotheses of model choice [14]. This test considers the

likelihood ratio between competing models for each data point in

the distribution. However, as might be surmised from our current

study of model fit, the process of model choice is not always

accurate. We performed Vuong’s test to choose between power

law and a 3-exponential model for a known 3-exponential

distribution taken from a zone of mimicry (t values of 1, 5, and

25, with a ratio of draws of 4:1:0.5; total n = 640). Vuong’s test

incorrectly concluded that the power law distribution was a better

fit in 1000 out of 1000 synthetic data sets. This error in model

choice was due to the preponderance of the fast phase of

exponential decay in this zone, combined with the relatively low

numbers of total draws (relative to the asymptotic need for large

data sets for optimal model choice). To demonstrate the relative

importance of the fast phase (over sample size), Vuong’s test

correctly distinguished a slower decaying exponential distribution

as exponential rather than power law.

Many other processes in the biological sciences have been

analyzed in terms of a power law distributions and their alterations

in disease [11,23,24], ranging from electroencephalography [25],

to actigraphy [13], heart rate variability [26], and gait [27]. In

certain settings, the underlying biology of a system may be

understood well enough to suspect one or the other distribution a

priori, with the understanding that there are multiple settings in

which power law behavior may be generated [21]. However, as we

describe above, for sleep-wake transitions, the expectation of any

particular distribution is less straightforward. We suggest therefore

that the question of which model (power law or multi-exponential)

is better or correct (which implies that they are mutually exclusive)

should be weighed against the possibility that an appropriately

scaled multi-exponential process is actually a mechanism by which

power law behavior can be produced.

In conclusion, we suggest that the two fundamental aims of

sleep architecture analysis are 1) to provide a ‘‘top-down’’

approach to mirror the extensive ‘‘bottom-up’’ approaches to

sleep-wake mechanisms and physiology, and 2) to provide

improved clinical metrics of normal sleep and its disruption in

disease states. Applying these methods to sleep-wake dynamics of

animals with anatomical lesions or pharmacological manipulations

of the critical pathways [10] may facilitate mechanistic under-

standing of these distributions, and possibly tease apart the multi-

exponential versus power law discussion. Although the question of

which model is statistically ‘‘correct’’ remains open to further

analysis, we raise the question of whether in fact both models are

biologically relevant in that a system of exponentials behaves like a

power law. Clearly sleep fragmentation affects physiology and

symptoms in complex ways; advancing our ability to quantify and

sub-type patterns of fragmentation holds the promise for improved

diagnostics and rational interventions.

Supporting Information

Figure S1 Summary of K-S method for goodness-of-fit. A.

Sample data set plotted as a frequency-duration histogram. B.

Data from panel A re-plotted as a cumulative probability

distribution, along with fitted curve (see methods). The maximum

vertical distance between the data and the fitted curve is

computed. C. Generated new data set (green) by random number

generator defined by the fitted function. The maximum vertical

distance between the new data set and the fitted curve is ds. D.

Repeat process in panel C 100 times to generate a distribution of

ds values.

Found at: doi:10.1371/journal.pone.0014204.s001 (0.34 MB TIF)
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