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Abstract

NEDD9 is an established marker of invasive and metastatic cancers. NEDD9 downregulation has 

been shown to dramatically reduce cell invasion and metastasis in multiple tumors. The 

mechanisms by which NEDD9 regulates invasion are largely unknown. In the current study, we 

have found that NEDD9 is required for MMP14 enzymatic recovery/recycling through the late 

endosomes to enable disengagement of tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and 

tumor invasion. Depletion of NEDD9 decreases targeting of the MMP14/TIMP2 complex to late 

endosomes and increases trafficking of MMP14 from early/sorting endosomes back to the surface 

in a small GTPase Arf6-dependent manner. NEDD9 directly binds to Arf6-GAP, ARAP3, and 

Arf6 effector GGA3 thereby facilitating the Arf6 inactivation required for MMP14/TIMP2 

targeting to late endosomes. Re-expression of NEDD9 or a decrease in Arf6 activity is sufficient 

to restore MMP14 activity and the invasive properties of tumor cells. Importantly, NEDD9 

inhibition by Vivo-Morpholinos, an antisense therapy, decreases primary tumor growth and 

metastasis in xenograft models of breast cancer. Collectively, our findings uncover a novel 

mechanism to control tumor cells dissemination through NEDD9/Arf6-dependent regulation of 
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MMP14/TIMP2 trafficking, and validates NEDD9 as a clinically relevant therapeutic target to 

treat metastatic cancer.

Introduction

NEDD9 is pro-metastatic gene known to be upregulated in different metastatic cancers 

(1-3). It is a cytoplasmic docking protein required for mesenchymal migration and invasion 

driven by extracellular matrix (ECM) proteolysis (3-5). Genetic ablation of NEDD9 

expression in an MMTV-HER2-driven transgenic model of mammary tumorigenesis led to a 

90% decrease in the incidence of cancer (6). As we and others have previously reported, 

NEDD9 is upregulated during progression to invasive carcinoma (7-9), while depletion of 

NEDD9 reduces the number of circulating tumor cells by 80% (10). NEDD9 is targeted to 

invasive protrusions and co-localizes with MMP14. We also have shown that NEDD9 does 

not affect the expression or secretion of MMPs, but dramatically decreases their activity 

(10). The clinically relevant strategies to decrease NEDD9 expression in established tumors 

in vivo to abrogate cancer progression were not yet tested, although the potential 

implications would be highly beneficial.

Activation of soluble MMPs is triggered by membrane bound MMPs such as MMP14. 

Activity of MMP14 on the cell surface is regulated by multiple mechanisms, including 

binding of tissue specific inhibitor of MMP (TIMP2) and endocytosis. It was shown that 

endocytosis of MMP14 is stimulated upon binding of TIMP2 (11) and almost 80% of 

MMP14 is recycled back to the cell surface (12), but the fate of TIMP2 post internalization 

is controversial (11, 13). Upon internalization, MMP14 is localized first to early endosomes 

and later gets recycled through either early endosomes and the trans-Golgi network (14) or 

through late endosomes (15, 16). It is currently unknown whether TIMP2 follows the similar 

pattern of recycling and degradation. We have previously reported that depletion of NEDD9 

leads to a decrease in MMP14 activity and an accumulation of the MMP14/TIMP2 complex 

on cell surface. The molecular mechanisms and clinical significance of this phenomenon are 

unknown.

One of the central signaling hubs regulating endocytic recycling is associated with small 

GTPase ADP-ribosylation factor-6 (Arf6). Arf6 activity is critical for recycling from early/

sorting Rab4/5 positive endosomes (17). Activity of Arf6 is tightly regulated by a number of 

GEFs and GAPs to support continuous cycling of Arf6 between GDP and GTP bound forms 

(18-20). In this study, we identify NEDD9 as a scaffolding component of the ARAP3-Arf6-

GGA3 complex, which is required to decrease the levels of active Arf6 and allow for 

trafficking of MMP14/TIMP2 complex to late endosomes. This knowledge is crucial for 

understanding the mechanisms of recovery of MMP14 enzymatic activity and for 

development of new strategies for MMPs inhibition and eradication of metastases. This 

study outlines mechanisms for NEDD9-driven invasion, as well as provides new avenues for 

the development of alternative strategies to ablate tumor progression based on the 

manipulation of NEDD9 and ARAP3.
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Results

NEDD9 depletion leads to re-distribution of MMP14 to the cell surface

The depletion of NEDD9 in invasive mesenchymal breast tumor cell lines (Fig.S1a) or the 

genetic ablation of NEDD9 in mouse embryonic fibroblasts (MEFs) from NEDD9 knockout 

mice leads to a drastic decrease in the activity of soluble and transmembrane MMPs, 

particularly MMP14 (8, 10). The total amount of MMP14 in the analyzed cells did not 

change (Fig.1a-b), but the activity, measured by the degradation of MMP14-specific 

fluorogenic substrate (21), was drastically decreased (Fig.1c-d). Note that the antibodies 

used for detection of MMP14 are specific and capable of recognizing both pro- and active 

forms of the enzyme (Fig.S1b-c), thus the initial activation of the pro-enzyme by furin was 

not affected by NEDD9 depletion. Nevertheless, based on a surface biotinylation study, the 

plasma membrane (PM) levels of MMP14 had increased two-fold in the shNEDD9 cells 

(Fig.1e-f). The increase in MMP14 on the cell surface is often due to the deficiency in 

internalization, which is necessary for proper enzyme function (22, 23).

Depletion of NEDD9 does not affect the internalization of MMP14

To determine the impact of NEDD9 expression on MMP14 internalization, we performed 

time course studies on the uptake of biotinylated surface molecules. Initially, the total 

amount of biotinylated MMP14 on the cell surface was increased in the shNEDD9 cells 

(Fig.2a, no strip). Internalization was initiated by shifting the temperature to 37°C, causing 

the fraction of biotinylated MMP14 to be transported inside the cells (IC-MMP14). We 

found that the shNEDD9 cells contain two-fold less of IC-MMP14 than the shControl when 

normalized to the original amount of biotinylated PM-MMP14 (no strip) (Fig.2a-b). The 

amount of IC-MMP14 is the sum of internalization proficiency, intracellular degradation 

rates, and recycling capabilities of the cells. Since proteasome and lysosome inhibitors were 

used during the studies, the decrease in biotinylated IC-MMP14 could not be attributed to 

the increased degradation of the protein post-internalization. However, the decrease could 

potentially be due to either the decreased internalization of MMP14 or the plasma membrane 

(PM) in general, or the increased recycling of the internalized surface molecules.

Next, we determined the rates of bulk PM internalization using a CellMask-PM stain and 

live cell imaging. We found that the decay in fluorescence intensity of CellMask at the PM 

and perimembrane (2-4μm beneath the PM) area in shNEDD9 cells was similar to that of the 

control (Fig.S1d-e; MoviesS1-S3), suggesting that NEDD9 does not affect bulk PM 

internalization.

To visualize the trafficking of MMP14, we exogenously expressed previously characterized 

photoactivatable fluorescent MMP14 (PAmCherry-MMP14 (24)). We imaged the early 

stages of internalization and translocation of PM-anchored and perimembrane pools of 

MMP14 after photo-activation in the defined areas (Fig.2c, MoviesS4-S6). The fluorescence 

intensity of mCherry-MMP14 in the entire cell and perinuclear (near the nucleus) area (p) 

was measured. The increase in the fluorescence intensity of mCherry-MMP14 in the 

perinuclear area (Fig.2d) and the decrease in the original photoactivated area (Fig.2e) was 

nearly identical in both the shControl and shNEDD9 cells, suggesting a similar uptake of the 
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MMP14-positive membrane/vesicles. We conclude that NEDD9 deficiency does not alter 

the internalization of MMP14.

NEDD9 deficiency leads to an increase in the recycling of MMP14

To assess the recycling of MMP14, we used fluorescently labeled anti-MMP14 antibodies in 

an antibody feeding assay (14). The shControl and shNEDD9 cells were pre-treated with 

antibodies for 1 hour to allow for MMP14 labeling and internalization of the Ab/MMP14 

complex, followed by acidic wash (25) and an additional hour of recycling. Cells were then 

stained with different anti-MMP14 antibodies to differentiate between the recycled Ab/

MMP14 complex and the newly synthesized MMP14. Interestingly, the amount of recycled 

MMP14, as indicated by co-staining with both anti-MMP14 antibodies, was increased up to 

40% in the shNEDD9 cells (Fig.3a-c).

Similarly, FRAP analysis of cells expressing mCherry-MMP14 revealed that shNEDD9 

cells recover fluorescent PM-MMP14 to a higher extent, with a 1.3-1.7 fold increase in the 

mobile fraction and a comparable increase in t1/2 (Fig.3d-e; MoviesS7-S9). Hence, the 

decrease in NEDD9 expression leads to an increase in recycling of internalized MMP14.

NEDD9 is involved in the regulation of MMP14 trafficking to late endosomes

To understand the route of MMP14 recycling, we assessed the distribution of MMP14 in 

early and late endosomes. The corresponding compartments were identified by 

immunofluorescent staining with anti-Rab5 and -Rab7 antibodies. In the shControl cells, 

about 60% of MMP14 containing vesicles co-localized with Rab5 and about 80% with 

Rab7. Surprisingly, NEDD9 depletion resulted in a two-fold decrease of MMP14 in the 

Rab7-vesicles, and an increase of MMP14 residing in the Rab5-vesicles (Fig.3f-g; Fig.S1f-

g).

A decrease in MMP14 in late endosomes could arise from an increased degradation of 

MMP14 or a deficiency of MMP14 sorting/trafficking to late endosomes/lysosomes. To 

assess the rates of protein degradation, the cells were treated with cycloheximide, an 

inhibitor of de novo protein synthesis, and the protein levels of MMP14 were measured 

during a time course study. Surprisingly, the amount of MMP14 protein in shNEDD9 cells 

was 20% higher than in the control (Fig.S2a-b), suggesting that a decrease in NEDD9 leads 

to a decrease in the degradation of MMP14. Thus, NEDD9 is most likely to be involved in 

MMP14 sorting/trafficking to late endosomes.

Note that NEDD9 depletion did not affect the tested membrane compartments (Rab7-late 

endosomes, Rab11-recycling endosomes, Lamp1-lysosomes) as determined by the 

immunofluorescent staining (Fig.S2c-d). The trafficking of other proteins to late endosomes/

lysosomes such as EGF (Fig.S2e) was also not affected. There were no changes in the 

acidification of the endosomes upon NEDD9 depletion (Fig.S2f-g), supporting the notion of 

a specific action by NEDD9 on MMP14 trafficking.
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NEDD9 deficiency leads to the enlargement of early/recycling/sorting compartment

Interestingly, NEDD9 deficiency leads to a two-fold increase in the volume of the early/

recycling/sorting compartment (ERS) based on a 3D reconstruction of the confocal images 

(Fig.4a-b). It is difficult to assess whether the increase was driven by fewer larger vesicles or 

by an increase in the total number of Rab4/Rab5-positive vesicles due to the tubular shape of 

the ERS and the many merging points between the differently shaped vesicles. A western 

blot analysis of the whole cell lysates revealed no change in the Rab-GTPases expression in 

the shNEDD9 cells (Fig.S3a-d). Nevertheless, re-expression of wild type NEDD9 was 

sufficient to rescue the phenotype and reduce the volume of the ERS to the control level 

(Fig.4c-e).

Importantly, in the absence of NEDD9, MMP14 gets recycled from the ERS back to the PM 

(Fig.2-3). This could potentially be associated with the dysregulation of adenosine 

diphosphateribosylation factor 6 (Arf6)-GTPase (17, 26, 27), which was previously shown 

to be involved in the recycling of multiple receptors including c-Met (28).

NEDD9 is required to control the levels of active Arf6 GTPase

NEDD9 is a scaffolding protein, and through binding to GEFs like DOCK180 and AND-34, 

it controls the activation of Rap1 (29) and Rac1 (30). Following this trend, we tested the 

activity of Arf6-GTPase upon NEDD9 manipulation. Surprisingly, overexpression of 

NEDD9 led to a decrease in Arf6 activity (Fig.S4a), while the knockdown of NEDD9 

resulted in approximately a two-fold increase in Arf6 (Fig.5a-b) activity. We did not detect 

any changes in Arf1 activity upon NEDD9 depletion (Fig.S4b-c), suggesting a specific 

action by NEDD9 on Arf6. The activation of Arf6 was also indirectly confirmed by an 

increase in the activity/phosphorylation of the downstream Arf6 target PIP5 alpha kinase 

(Fig.S4d), and by an increase in membrane invaginations, as previously reported in cells 

with upregulation of endogenous Arf6 (Fig.S4e) (31). We also noticed a moderate decrease 

in the total amount of the Arf6 protein in cells with constitutive knockdown of NEDD9 (Fig.

5a-b). Interestingly, upon transient siRNA depletion, no changes in the total Arf6 level were 

observed (Fig.S4f), suggesting the existence of a compensatory mechanism for the excessive 

amount of active Arf6 or reflecting the destabilization of Arf6 in the absence of NEDD9. 

Re-expression of exogenous NEDD9 in shNEDD9 cells decreased the amount of active Arf6 

(Fig.5c-d). Collectively, our findings suggest that NEDD9 is required to keep activity of 

Arf6-GTPase balanced, thus providing fine tuning of GTP/GDP bound Arf6 cycling and 

allowing for cargo sorting either for recycling or degradation.

NEDD9 binds to Arf6-GAP, ARAP3, and the effector GGA3

To delineate molecular mechanisms of the NEDD9-driven decrease in Arf6 activity, we 

screened multiple Arf6-GTPase Activating Proteins (GAPs) (Fig.6a, Fig.S5a). We found 

that NEDD9 specifically binds to ARAP3 (Fig.6a). The minimum binding fragment resides 

in the C-terminal domain of NEDD9 (626-834aa) (Fig.6b-c). Interestingly, the Arf6-GTP 

downstream effector, adaptor protein GGA3, was also present in the complex with NEDD9 

(Fig.6d), suggesting that the NEDD9/ARAP3 complex is targeted to the active Arf6/GGA3 

complex to promote GTP hydrolysis. We also found MMP14 in the complex with GGA3 

(Fig.6e), indicating the involvement of Arf6-GGA3 in MMP14 trafficking.
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To define subcellular localization of these proteins, we expressed fluorescently labeled 

NEDD9 and ARAP3 in tumor cells. Most of the NEDD9 and ARAP3 proteins co-localized 

at the Arf6-positive vesicles (Fig.6f), suggesting that the membrane associated Arf6-GTP/

GGA3 complex recruits NEDD9 and ARAP3 thereby promoting Arf6 inactivation and 

complex dissociation.

Decrease in Arf6 activity is sufficient to restore PM-MMP14 levels and its activity

To determine the impact of Arf6 activity on MMP14 trafficking, we assessed the level of 

PM-MMP14 upon partial inhibition of Arf6 by an antagonist of the cytohesin family GEFs, 

SecinH3, which was previously characterized for Arf6 (32). Treatment of the shNEDD9 

cells with SecinH3 or re-expression of wtNEDD9 (10) rescued the phenotype leading to a 

decrease in the amount of PM-MMP14 (Fig.6g). Moreover, application of SecinH3 restored 

the degradation capacity and the invasion deficiency (Fig.6h-i) of shNEDD9 tumor cells, 

indirectly indicating an increase in the activity of MMP14 and soluble MMPs. A publicly 

available TCGA dataset analysis of ARAP3 and NEDD9 mRNA expression revealed a 

significant correlation in expression of these proteins in breast cancer biopsies, but not in 

normal tissue (Fig.6j-k), implying that cooperation between ARAP3 and NEDD9 could be 

critical for tumor progression (33).

TIMP2/ MMP14 complex targets to Rab7 endosomes

Previously, our group reported an accumulation of an endogenous MMP inhibitor, TIMP2, 

on the surface of the NEDD9 deficient cells as a potential mechanism for MMP14 

inactivation upon depletion of NEDD9 (10). To test if PM-MMP14 forms a complex with 

TIMP2 and visualize it, we expressed mCherry-MMP14 and Flag-tagged-TIMP2 in 

shControl and shNEDD9 cells. Increased amounts of the TIMP2/MMP14 complex were co-

immunoprecipitated from shNEDD9 cells (Fig.7a-b), confirming our previous findings and 

suggesting a potential decrease in TIMP2/MMP14 dissociation under NEDD9 deficient 

conditions. Note that no changes in the expression or secretion of TIMP2 were detected 

upon the manipulation of NEDD9 (10). To identify the cause of the increase in the TIMP2/

MMP14 complex, we determined the fate of the internalized TIMP2. The cells expressing 

mCherry MMP14 and TIMP2-Flag were fed with anti-Flag antibodies to visualize the 

TIMP2 internalization. The shNEDD9 cells showed a two-fold decrease in targeting TIMP2 

to late endosomes based on co-localization with Rab7-positive vesicles (Fig.7c-d). We also 

noted a robust increase in surface TIMP2 upon NEDD9 depletion. Overall, these data 

suggest that the TIMP2/MMP14 complexes are dissociating/degrading less efficiently in 

NEDD9 deficient cells due to the impaired targeting to the late endosomes, where TIMP2 

gets released from MMP14 in a pH dependent-manner (13), (34). However, further studies 

are required to delineate the fate of TIMP2 targeted to late endosomes and the potential for 

TIMP2 recycling (11, 13).

Collectively, our findings suggest a model (Fig.7e) in which NEDD9 scaffolds the 

interaction between ARAP3 and the Arf6-GTP/GGA3/MMP14 complex at the Arf6-positive 

ERS compartment to facilitate GTP hydrolysis, Arf6 inactivation, and dissociation from the 

ERS along with GGA3. This would allow vesicle maturation and trafficking to late 

endosomes for MMP14 enzyme recovery.
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Downregulation of NEDD9 via siNEDD9-Vivo-Morpholino treatment decreases tumor 
progression in a xenograft model of breast cancer

NEDD9 overexpression is a feature of invasive human cancers with increased 

metalloproteinase activity. Unfortunately, the anti-MMP cancer therapy did not yield the 

expected results in the clinic, hence targeting alternative processes that control activity of 

MMPs might prove to be a viable anti-metastasis strategy. Therefore, we wanted to 

determine whether NEDD9 knockdown via treatment with antisense oligonucleotides 

targeting NEDD9 that have been modified for in vivo applications (moNEDD9-Vivo-

Morpholinos) (Fig.8a-b) affects tumor growth and metastasis in a mouse xenograft model 

using MDA-MB-231LN cells. We found a significant decrease in the size of primary tumors 

and metastases in lungs of mice treated with moNEDD9 compared to moControl after only 1 

week of treatment (Fig.8c-e). The primary tumors exhibited a striking decrease in viability 

and proliferation based on the mitotic index and the percentage of necrotic tissue evaluated 

by pathology. These results indicate that NEDD9 depletion in established highly metastatic 

tumors decreases growth and further dissemination of breast cancer cells. Importantly, these 

data provide the first clinical evidence of the potent anti-tumorigenic activity of NEDD9 

targeted siRNAs in vivo and evaluates NEDD9 as a novel therapeutic target.

Discussion

Recent studies have established NEDD9 as an essential factor for invasive (1, 2) and 

metastatic behavior in tumors (3-5). The results of this study establish a novel role for 

NEDD9 as a key regulator of Arf6-dependent trafficking of MMP14, highlighting the basic 

mechanism utilized by NEDD9 to support cancer cell invasion and metastasis. The cancer 

cell lines (35) used in this study utilize the mesenchymal type of invasion (36), however we 

are not excluding the possibility of similar effects of NEDD9 on collective cell migration, 

where the leading cells (or recruited fibroblasts) often utilize MMP-dependent invasion (37). 

This mechanism might be involved in regulation of other known NEDD9 functions 

including focal adhesion disassembly (38) and integrin signaling (39).

Expression and activity of MMP14 is critical for normal morphogenesis and tumor 

progression (40-42). While nearly 80% of the internalized MMP14 is recycled, little is 

known about the regulation of this process (12, 22). Several studies reported recycling of 

MMP14 from early and late endosomes (14, 15, 24), but the key molecules defining the 

route of recycling for MMP14 are still unknown. Even less is known about the fate of 

TIMP2, an MMP14 ligand involved in MMP2 activation (11-13). As we previously 

indicated, NEDD9 depletion leads to a decrease in activation of MMP2 and MMP9, thus 

affecting the ability of cancer cells to invade (43). The TIMP2 is internalized with MMP14 

(12), and is either degraded (11) or recycled (13). Interestingly, the documented pH required 

for TIMP2 dissociation (13) is reached only in the late endosomes (34). Thus, recycling of 

the MMP14/TIMP2 complex through late endosomes might be required for reactivation of 

the TIMP2 bound enzyme.

In our study, we stumbled upon a paradoxical observation where the depletion of NEDD9 

resulted in a decrease in MMP14 activity, concomitant with an increase in the amount of 

PMMMP14. Our data suggests that the main form of MMP14 present in tested cells is active 
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furin processed MMP14 (Fig.S1c). NEDD9 deficiency does not interfere with furin-

dependent activation of MMP14 based on no changes in MMP14 size or internalization (44), 

but rather leads to a decreased targeting of the TIMP2/MMP14 complex to late endosomes 

and an increase in recycling from the ERS compartment. This indicates the switch from 

recycling through late endosomes to the ERS recycling pathway.

NEDD9 is known to activate small GTPase Rac1 (30), cdc42 (45) and Rap1, driving 

mesenchymal migration and T-cell activation (29). Therefore, we decided to check whether 

NEDD9 regulates MMP14 recycling through small GTPases. Surprisingly, NEDD9, was 

involved in inactivation of Arf6-GTPase. Arf6 regulates key aspects of endocytic recycling 

(46), (47). The activity of Arf6 is closely controlled by a number of GEFs including GEP100 

(48) and ARNO (49), and also GAPs such as ACAP1 (50), ASAP1 and ARAP3. We found 

that NEDD9 interacts with ARAP3 and the Arf6 downstream effector GGA3 (28). The 

NEDD9 depletion phenotype resembles the previously published aluminum fluoride induced 

increase in the activity of endogenous Arf6 (27) rather than overexpression of a 

constitutively active Arf6, Arf6Q67L (31, 51, 52). A two-fold increase in the amount of 

Arf6-GTP, in the case of NEDD9 depletion, did not result in an accumulation of large actin-

positive vesicles, but instead both increased the volume of vesicles in the early endocytic 

compartment and also Arf6-dependent recycling to the PM, similar to a phenotype 

previously reported (53). Moreover, in the case of NEDD9 depletion, there is no 

overexpression of Arf6 protein, but rather a decrease, indicating the existence of a potential 

feedback loop to reduce the activity of Arf6 via a decrease in protein stability or expression.

The increase in activity of endogenous Arf6 upon NEDD9 depletion was further confirmed 

by an analysis of its downstream target – phosphatidylinositol-4-phosphate-5-kinase 

(PIP5K) (26). Activation of PIP5K could explain the increased number of membrane 

invaginations and ruffling in NEDD9 deficient cells, which was also previously reported in 

cells with increased Arf6 activity (54). NEDD9 deficiency does not abolish proper sorting of 

cargoes or maturation of endosomes, as shown by live cell imaging using RFP-Rab5/or 

Rab7 and Alexa647-EGF. However, the distribution of MMP14 to different endosomal 

compartments is affected and its recycling is re-routed. The same redistribution was 

observed for TIMP2. Previously, a similar phenomenon was documented for GGA3, which 

is required for targeting the c-Met receptor for recycling instead of degradation (28). In our 

current work, we found MMP14 in a complex with GGA3, suggesting the possibility of 

similar regulation of MMP14. We proposed a model where NEDD9 controls the switch of 

MMP14 recycling through the ERS versus late endosomes (Fig.7e). Previously MMP14 was 

reported to be recycled through a Rab8 dependent mechanism (55). We did not observe any 

changes in the level of Rab8 (Fig.S3c-d), however we are not excluding the possibility of 

crosstalk between Arf6 and Rab8 in regulation of MMP14 trafficking, as the Arf6 and Rab8 

positive compartments are largely overlapping (56).

Ablation of the MMP14 gene causes severe developmental defects (57), suggesting that the 

activity of MMP14 cannot be substituted by any other MMP. Attempts at developing 

selective MMP14 small molecule inhibitors have been so far unsuccessful (58). Hence, 

binding partners that modulate MMP14 activity may represent an attractive avenue for 

MMP14 inhibition. Alteration of NEDD9 expression in tumor cells thus provides a novel 

Loskutov et al. Page 8

Oncogene. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulatory mechanism for controlling invasive properties via MMP14 (59). The decrease in 

tumor progression upon inhibition of NEDD9 by antisense therapy in human breast cancer 

xenografts supports this notion and might allow for a targeted decrease in MMP activity in 

the tumor, thus providing a novel therapeutic approach to block the spreading of cancer.

Materials and Methods

Plasmids and cell culture

Cell lines HEK293T (ATCC), Hs578T (ATCC), and MDA-MB-231LN (Caliper 

LifeScience) were grown based on the manufacturer's recommendations. shRNAs and 

siRNAs against NEDD9, non-targeting control (ThermoFisher Scientific), and NEDD9-

cDNA were prepared as previously described (7). mRFP-Rab5, and -Rab7 were purchased 

from Addgene (plasmid #14437, #14436) (60). Plasmids mCherry-MMP14 and 

PAmCherry-MMP14 were a gift from Dr.Chavrier (Institute Curie, France) and 

Dr.Machesky (The Beatson Institute for Cancer Research, Scotland) (24). Human TIMP2-

cDNA (ThermoFisher Scientific) was sub-cloned into pcDNA3.1-3x-Flag plasmid (gift from 

Dr.Frisch, West Virginia University, USA).

ECM coated Boyden chamber invasion assays

Assays were carried out according to the manufacturer's protocol and as previously 

described (7).

Fluorescent-gelatin degradation assay

Assay was performed as previously described (10, 61).

Fluorescence-activated cell sorting

Assay was performed as previously described (10).

Protein expression, western blotting, and immunoprecipitation

For pull down (PD) assays, the recombinant GST-tagged GGA3-VHS-GAT domain was 

produced in Bl21(DE3) E.coli as previously described (62). Western blotting was done as 

previously described (62). Primary antibodies against NEDD9 mAb (2G9) (62), PIP5K, 

phS309-PIP5K, MMP14 (Novus International), Flag (Sigma-Aldrich), Arf6, (Santa-Cruz 

Biotech), GAPDH (Millipore), GFP, EEA1 (BD Bioscience), GGA3, RFP (ThermoFisher), 

GFP, LAMP1/2 (NIH Hybridoma Bank), Rab4, Rab5, Rab7, Rab8, Rab11 (Cell Signaling 

Technology) were used. Bands were digitized and quantified using a digital documentation 

and image analysis system (Syngene).

Immunofluorescence

Cells were processed as previously described (62). Primary antibodies against Rab4, 5, 7, 9, 

11 (Cell Signaling Technology), Lamp1 (NIH Hybridoma Bank), Arf6 (Santa-Cruz 

Biotech), MMP14 (Novus International), MMP14-488 (R&D Systems), EEA1 (BD 

Bioscience) were used. Secondary antibodies included AlexaFluor 405, 488, 555, 647 

(LifeTechnologies). Images were captured using a standard setting by a confocal microscope 
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LSM510 (Zeiss). All images represent whole cell 3D reconstructed projections with 0.25μm 

steps.

Cell surface Biotinylation assay

Cells pretreated with 10μM MG132 and 50μM Leupeptin (FisherScientific) were labeled at 

4°C with Sulfo-NHS-S-S-biotin (ThermoFisher Scientific) in PBS, followed by incubation 

at 37°C for internalization of surface molecules. Residual surface biotinylation was removed 

by incubation with 200mM MESNA (Sigma) for 30 minutes. Cells were homogenized in 

PTY buffer (62), and biotinylated molecules were pulled down with streptavidin-conjugated 

agarose (Millipore) and used for western blotting.

Live cell imaging Endocytosis

. Cells were plated on delta-T4 glass bottom dishes (FisherScientific), labeled with EGF-647 

or CellMask DeepRed (LifeTechnologies) in the presence of 0.45M sucrose, and imaged by 

a LSM510 (Zeiss) or NikonLiveScan SFC microscope equipped with perfect focus x-y stage 

control and z-axis motor (Nikon), Photometrics QuantEM CCD camera (Photometrics), and 

a 60X PlanFluor, NA1.21 objective. Images were captured every 5 seconds for 30 minutes. 

NIS (Nikon) and ImageJ (NIH) software were used for data processing and analysis. To 

compare rates of internalization, small areas corresponding to cell margins were selected and 

fluorescence intensities throughout the movie were measured.

FRAP analysis

Cells were transfected with mCherry-MMP14 and siRNAs against NEDD9, plated on glass 

bottom dishes (InVitro Scientific), imaged with LSM510 (Zeiss) microscope both before 

and after photo-bleaching of the designated area every 15 seconds for 5 minutes. The 

collected movies were analyzed with ImageJ software (NIH).

Trafficking of PAmCherry-MMP14

Cells were transfected with mCherry-MMP14 and siNEDD9, plated on glass bottom dishes 

(InVitro Scientific), and imaged 24 hours later with a LSM510 (Zeiss) confocal microscope 

both before and after photo-activation of the designated area every 15 seconds for 5 minutes. 

The collected movies were analyzed with ImageJ software (NIH).

MMP14 recycling assay

Cells were transfected with mCherry-MMP14 and siNEDD9. Mouse monoclonal anti-

MMP14 antibodies conjugated with AlexaFluor-488 (R&D Systems) were added to the cells 

for 1 hour at 37°C. Cells were washed with acidic strip solution (25), and the Ab/MMP14 

complex was allowed to recycle for 1 hour at 37°C, followed by fixation with 4% PFA/PBS 

and processed for immunofluorescence (without permeabilization).

MMP14/TIMP2 intracellular distribution

The cells were transfected with mCherry-MMP14 or PAmCherry-MMP14 and TIMP2-Flag. 

The anti-MMP14-488 or anti-Flag antibodies were added to the cells for 1 hour at 37°C, 

fixed with 4% PFA/PBS and processed for immunofluorescence.
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Transmission electron microscopy

Cells were fixed with 2.5% glutaraldehyde/2% paraformaldehyde, post fixed in 1% osmium 

tetroxide for 1 hour, stained with uranyl acetate, and processed for conventional ultrathin 

sectioning. Sections were post stained with uranyl acetate and lead citrate, and imaged with 

a Zeiss Libra120 transmission electron microscope.

Arf6/Arf1 activity assessment

The assay was performed using an Active Arf6 Pull-Down and Detection Kit (Pierce) or 

Arf1 Activation Assay Kit (Cell Biolabs) according to the manufacturer's protocols.

Correlative analysis of NEDD9 and ARAP3 in breast cancer

TCGA (NIH) data sets of 791 human breast cancer microarrays and 105 normal tissue 

microarrays were used for analysis with the GraphPad Prism package (GraphPad Software, 

Inc.) with Spearman correlation analysis.

MMP14 Activity assay

4×104 cells/well were plated on a 96-well plate. MMP14 fluorogenic substrate (Millipore) 

was added in L15-medium for 4 hours. Fluorescence was measured by plate-reader 

SynergyH4 (BioTec) at 328/400mn excitation/emission.

Animal Bioluminescence Imaging (BLI) of mammary fat pad xenografts

Nod/SCID/gamma (NSG) immunodeficient mice (Jackson Laboratory) were housed in the 

West Virginia University Animal Facility under pathogen-free conditions with an approved 

Institutional Animal Care and Use Committee protocol. The tumor injection and analysis 

was performed as previously described (8, 11). The moNEDD9- or moControl-

VivoMorpholino (GeneTool LLC) treatment was initiated 2 weeks post tumor cell injection. 

Animals with tumors of similar volume were injected by IP with 12.5 mg/kg of Vivo-

Morpholinos dissolved in PBS daily for 1 week. The average lung and primary tumor 

radiance was measured at each time point. The mammary fat pads and lungs were collected 

at the end of the study, fixed, and pathologically analyzed for the number of mitotic tumor 

cells, percentage of necrosis, and number/size of metastases as described (8) by a pathologist 

(M.B.S).

Statistical Analysis

Statistical comparisons were made using two-tailed student's t test. When more than two 

groups were analyzed, one-way analysis of variance (ANOVA) was used. P≤0.05 was 

considered to be significant. Experimental values were reported as the means ± S.E.M. All 

calculations of statistical significance were performed using the GraphPad Prism package 

(GraphPad Software, Inc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NEDD9 depletion leads to redistribution of MMP14 to the cell surface
(a-b) WB analysis of WCL from MDA-MB-231 (a) and Hs578T (b) cells expressing 

siRNAs against NEDD9 (N1, N2) or non-targeting control siRNA (Con) with anti-NEDD9 

(2G9), -MMP14, -GAPDH antibodies. (c-d) MMP14-specific fluorogenic substrate 

degradation assay in cells as in (a-b). Fluorescence was measured at 328/400 nm excitation/

emission. Data plotted as % of RFU to shControl ±S.E.M; n=3; one-way ANOVA with 

Dunnett's post-hoc analysis for MDA-MB-231: p<0.0001 siCon/shN1 or /N2; Hs578T: 

p<0.0001 siCon/siN1 or /N2. (e) Western blot analysis of streptavidin agarose precipitated 

biotinylated MMP14 (IP: biotin) from shCon-, shNedd9 (N1, N2) MDA-MB-231 cells with 

anti-MMP14 and -GAPDH (loading control). (f) Quantification of WB as in (e), n=3; one-

way ANOVA with Dunnett's post-hoc analysis p=0.043, 0.023 shCon/shN1 or/N2.
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Figure 2. NEDD9 depletion does not affect internalization of MMP14
(a) Western blot (WB) analysis of immunoprecipitated (IP) biotinylated MMP14 from 

shCon-, shNEDD9 (N1, N2)-MDA-MB-231cells: no strip-0°C (lines 1-3), the rest incubated 

at 37°C for indicated times, striped with MESNA, lysed, IPed with streptavidin agarose and 

probed with anti-MMP14 antibody. (b) Quantification of WBs as in (a), three independent 

experiments, graphs are mean percent (%) of relative intensity units (RIU) to no strip 

conditions (100%) ±S.E.M; one-way ANOVA with Dunnett's post-hoc analysis *p= 0.0054, 

0.0049, 0.0098, 0.0028 for 5, 15, 30 and 60 min respectively. (c) Representative confocal 
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images of shCon-, shNEDD9 (N1, N2)-MDA-MB-231cells expressing PA-mCherry-

MMP14 before photo-activation (pre-PA), after- (PA), and 5 min after PA in a defined area. 

Scale bar, 10μm; inserts are the enlarged areas of PA; BF-bright field image. (d) 

Quantification of relative fluorescence intensity units (RFU) of mCherry-MMP14 in cells as 

in (c) in perinuclear area (p); graph is mean RFU % of total RFU/cell ±S.E.M; 10 cells/per 

treatment (Con, N1, N2); F test performed for fitted lines, p is non-significant (ns) for 

shCon/shN1 or /N2. (e) Quantification of relative fluorescence intensity (RFU) of mCherry-

MMP14 in cells as in (c) in PA area (black rectangle); graph is mean RFU (%) of max RFU/

cell (100%) ±S.E.M; 10 cells/per treatment (Con, N1, N2), F test performed for fitted lines, 

p is (ns).
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Figure 3. NEDD9 deficiency leads to increase in recycling of MMP14
(a) Top: Schematic of fluorescently labeled anti-MMP14 (Alexa488) antibody feeding 

assay. Bottom: Representative 3D reconstructed confocal images of siControl (Con) and 

siNEDD9 (N1) MDA-MB-231 cells pre-treated with antibodies for 1 hour (left panel-No 

strip); antibodies were stripped (middle panel-Acid strip), followed by 1 hour of incubation 

for Ab/MMP14 complex recycling and stained with different anti-MMP14 (Alexa555-right 

panel) antibody, without permeabilization. Scale bar is 10μm; insets are enlarged areas 

indicated in the merged image. (b-c) Quantification of RFU of MMP14 total signal (b, after 
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acid strip) and recycled MMP14, as indicated by co-stain with MMP14-488 and 

MMP14-555 1h after acid strip (c); graphs are mean RFU (%) to shCon ±S.E.M; n=3 (three 

independent experiments), 10 cells/treatment; two-tailed t-test for total MMP14: p is ns; 

Recycled MMP14: *p= 0.017 shCon/shN1. (d) Representative images of FRAP analysis of 

the perimembrane area of siControl (Con) or siNEDD9 (N1, N2) cells expressing mCherry-

MMP14 before photobleaching (PreBL), after- (BL), and 5 min post BL; Scale bar is 10μm; 

insets are enlarged area of BL. (e) Quantification of relative fluorescence intensity (RFU) of 

MMP14 signal in cells as in (d) at indicated time points in seconds; graphs are mean RFU 

(%) to original preBL ±S.E.M; 10 cells/treatment; F test performed for fitted lines, p is 

<0.0001 for shCon/shN1 or /shN2. (f, g) Quantification of colocalization of Rab5 (f) and 

MMP14 or Rab7 (g) and MMP14 positive vesicles as % of total MMP14 vesicles; graphs 

are mean % values ±S.E.M; three independent experiments, 10 cells/treatment; one-way 

ANOVA with Dunnett's post-hoc analysis Rab5: *p=0.0154, 0.0087 for Con/N1 or/N2; 

Rab7:*p<0.0001for Con/N1 or /N2.

Loskutov et al. Page 20

Oncogene. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. NEDD9 deficiency leads to enlargement of the early/recycling/sorting (ERS) 
compartment
(a) Representative images of shControl (Con) and shNEDD9 (N1, N2) MDA-MB-231 cells 

stained with anti-Rab4 or anti-Rab5 antibodies, DNA (DAPI); Scale bar is 10μm. (b) 

Quantification of volume of Rab4 and Rab5 positive vesicles based on 3D reconstruction of 

confocal images; mean volume (%) to control (Con, assigned as 100%) ±S.E.M; three 

independent experiments, 100 cells/treatment; one-way ANOVA with Dunnett's post-hoc 

analysis Rab4: *p<0.0001, =0.0002 for Con/N1 or/N2; Rab5:*p<0.0001, =0.0165 for 

Con/N1 or /N2. (c) Representative image of WB analysis of shControl (Con) and shNEDD9 

(N1, N2) MDA-MB-231 cells without (−) or with (+) re-expression of wild type NEDD9 

with anti-NEDD9 (2G9) antibodies; GAPDH used as loading control. (d-e) Quantification of 

volume of Rab4 (d) and Rab5 (e) positive vesicles in cells as in (c) with and without 

NEDD9 rescue; mean volume as % to control (Con, assigned as 100%) ±S.E.M; three 
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independent experiments, 100 cells/treatment; one-way ANOVA with Dunnett's post-hoc 

analysis Rab4: *p<0.0001, for Con/N1 or/N2; ns for Con/N1+NEDD9/or N2+NEDD9; 

Rab5:*p<0.0001 for Con/N1 or /N2; ns for Con/N1+NEDD9/or N2+NEDD9.
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Figure 5. NEDD9 regulates inactivation of Arf6 GTPase
(a) Representative image of WB analysis with anti-Arf6. Top: pull-down of Arf6-GTP from 

shControl (Con) and shNEDD9 (N1, N2) MDA-MB-231 cells; Bottom: whole cell lysate 

(WCL) used for pull-down, WB with anti-Arf6, -NEDD9 (2G9), -GAPDH antibodies. (b) 

Quantification of relative intensity units (RIU) of WBs from (a), Arf6-total in WCL and 

Arf6-GTP in pull-down); three independent experiments; graphs are mean RIU as % to 

control (Con, assigned as 100%) ±S.E.M. one-way ANOVA with Dunnett's post-hoc 

analysis Arf6 total: *p=0.0013, <0.0001 for Con/N1 or/N2; Arf6-GTP: *p=0.0009, 0.0002 

for Con/N1 or/N2. (c) Top: pull-down of Arf6-GTP from shControl (Con), shNEDD9 (N1, 

N2) or shNEDD9 (N1, N2) re-expressing wild type NEDD9 (+) MDA-MB-231 cells. WB 

with anti-Arf6 antibody; Bottom: WCL used for pull-down, WB with anti-Arf6, -NEDD9, -

GAPDH antibodies. * indicate non-specific band of p130Cas. (d) Quantification of RIU as 

described in (b) of Arf6-GTP in three independent experiments; graphs are mean RIU as % 

to control (Con, assigned as 100%) ±S.E.M. one-way ANOVA with Dunnett's post-hoc 

analysis Arf6-GTP: *p=0.0226, 0.0005 for Con/N1 or/N2; ns for Con/N1+NEDD9 or 

N2+NEDD9.
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Figure 6. NEDD9 binds to Arf6-GAP, ARAP3, and effector GGA3
(a) Representative images of IP with anti-NEDD9 or non-specific IgG from HEK293T cells 

cotransfected with GFP-ARAP3 and RFP-NEDD9 plasmids; WB with anti-ARAP3 and -

NEDD9 antibodies. (b) Delineation of NEDD9 domains involved in interaction: IP with 

anti-HA from HEK293T cells co-transfected with GFP-ARAP3 and HA-NEDD9 truncation 

mutants (amino acids as indicated), full length cDNA (FL) or empty vector (EV) plasmids; 

WB with anti-GFP and -HA antibodies. (c) Quantification of WB as in (b) from in three 

independent experiments; graphs are mean values as % to FL (assigned as 100%) ±S.E.M. 
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(d) GST pull-down (IP-GST) from HEK293T cells transfected with HA-NEDD9 using 

GST-GGA3 or GST-Arf6 proteins; WB with anti-NEDD9 antibodies. (e) GST pull-down 

(IP-GST) from HEK293T cells transfected with mCherry-MMP14 using GST-GGA3 or 

GST-Arf6 proteins; WB with anti-MMP14 antibodies. (f) Immunofluorescent analysis of 

MDA-MB-231 cells co-transfected with RFPNEDD9 (red) and GFP-ARAP3 (green) and 

stained for Arf6 (blue). Scale bar is 10μm. Insets on the right are enlarged areas indicated in 

the merged image. (g) FACS analysis of MMP14 surface staining in shControl (Con) or 

shNEDD9 (N1, N2) MDA-MB-231 cells treated with vehicle (-) or SecinH3 (+); three 

independent experiments; graphs are mean values of RFU % to Con (assigned as 100%) 

±S.E.M; one-way ANOVA with Dunnett's post-hoc analysis; Vehicle treated: *p<0.05 

(shCon/shN1 or N2); SecinH3 treated: *p<0.0099, 0.0211 (shCon/shN1 or N2). (h) 

Quantification of matrix degradation in FITC-gelatin degradation assay of cells, as in (g), 

100 cells/cell line/experiment in 3 independent experiments. Results presented as % of cells 

degrading matrix, ±S.E.M; one-way ANOVA with Tukey's post-hoc analysis N1 or N2: 

*p=0.024, 0.002 (Vehicle/SecinH3). (i) Boyden chamber matrigel invasion assay, cells as in 

(gh). Data plotted as RFU; one-way ANOVA with Tukey's post-hoc analysis N1 or N2: 

*p<0.0001 (Vehicle/SecinH3). (j-k) Spearman correlation analysis of NEDD9 and ARAP3 

mRNA expression in normal (j) breast tissue or breast cancer biopsies (k) based on TCGA 

data base; n=105 (for Normal breast), n=791 (for Cancer breast), r=-0.1161, p-ns for normal, 

r=0.3035, p<0.0001 for tumor.

Loskutov et al. Page 25

Oncogene. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. TIMP2/ MMP14 complex targets to Rab7 endosomes
(a)WB analysis of WCL and IP with anti-MMP14 antibodies from siControl (Con) or 

siNEDD9 (N1, N2) MDA-MB-231 cells transfected with mCherry-MMP14 and Flag-tag 

fusion TIMP2; WB with anti-Flag and -MMP14 antibodies. (b) Quantification of WB as in 

(a) from three independent experiments; graphs are mean RIU values as % to siCon 

(assigned as 100%) ±S.E.M; one-way ANOVA with Dunnett's post-hoc analysis *p=0.0368 

or 0.0216 for siCon/siN1 or N2; (c) Representative 3D reconstructed confocal images of 

cells as in (a) stained with anti-Rab7 (red) and anti-Flag antibodies (green); Scale bar is 
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10μm. (d) Quantification of colocalization of Rab7 and TIMP2 positive vesicles, mean % of 

TIMP2/Rab7 positive vesicles ±S.E.M; three independent experiments, 10 cells/treatment; 

two-tailed t-test:*p= 0.0003 for Con/N1. (e) Schematic representation of the model depicting 

action of NEDD9 on Afr6 through recruitment of ARAP3 to Arf6/GGA3/MMP14 complex.
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Figure 8. Downregulation of NEDD9 expression via siNEDD9-Vivo-Morpholino treatment 
decreases tumor progression in xenograft model of breast cancer
(a) WB analysis of WCL with anti-NEDD9 antibodies of moControl (moCon) or moNEDD9 

MDA-MB-231 treated cells. (b) Representative images of bioluminescence (BLI) of mice 

orthotopically injected with MDA-MB-231LN cells after 1 weeks of treatment. (c) 

Quantification of the primary tumor growth based on BLI, n=4/group, mean total photon 

flux +/−S.E.M, t-test p=0.0266 after 1 weeks of treatment; (d) Quantification of mitotic cells 

in primary tumor +/−S.E.M after 1 weeks of treatment, n=4 in each group, t-test, p<0.0001; 

(e) Quantification of percentage of necrotic area in primary tumor +/−S.E.M after 1 weeks 

of treatment, n=4 in each group, p=0.0081.
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