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The ability of an organism to schedule its biologi-
cal processes throughout the day is so important to 
survival that nearly all plants and animals have 
evolved an intrinsic circadian mechanism that is syn-
chronized to the day/night cycle (Zhang et al., 2014; 
Sehgal, 2017; Patke et al., 2020). Many biological func-
tions are coupled to this rhythm, and there is fast 
growing awareness of the importance of taking these 

rhythms into account (Takahashi, 2017). Modern 
high-throughput circadian rhythm omics datasets are 
typically too large for a researcher to examine by 
hand through traditional means. Yet circadian experi-
ments are inherently complex and inadequately cap-
tured by any simple set of statistics. Instead, they are 
best investigated visually. It is therefore important to 
assist researchers in fully examining their dataset.
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Abstract Circadian omics analyses present investigators with large amounts of 
data to consider and many choices for methods of analysis. Visualization is 
crucial as rhythmicity can take many forms and p-values offer an incomplete 
picture. Yet statically viewing the entirety of high-throughput datasets is 
impractical, and there is often limited ability to assess the impact of choices, 
such as significance threshold cutoffs. Nitecap provides an intuitive and uni-
fied web-based solution to these problems. Through highly responsive visual-
izations, Nitecap enables investigators to see dataset-wide behavior. It supports 
deep analyses, including comparisons of two conditions. Moreover, it focuses 
upon ease-of-use and enables collaboration through dataset sharing. As an 
application, we investigated cross talk between peripheral clocks in adipose 
and liver tissues and determined that adipocyte clock disruption does not sub-
stantially modulate the transcriptional rhythmicity of liver but does advance 
the phase of core clock gene Bmal1 (Arntl) expression in the liver. Nitecap is 
available at nitecap.org and is free-to-use.
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Typically, investigators choose certain thresholds, 
such as separating “rhythmic” from “non-rhythmic” 
features by a p-value cutoff. These choices impact 
subsequent analyses, yet there is generally no sys-
tematic procedure for these steps—choices are often 
made arbitrarily without fully assessing the impact 
on downstream analyses and without visualization 
of those features just above or below these thresh-
olds. Therefore, tools to better enable the investigator 
to understand the impacts of these decisions are 
needed.

As circadian research has matured, researchers 
have begun using more complex study designs. 
Recent work has focused on comparisons of rhyth-
micity across different conditions (Thaben and 
Westermark, 2016; Singer and Hughey, 2019), but 
these methods report only p-values for an aggregate 
change in rhythmicity and cannot isolate changes in 
amplitude or phase specifically. While the theory for 
doing so is well developed (Bingham et  al., 1982), 
tests of these differences have only recently had mod-
ern implementations (Moskon, 2020; Parsons et  al., 
2020; Ding et al., 2021; Weger et al., 2021). Investigators 
still lack exploratory tools for visualization and 
understanding these studies or for running these 
analyses without informatics training.

We have developed Nitecap (nitecap.org), a website 
interface to visualize, detect, quantify, and compare 
rhythms and circadian behavior in time series high-
throughput data. Nitecap provides highly responsive 
visualizations tailored for the problem of circadian 
omics data. This makes it possible to easily assess data 
quality, rhythmicity, and differences between condi-
tions. Nitecap incorporates common rhythmic analy-
ses, including JTK_CYCLE (Hughes et  al., 2010), 
cosinor linear models, analysis of variance (ANOVA), 
and any user-provided statistics. Expression or con-
centration time series can be re-sorted by any of the 
various statistics and then scanned and assessed using 
a slider bar. Users may create accounts and save their 
datasets for later use and share data and analyses via 
copy-and-pastable links. Nitecap allows users to per-
form pathway analyses that update in real time to 
changes of parameters such as significance cutoffs or 
filters. This allows one to assess the impact of the full 
range of cutoffs on the pathway results. Visualizations 
include principal component analysis (PCA) and heat-
maps. Finally, Nitecap provides analytic tools for dif-
ferential analysis, to compare time courses in two 
different conditions, using permutation and cosinor-
based comparative statistical tests to assess differential 
rhythmicity, phase, or amplitude between conditions. 
This is all made accessible to users without specialized 
bioinformatics skills, requiring only a spreadsheet as 
input. Nitecap thereby streamlines the initial investi-
gation of a new dataset, enabling researchers to build 

immediate intuition for the condition under examina-
tion while providing a stepping-stone for deeper 
investigations.

METhoDs AND MATERIAls

Web Interface

The nitecap.org website provides a simple interface 
for end-users. Users may submit a spreadsheet in csv, 
tab-separated, or Excel formats with one row per fea-
ture (where features could include genes, proteins, 
transcripts, or any other measurable unit) and one col-
umn per independent sample (technical replicates should 
be combined beforehand). The user specifies a few study 
design questions (e.g., how many timepoints were 
measured per day or cycle) and is then asked to spec-
ify the individual columns’ meanings. There should be 
at least one column of feature IDs, several columns of 
sample data, and (optionally) user-provided metrics 
or statistics. Sample columns can have their timepoint 
automatically inferred from the column header if it 
matches one of the several common naming schemes 
(such as including “ZT” followed by a number) and 
otherwise can be set manually. Columns of user-pro-
vided statistics are saved and later displayed along-
side Nitecap-computed statistics.

Uploaded datasets are stored on the server and, if 
the user is logged in, saved to their account for future 
reference. As soon as the dataset is loaded, the server 
automatically performs several default statistical 
tests: the JTK_CYCLE, ARSER, Lomb-Scargle and 
RAIN tests of rhythmicity (Hughes et  al., 2010; 
Thaben and Westermark, 2014; Wu et  al., 2016), a 
cosinor test (Cornelissen, 2014), and ANOVA. The 
data are then displayed to users and can be sorted 
according to any statistic.

Nitecap is designed with the most common circa-
dian omics experiments in mind and so requires a 
known cycle length, typically 24 h. Moreover, it 
assumes a fixed spacing between timepoints. Nitecap 
currently does not support repeated measurement 
experiments in its statistical analyses since it assumes 
independence of timepoints (which is the case when, 
for example, each sample is from a distinct organism).

Visualizations. A key feature of Nitecap is its respon-
siveness. The user may scan through their entire data-
set with a slider bar, which updates the plotted data 
instantaneously, see Figure 1. This enables a visual 
impression of how well rhythmicity (or other desired 
properties) hold up near any cutoff value, by quickly 
scanning dozens or hundreds of features near the cut-
off using the slider bar. Multiple different graph types 
are available to give different perspectives. Nitecap 
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also provides easy ways to generate heatmaps and 
time-annotated PCA plots of samples to investigate 
the overall properties of the dataset. The combination 
of thresholding and PCA appears to have definite 
advantages, see case studies.

Feature profile plots can be sorted by any statistic, 
such as significance of rhythmicity. They can also be 
filtered by any statistic, such as removing low-
expressed genes from an RNA-seq dataset or drop-
ping features with large amounts of missing data.

Dataset Comparisons. Nitecap introduces an easy way 
to compare both visually and statistically any two 
(compatible) datasets that a user has uploaded. For 
example, a time course taken in wild-type (WT) mice 
and another in knock-out (KO) mice can both be 
uploaded, then selected and compared. Both condi-
tions are plotted together, and additional statistics are 
automatically computed to compare them: a cosinor-
based test for differential phase or differential ampli-
tude (Bingham et al., 1982), a permutation-based test 
for damping of rhythm amplitude called UPSIDE 
(Paschos et al., 2012), and a two-way ANOVA test for 
differential time dependence. Importantly, the 
cosinor-based approach gives p-values specifically 
for a difference in phase and specifically for a differ-
ence in amplitude. This contrasts with approaches 

that provide only an aggregate differential p-value 
that cannot distinguish between phase and ampli-
tude differences (Thaben and Westermark, 2016; 
Singer and Hughey, 2019).

Pathway Analysis. Pathway enrichment analysis is a 
common operation in high-throughput analyses. To 
shed light on the dependence of the pathway analysis 
results on a selected set of genes, Nitecap performs a 
standard hypergeometric test and updates it in real 
time as one changes the selected gene set. For exam-
ple, the p-value cutoff determining the set of “signifi-
cant” genes can be scanned through and the pathway 
enrichment updates to reflect the changing gene set.

The benefit of such an approach is that pathway 
enrichment hypergeometric tests are known to include 
false positives for complex reasons (de Leeuw et  al., 
2016; Simillion et al., 2017). For example, we may intend 
to select for the most rhythmic genes but end up finding 
significant pathways that are enriched simply for 
expression levels due to higher power of the test in 
highly expressed genes. An enriched pathway may 
merely have been enriched for being highly expressed 
in this condition without any association to rhythmicity 
per se. However, such pathways likely are also enriched 
under other orderings or at less stringent cutoffs. While 
Nitecap does not provide a remedy to this problem, it 

Figure 1. Nitecap interface. The main Nitecap spreadsheet-viewing page allows investigators to quickly see profile plots and computed 
statistics. The displayed plot and statistics update in real time as the user scans through the list of spreadsheet rows (containing genes, 
transcripts, proteins, etc.), allowing investigators to obtain quick intuition about their dataset, such as the robustness of rhythmicity at 
various cutoffs. The spreadsheet rows can be sorted by any chosen statistic, including user-provided ones, by selecting it from the statis-
tics panel on the right. Abbreviations: Ko = knock-out; WT = wild-type.
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helps users understand their pathway results better and 
be more aware of potential problems.

Pathways are generated using the biomaRt R pack-
age (Durinck et al., 2005, 2009) for Gene Ontology (GO) 
terms (Ashburner et  al., 2000; GO Consortium, 2021) 
and the KEGGREST R package (Tenenbaum and 
Maintainer, 2021) for Kyoto Encyclopedia of Genes and 
Genomes (KEGG) gene sets (Kanehisa and Goto, 2000; 
Kanehisa, 2019; Kanehisa et al., 2021). We provide gen-
erated lists for Homo sapiens, Drosophila melanogaster, 
and Mus musculus for features identified by Ensembl 
gene ID, National Center for Biotechnology Information 
(NCBI) gene ID, or gene symbol. Since H. sapiens is par-
ticularly well annotated for GO terms, we also provide 
GO term lists based off homology to H. sapiens for other 
species. By default, genes measured in the provided 
spreadsheet form the background set, excluding genes 
appearing in no annotated pathways or any genes that 
have been removed by the user-specified filters. Users 
may choose to disable either of these exclusion criteria.

Implementation. The nitecap.org website consists of a 
web server and a serverless computational backend. 
The web server is developed in Python using the Flask 
framework, running on Apache through mod_wsgi. 
The server is deployed as a containerized service via 
Amazon Elastic Container Service (ECS) and is fronted 
by an application load balancer. Users are encouraged 
to register accounts, but most functionality is available 
even without one.

Nitecap’s front end is written in JavaScript with the 
Vue.js framework. Visualizations are performed with 
the Plotly.js library, which enables near instantaneous 
rendering of complex plots as the user changes param-
eters or scans through the list of features. To deliver 
high-performance visualizations, the entire dataset is 
loaded into memory on the client side. Intensive com-
putations take place on the backend and are loaded 
seamlessly as the user views their results.

Nitecap’s serverless computational backend is 
responsible for running algorithms. We found this 
serverless approach necessary since some algorithms 
have a long running time and can easily overwhelm 
the server. Our architecture uses AWS Lambda ser-
vice to run algorithms and the computational work-
flow is orchestrated by AWS Step Functions. The user 
interface shows progress bar which informs the user 
on the status of computations. This feature is imple-
mented using the WebSocket protocol. Figure 2 shows 
the essential parts of our architecture. Lambda func-
tions are written in Python. We execute algorithms 
written in R using rpy2, an interface to R running 
embedded in a Python process. Finally, we followed 
the infrastructure-as-code principle and specified the 
infrastructure described above in TypeScript using 
AWS Cloud Development Kit (CDK).

The source code for nitecap is available under a 
GPL3 license at github.com/itmat/nitecap.

Adipocyte-specific Bmal1 Ko

Mice were kept under constant darkness for 36 h 
and then sacrificed. Mice had ad libitum access to food 
and water. Four aP2-Cre Bmal1 fx/fx mice and 4 lit-
termate controls were sacrificed in darkness every 4 h 
for 20 h (6 timepoints). Liver samples were excised and 
RNA-seq was performed on each. See Supplemental 
Methods for details.

REsulTs

Case studies

We perform three case studies demonstrating the 
use of Nitecap in exploratory circadian omics. The 
datasets investigated here, and others, are shared for 
easy viewing at nitecap.org/gallery. Unless other-
wise specified, p-values are from JTK.

Case Study 1—Time-restricted Feeding in Mice. A recent 
study (Xin et al., 2021) performed RNA-seq on mouse 
liver, heart, visceral adipose tissue (VAT), and kidney 
samples taken from two conditions: night-restricted 
feeding (NRF) or day-restricted feeding (DRF) both 
under 12:12 h light-dark cycles. Each condition had 4 
mice in each of the 7 timepoints spaced 4 hours apart. 
We obtained the data from GEO accession GSE150385, 
uploaded this dataset to nitecap.org, and were able to 
quickly perform a meaningful analysis of the different 
conditions, despite having little prior knowledge of 
the experiment.

Examining mouse liver, many cycling genes are 
identified in both condition (8864 in NRF and 8181 in 
DRF with JTK q < 0.05). Selecting the top 500 cycling 
genes in NRF and constructing the PCA plot, using 
just these genes, shows that samples in both condi-
tions cluster by time of day and form a remarkably 
regular circle, indicating the cyclic nature of the data, 
see Figure 3a. However, the DRF samples cluster clos-
est to the NRF samples that are 12 h offset in time, 
indicating the entrainment of liver tissue to the 
inverted feeding schedule. Moreover, the size of the 
circle formed by DRF genes is smaller than that of the 
NRF condition, indicating a bulk shift toward lower 
amplitudes in these selected genes. Repeating with 
the top 500 cyclic DRF genes instead, we observe a 
similar plot but with comparable radius (and hence 
comparable rhythmicity) in each condition, see Figure 
3b, indicating that genes that cycle in DRF have com-
parable rhythmicity in NRF. Performing a PCA plot 
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on all 25,415 genes gives a less informative picture, see 
Figure 3c. This illustrates the value of combining 
thresholding to choose gene sets and PCA. Confirming 

these visual findings, Nitecap identifies 731 genes 
with phase changes and 1933 with amplitude changes 
at the q < 0.1 level, between NRF and DRF conditions. 

Figure 2. Nitecap implementation. Typical workflow in Nitecap. First, the front end sends the request to run an algorithm (1). This 
request passes through the load balancer and is received by the Nitecap server (2) which is deployed as a containerized service in Ama-
zon ECs. The server puts the data needed for the algorithm in the s3 bucket (3) and instructs the orchestrator to run the desired algorithm 
(4). The orchestrator then starts the appropriate lambda function (5) where the algorithm is run. During the run, the status notifications 
are sent to the API Gateway (6) which pushes them to the front end (7)via the Websocket protocol. The Amazon Dynamo database is 
used to keep track of which users are actively connected to Nitecap via the Websocket protocol. Abbreviations: API = application pro-
gramming interface; ECs = Elastic Container service.

Figure 3. PCA comparison—DRF vs NRF. RNA-seq from mouse liver tissue under DRF and NRF. PCA of the samples using (a) the top 
500 rhythmic genes in NRF, (b) the top 500 rhythmic genes in DRF, or (c) all genes. In all cases, expression values were log-transformed 
and z scored prior to taking the PCA. Rhythmicity testing by JTK_CyClE. Abbreviations: PCA = principal component analysis; DRF = 
day-restricted feeding; NRF = night-restricted feeding.
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Examining other tissues, we see the clearest entrain-
ment to feeding schedules in liver, see Supplemental 
Figure 1a-1c. Thereby, Nitecap has enabled the rapid 
reproduction of some major findings of Xin et  al. 
(2021) and provided intuitive visualizations of these 
properties, particularly in liver.

Finally, we analyzed the liver metabolomics data-
set from the same study. This dataset has NRF and 
DRF timeseries with 7 timepoints every 4 h and 4-5 
replicates per timepoint. Out of 243 metabolites in 
total, we identify 43 metabolites with JTK p < 0.05 
under NRF. A PCA plot of these samples restricted to 
43 metabolites shows clustering by timepoints with 
similar behavior for NRF and DRF conditions, see 
Supplemental Figure 1d. Compared to RNA-seq, 
metabolomics has far fewer measurements and so 
Nitecap’s responsive visualizations are less essential. 
However, we still find Nitecap convenient for this 
and even a few hundred measurements are difficult 
to examine by hand without such a tool.

Case Study 2—Bmal1 KO. Next, we accessed GEO 
accession GSE70497. This dataset has RNA-seq of 
liver samples from postnatal Bmal1 (Arntl) KO and 
WT C57BL/6 mice over the course of 24 h under 
dark-dark conditions, with 4 biological replicates 
every 4 h, for each genotype (total 48 samples) (Yang 
et al., 2016). Since the Bmal1 KO is known to impair, 
if not completely disable, the circadian clock of mice, 
we expect to see a broad reduction of rhythmicity. 
Using Nitecap, we generated a PCA plot based on the 
top 500 genes found rhythmic in WT, see Figure 4a. 
While WT mice cluster by time-of-day, and indeed 
form a “loop” through the course of the day, the KO 
mice cluster near the center, regardless of sample 
time. Since KO mice do not cluster with any WT time-
point, KO mice do not have the expression values of 
any fixed time-of-day in WT mice. By inspecting gene 
plots, we can see that most genes instead have con-
stant expression levels approximately equal to the 
average of the WT expression levels. In Figure 4b, we 
use the least cyclic genes (with p > 0.5 in WT) and see 
that the separation is instead by genotype.

Using Nitecap’s comparative tests, we identified 
1418 genes (q < 0.1) specifically as being dampened 
in the KO, 1882 were identified (q < 0.1) as having an 
amplitude change between the 2 genotypes, and no 
genes were identified as having a phase difference 
(all have q > 0.9). This confirms the expectation that a 
clock KO primarily confers a reduction in rhythmic-
ity rather than a shift in phases. This demonstrates 
the importance of a phase-specific test.

We performed a pathway analysis on the selection 
of top rhythmic genes using the GO terms mapped by 
homology to H. sapiens GO annotations in the WT 
mice. At more stringent cutoffs (n = 500 genes), the top 
GO term is “circadian regulation of gene expression” 

(enrichment p = 2.9 × 10−10). At higher cutoffs (q < 
0.05, n = 6055 genes), the top GO term is “cytosol” 
(enrichment p = 1.9 × 10−10). Since cutoffs and path-
way analyses update in real time, it is easy to see that 
in fact the cytosol pathway remains highly enriched as 
we progress to extremely high cutoffs, such as at q < 
0.5 (n = 10,299 genes out of 15,744 total), cytosol 
increases in significance to p = 3.0 × 10−15, while the 
circadian regulation of gene expression term has p = 
2.0 × 10−3. This illustrates that the cytosol enrichment 
at the cutoff q < 0.05 is likely not biologically signifi-
cant and should be considered with caution. This illus-
trates the value of considering the full range of cutoffs 
in a pathway analysis, which would be very time-con-
suming without nitecap.

Case Study 3—Adipocyte-specific Bmal1 KO. Circadian 
clocks in peripheral tissues are autonomous and 
responsible for the rhythmic expression of a percentage 
of the genes expressed in any given tissue. Rhythmic 
behavior, and cross tissue interactions also drive the 
rhythmic expression of genes in tissues. It is known 
that hepatocyte clock disruption alters rhythmicity in 
other peripheral tissues, including white adipose tissue 
(Manella et al., 2021). In this case study, we used Nite-
cap to investigate the effect of the circadian clock in adi-
pose tissue on the rhythmic expression of genes in liver. 
RNA-seq was performed on mouse liver in both WT 
mice and in adipocyte-specific Bmal1 KO mice. Exam-
ining only core clock genes, we see a phase advance of 
liver Bmal1 in KO (phase difference p = 4.3 × 10−4), see 
Figure 4c, and trends toward phase advancements in 
other core clock genes, see Supplemental Figure 2.

Examining all genes in a WT-KO comparison, none 
are significantly modulated according to an ampli-
tude difference test, an UPSIDE damping test, or a 
phase difference test after correcting for multiple test-
ing (q > 0.9). By a two-way ANOVA test, one gene 
(Pxdn) has q < 0.1, yet all others have q > 0.5. To visu-
alize this, we select the 500 top rhythmic genes in WT 
and plot the PCA, see Figure 4d, which shows no 
large difference between conditions, though time-
points cluster slightly less tightly in KO. We conclude 
that there is little detected difference in basal liver 
rhythmicity after disruption of the clock in adipose 
tissue in mice that maintain activity and behavioral 
rhythms.

It is common in circadian analyses to compare 
rhythmicity across conditions by comparing p-values 
generated in each condition, which is known to both 
overestimate and underestimate differences between 
conditions by overinterpreting nonsignificant p-values 
(Pelikan et al., 2020). This dataset illustrates this pitfall. 
By applying filters in Nitecap, we can easily find that 
there are 329 genes which have JTK q < 0.1 in 1 condi-
tion and JTK p > 0.5 in the other. However, none of 
these genes have significant comparative statistics 
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(amplitude or phase differences, damping, or two-way 
ANOVA), indicating that there is insufficient evidence 
to conclude differences. This highlights the importance 
of rigorous comparative test statistics rather than sim-
ple p-value comparisons in circadian omics.

DIsCussIoN

The Nitecap interface provides unparalleled visu-
alization ease and speed for rhythmic datasets, which 
enables researchers to see the entirety of their dataset. 

The Nitecap interface demonstrates that responsive 
and nearly instantaneous visualizations help signifi-
cantly to overcome the difficulty of examining high-
throughput datasets. Since it does not attempt to 
provide a full experimental pipeline, Nitecap remains 
flexible and compatible with a wide range of experi-
mental types such as RNA-seq, proteomics, and 
metabolomics. Its ease-of-use makes it possibly the 
simplest way to run existing tests like JTK_CYCLE 
without using command-line tools or scripting, put-
ting these tools directly in the hands of the bench 
investigators. Moreover, users may provide their own 
precomputed statistics if desired.

Figure 4. PCA comparison—Bmal1 Ko. (a-b) RNA-seq was performed on liver samples from postnatal Bmal1 Ko and WT mice over 
the course of 24 h under dark-dark conditions, with 4 samples taken every 6 h in each genotype. (a) PCA plot of the samples’ top 500 
genes found rhythmic in WT. (b) PCA plot of the 12,067 genes with p > 0.5 in WT. (c-d) RNA-seq was performed on liver samples from 
adipocyte-specific Bmal1 Ko and WT. (c) Bmal1 expression levels in WT and Ko. (d) PCA plot among top 500 genes found rhythmic in 
WT, after filtering out low-expressed genes (mean expression <3). Rhythmicity testing by JTK_CyClE. Abbreviations: PCA = principal 
component analysis; Ko = knock-out; WT = wild-type.
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Nitecap has exceptional support for comparisons 
of rhythmicity between multiple conditions, and the 
utility of Nitecap is perhaps even more evident when 
doing such comparisons. It is the first user-friendly 
way to run tests that provide p-values specifically for 
phase or amplitude differences. Recent libraries also 
implement such tests: CosinorPy (Moskon, 2020), 
CircaCompare (Parsons et  al., 2020), and diffCirca-
dian (Ding et al., 2021). But these do not have compa-
rable useability for omics data. Nitecap also provides 
a “dampening” metric to determine a directional 
dampening of rhythmicity (Paschos et al., 2012), such 
as a loss or reduction in rhythmicity in a KO mouse 
compared to a WT mouse. Moreover, it makes visual 
comparisons of datasets extremely simple and there-
fore facilitates the generation of more complex 
hypotheses for future investigation.

In addition to visualizations, Nitecap provides 
pathway analyses that compute in real time, allowing 
users to assess the global effects of significance cut-
offs, method choice, and filtering choices. While we 
would still encourage all users to use a dedicated, 
carefully curated pathway analysis tool such as 
Ingenuity Pathway Analysis (Kramer et al., 2014) for 
their final analysis, Nitecap gives users a powerful 
way to determine the optimal inputs to use for that 
analysis. Typically, one run of IPA can take 20 min, so 
users cannot explore many possibilities. After a pre-
liminary Nitecap exploration, a user is better informed 
to use IPA or another tool to perform a final, publica-
tion-ready pathway analysis, with appropriate cau-
tion in interpreting pathway results.

In our application to the adipocyte-specific Bmal1 
KO mouse in case study 3, we demonstrated that 
while clock disruption in adipocytes has a minimal 
impact upon basal rhythmicity in the liver transcrip-
tome, there is a distinct but small phase advancement 
in liver Bmal1 expression. This complements the 
findings of Manella et  al. (2021), where adipocyte-
expression was assayed in a hepatocyte-specific 
Bmal1 KO and similarly found few differences at the 
level of transcriptomic rhythmicity but identified 
slight phase shifts in core clock gene.

Existing web-based circadian tools include CircaDB 
(Pizarro et al., 2013), CircadiOmics (Ceglia et al., 2018), 
CircMetDB (Xin et al., 2021), and CGDB (Li et al., 2017) 
which all provide easy viewing of reference circadian 
datasets but do not support user-uploaded data. 
CircaCompare (Parsons et al., 2020) has a ShinyR web 
interface to compute phase and amplitude-specific  
p-values, but only supports a single measurement and 
therefore is not applicable to high-throughput datas-
ets. CIRCADA (Cenek et al., 2020) is a ShinyR web app 
that allows exploration of the differences between 
rhythmic analysis methods in either a select experi-
mentally derived dataset or a configurable synthetic 

dataset. However, it is not intended for user-provided 
analysis. Meta2D provides a ShinyR app as well that a 
user may run themselves (Wu et al., 2016). DiscoRhythm 
(Thaben and Westermark, 2016) provides a web inter-
face with extensive filtering and quality control 
options. Nitecap is the first site to allow scanning 
through thousands of feature plots in real time, the 
first to provide phase and amplitude-specific p-values 
for omics data, and the first to allow investigators to 
share their data to collaborators and colleagues.

limitations

Nitecap only supports the most common high-
throughput study designs. While it supports missing 
data and variable replicate numbers across time-
points, Nitecap requires known periods and evenly 
spaced timepoints. Investigators looking for differen-
tial rhythmicity in more complex studies will likely be 
better served by methods such as PyCosinor, dryR, 
CircaCompare or LimoRhyde that supports multiple 
conditions or complex linear models. To identify 
unknown periods, alternative tools include using 
BioDare2 (Zielinski et al., 2014) or MetaCycle. Datasets 
with unevenly spaced timepoints can be accommo-
dated by PyCosinor or MetaCycle. Regardless of the 
statistical test performed, the results may still be visu-
alized using Nitecap by uploading spreadsheets with 
precomputed feature-level statistics. However, datas-
ets with high-resolution sampling of many timepoints 
may be more appropriate for BioDare2.

Nitecap’s design presents two possible problems 
with multiple hypothesis testing. First, Nitecap is 
designed to incorporate an investigator’s visual intu-
ition into the cutoff selection process which could 
bias toward visually appealing but nonstatistically 
significant choices. Second, allowing tunable param-
eters with quickly updating results may allow inves-
tigators to pick-and-choose to get the results they 
want when doing, for example, pathway analysis. We 
recognize both of these problems, but both exist with 
or without Nitecap and high-throughput experi-
ments are generally designed to be exploratory, 
expected to be followed up with replication regard-
less. As a web-based resource, Nitecap does not cur-
rently support sensitive data. While it would be 
possible to run one’s own webserver within a secure 
intranet for use with patient data, Nitecap has not yet 
been designed to be easily installable as a local 
webserver.

Nitecap has been well tested within the circadian 
community at the Institute for Translational Medicine 
and Therapeutics at the University of Pennsylvania, 
and it has been applied to a broad range of experimen-
tal designs beyond its original intentions, such as 
blood pressure time courses taken on several hundred 
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individuals. The simplicity and speed of visualization 
make it applicable to many studies even if a rhythmic-
ity test is not needed. Indeed, an in-development sister 
site is in beta testing that provides that same interface 
but for general highly parallel omics studies such as 
RNA-seq direct comparisons, possibly with categori-
cal conditions, such as genotype and sex.

CoNClusIoN

Nitecap provides an advancement in the ease of 
visualizing large, high-throughput circadian datasets, 
by means of an extremely responsive interface. 
Investigators are enabled to see orders of magnitudes 
more data than previously was practical, thus allowing 
them to assess the overall behavior of their dataset in a 
comprehensive way. Moreover, it provides for easy col-
laboration and sharing of datasets and visualizations. 
Rigorous comparison of circadian parameters between 
conditions is increasingly common and Nitecap pro-
vides the first web-based interface of such tests suitable 
for high-throughput datasets. Since Nitecap supports 
user-supplied statistics, it is flexible enough to cooper-
ate with nonstandard pipelines, future statistical meth-
ods, or novel study designs.

Nitecap is available for free use at nitecap.org. The 
software code is available under the GPL v3 license at 
github.com/itmat/nitecap.
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