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Abstract: In the process of drug discovery, drug-induced liver injury (DILI) is still an active research
field and is one of the most common and important issues in toxicity evaluation research. It directly
leads to the high wear attrition of the drug. At present, there are a variety of computer algorithms
based on molecular representations to predict DILI. It is found that a single molecular representation
method is insufficient to complete the task of toxicity prediction, and multiple molecular fingerprint
fusion methods have been used as model input. In order to solve the problem of high dimensional
and unbalanced DILI prediction data, this paper integrates existing datasets and designs a new
algorithm framework, Rotation-Ensemble-GA (R-E-GA). The main idea is to find a feature subset
with better predictive performance after rotating the fusion vector of high-dimensional molecular
representation in the feature space. Then, an Adaboost-type ensemble learning method is integrated
into R-E-GA to improve the prediction accuracy. The experimental results show that the performance
of R-E-GA is better than other state-of-art algorithms including ensemble learning-based and graph
neural network-based methods. Through five-fold cross-validation, the R-E-GA obtains an ACC of
0.77, an F1 score of 0.769, and an AUC of 0.842.

Keywords: DILI; genetic algorithm; ensemble learning; PCA/MCA; QSAR; molecular representation

1. Introduction

Drug-induced liver injury (DILI) is a common cause of liver injury. It accounts for
more than 50% of acute liver failure cases in the clinic [1]. Meanwhile, DILI is the major
reason for drug failure, accounting for approximately 40% of the failed drugs in drug
development. As of 2011, more than 50 types of drugs with DILI have been withdrawn
from the market [2,3]. These problems cause tremendous pain and economic costs to society.
To address this issue, the main toxicity assessment methods have been roughly divided
into two categories, methods based on animal experiments and computational models.
Compared with early animal experimental methods, the computational models not only
have the advantages of time-saving, low cost and high efficiency but also are not limited by
the experimental environment error [4]. Therefore, it is of vital importance to develop an
efficient and accurate model for DILI prediction.

With the development of artificial intelligence, machine learning (ML) and deep learn-
ing methods have gradually shown more potential than the expert estimation methods
and other statistical models in the early stage of toxicity risk assessment [5]. Among

Molecules 2022, 27, 3112. https://doi.org/10.3390/molecules27103112 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27103112
https://doi.org/10.3390/molecules27103112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8983-9686
https://orcid.org/0000-0003-4232-038X
https://orcid.org/0000-0002-4136-6151
https://orcid.org/0000-0002-1222-8876
https://doi.org/10.3390/molecules27103112
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27103112?type=check_update&version=3


Molecules 2022, 27, 3112 2 of 21

the computational models in toxicity prediction, molecular representation-based ensem-
ble learning and deep learning methods have achieved wide application on numerous
DILI datasets [6–10]. The molecular representation-based methods usually predict the
risk of DILI and other toxicities based on quantitative structure-activity (QSAR) and
molecular geometric deep learning (e.g., molecular graph representation) [11,12]. Using
21 QSAR models, Mulliner et al. predicted DILI based on a large-scale dataset consisting of
3712 compounds and achieved the area under the receiver operating characteristic curve
(AUC) values between 0.71 and 0.75 [7]. He et al. obtained a prediction accuracy (ACC)
of 0.783 with 1253 compounds using the ensemble learning model with eight base clas-
sifiers [8]. Wang et al. and Ai et al. obtained an ACC of 0.77 and 0.71 using the voting
ensemble learning by fingerprints-based QSAR models, respectively [9,10]. The Graph
neural network has been proved to be the most advanced model in many fields, such as
molecular attribute prediction [13,14] and has also achieved high prediction accuracy in
DILI prediction [15,16]. At the same time, ML models based on toxicogenomics have also
achieved high accuracy [2]; however, their accuracy is highly dependent on experimental
data, and the experimental accuracy on large datasets is not satisfactory (the best-obtained
accuracy is 0.7) [17].

Among many machine learning models, the Genetic Algorithm (GA) naturally avoids
some problems commonly encountered by other optimization algorithms. GA is an evolu-
tionary algorithm, whose working principle is inspired by natural inheritance and survival
of the fittest [18,19]. In the large and complex search space, GA can quickly approach the
approximate global optimal solutions without getting stuck in the local optimal [20,21].
GA will evolve to the last individual as an approximate global optimal solution. As an
optimization algorithm, GA has shown excellent performance in various fields, such as
micro-expression recognition [22] and microarray datasets [22–24]. At the same time, it
has strong robustness and can be combined with other algorithms for solution search
optimization [25–28]. In addition to the Genetic Algorithm, the application of various
optimization algorithms also reduces parameter sensitivity and maintains excellent perfor-
mance [29], such as the optimization algorithm for tuning fuzzy control systems [30], and
the meto-heuristic gray wolf optimizer (GWO) algorithm to train neural networks [31]. In
the drug discovery problem, the solution to the problem can be encoded as an individual so
that the better-performing individuals can be screened out through population evolution.
The solutions with better performance can be selected globally. For example, taking the
feature combination as the solution to the problem, the feature combination with excellent
performance can be screened out through GA iterative evolution. Because of its string-
structure individual, it can provide the linear representation for different fields and has
been successfully applied to tackle a set of optimization problems in various research fields,
such as feature selection [32], ensemble learning [33], and unsupervised learning [34]. GA
has also been applied to solve complex medical problems, including disease screening [35],
disease diagnosis [36], prognosis [37], and health care management [38]. In drug discovery,
GA has been used in the evaluation of adverse drug reactions [39], drug design, and lead
optimization [40–42].

In this study, we proposed an algorithm framework, Rotation-Ensemble-GA (R-E-
GA), based on GA, Rotation Forest and Ensemble Learning to solve the problem of DILI
prediction. The Rotation in R-E-GA improves the rotation operation in Rotation Forest.
The rotation operation refers to the rotation transformation of the feature space to search
for a better data space. Previous studies have applied Rotation Forest for scheme design
and achieved good results [43]. For DILI data in this study, we first collected, sorted, and
cleaned a large number of compounds containing DILI labels from different literature
sources, and combined them with the classical DILI research dataset to ensure overall
data quality. Then, we constructed our data by calculating and splicing different types of
molecular fingerprints (ECFP, MACCS, Rdkit2D, etc.), which fully considered the molecular
spatial information of compounds. These fingerprints contain circular fingerprints, sub-
structural key fingerprints and pharmacophore descriptors, including both continuous
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variables (Rdkit2D) and discrete variables (other fingerprints). Traditional ML methods find
it difficult to extract toxicity features from such high-dimensional and complex chemical
spaces. Compared with traditional ML and ensemble models, rotation GA first uses PCA to
flip the feature space and extract toxic fingerprints and features. Next, genetic algorithm and
ensemble learning are combined to further improve the accuracy and generalization ability
of the model. Then, we compared the prediction performance of the R-EGA framework,
graph neural network, and classical machine learning algorithms on this dataset. Finally,
we applied the computational features (One-hot encoder, Mold2, PaDEL), and label dataset
proposed by Xu et al. [6]. for model training and external validation. The results show
that the performance of R-E-GA is superior to their algorithm in molecular descriptors.
According to the results, our algorithm achieves the highest DILI prediction accuracy.

2. Materials and Methods
2.1. Datasets

We first collected a large number of compounds labeled with human DILI data from
public databases, as shown in Table 1. We processed the collected data in the following
steps to finally form a DILI signature dataset containing 2931 compounds, including
1498 positive and 1433 negative:

(1) The Python 3.8 Rdkit tool [44] was used to match Canonical SMILES from the literature
through SMILES, and the corresponding Pubchem Compound ID (CID). We combined
the DILI-tagged data from different authors, and removed duplicate data as well as
metals and compounds containing rare elements.

(2) We binarized the labels of different datasets to obtain binary labels. The rules of
the label are shown in Table 1. We adopted cautious binarization rules and took
compounds with high reliability DILI classes. First, the data came from trusted
sources, such as scientific literature, medical monographs clinical data and data
approved by the FDA. Second, we set labels to “1” for the compounds with definite
DILI from the original source, and “0” for the compounds without DILI from the
original source. This is reflected in the processing of Greene, DILIrank, Livertox
and LTKB data, where “HH” and “Most concern” represent “Evidence of human
hepatotoxicity” and DILI-positive, respectively. Meanwhile, “NE” and “no concern”
indicate “no evidence of hepatotoxicity in any species” and DILI-negative [45–50].
The “Category A” and “Category B” from the LiverTox are the classes of compounds
that have been “frequently reported” and “reported” to cause DILI; “Category E”
means “no evidence that the drug has caused liver injury” [47,51]. We found that
Shuaibing et al. and Mulliner et al. had the same strict binarization rules we adopted,
so we considered the data of these authors also to be credible [7,8]. It was found
that Xu et al.’s binding data also came from highly trusted data sources, including
NCTR, Greene et al., and Xu et al., which removed inconsistent compound’s DILI
label from the dataset, and we considered their data equally reliable [6]. Finally,
to expand the dataset, we took a small portion of compounds from Greene’s “WE”
compound’s DILI classes which represented “Weak evidence of (<10 case reports)
human hepatotoxicity”, and they were also considered as DILI compounds in the
literature [47,50].

(3) Since the toxicity labels of compounds in different datasets may be inconsistent, we
first retained the more reliable data sources from the three large databases, DILI-
rank [46], LiverTox [47], and LTKB [48], and then removed the corresponding com-
pounds from other datasets [8].

(4) We voted on the remaining data to determine the label of the compound. The voting
rules were as follows: if the label of a compound is consistent in all datasets or consis-
tent in 80% of the datasets, we take the label as the toxicity label of the compound;
otherwise, we delete the compound.
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Table 1. Datasets of DILI and binarization rules of labels.

ID Source Type of Data No. of Compound
(Positive/Negative) DILI Categories

1 Greene et al., 2010 [45] Literature reviews and
medical monographs 487 (331/156) HH, WE represented positives

and NE represented negatives

2 Xu et al., 2015 [6] Medical monographs and
FDA-approved drug labeling 475 (236/239) Authors definition

3 Mulliner et al., 2017 [7] Clinical data and drug labeling 1370 (932/438) Authors definition

4 Shuaibing et al., 2019 [8] Drug labeling and
comprehensive data 1458 (761/697) Authors definition

5 DILIrank [46] Drug labeling and clinical data 504 (192/312) Most concern as 1; no concern
as 0

6 Livertox [47] Scientific literature and
public database 343 (119/224)

Categories A and B were
combined into positives, and
Category E was considered

as negatives

7 LTKB [48] FDA-approved drug labeling 195 (113/82) Most concern as 1;no concern
as 0

After the above steps, the DILI dataset was expanded and the accuracy of the data was
ensured, and the prediction accuracy in the baseline was basically consistent with that reported
in other literature. The dataset used in this paper is included in the Supplementary Materials.

2.2. Molecular Representations

In order to obtain a better molecular representation for models, we first calculated
eight molecular fingerprints (descriptors) of compounds using Python Rdkit tools, includ-
ing extended connectivity fingerprints, structural keys fingerprints, and pharmacophore
descriptors, as shown in Table S1. Then we used the traditional ML algorithms to predict
DILI for the pre-experiment with different molecular fingerprints (descriptors), the results
of ACC for prediction performance are shown in Figure 1 (more details of the results are
shown in Table S2). These algorithms include Random Forest (RF) [52], Support Vector
Machine Classifier (SVC) [53], Extreme Gradient Boosting (Xgboost) [54], Gradient Boost-
ing Decision Tree (GBDT) [55], Adaptive Boosting (Adaboost) [56], Logistic Regression
(LR) [57] and Decision Tree (DT) [58]. After our pre-experiment, we selected three types
of molecular fingerprints and spliced them as the input of the models. They are Rdkit2D,
PubChem, MACCS, and ECFP2 fingerprints. Rdkit2D, ECFP, and MACCS have been
shown to achieve comparative predictions with graph neural network-based methods in
some toxicity prediction tasks [15]. Pubchem fingerprints show similar prediction accuracy
to the ECFP and MACCS fingerprints in our study, so we spliced these four fingerprints
together as the model input. For toxicity prediction, the multi-fingerprint method has a
higher prediction accuracy than the single-fingerprint method [9,10,59]. For the graph
embedding model, we used the information of atoms and bonds of compounds to construct
molecular graphs, which is consistent with the literature [13,60] and constructed by Python
3.8 DGL-LifeSci-0.7.0 [61].
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2.3. GA Algorithm

GA is a stochastic global search optimization method. It simulates the phenomena of
crossover, mutation, and selection that occur in natural selection and genetics. Starting from
a random initial population, through random selection, crossover, and mutation operations,
a group of individuals more suitable for the environment is generated.

The terms of GA are defined as follows:

• Individual: A solution to a problem, and a unit of evolution.
• Bit: A code that constitutes the solution to the problem.
• Fitness: The degree of individual adaptation to the environment.

The workflows of GA are as follows:

• Encoding: The mapping from the solution of the problem to the individual.
• Decoding: The conversion of the individual to the problem solution.
• Initialization: Set the maximum evolutionary T, population size M, crossover proba-

bility PC, mutation probability PM, and randomly generate M individuals as the initial
population P0.

• Fitness: The fitness function indicates the pros and cons of the individual or solution.
• Genetic Operator: Three types: selection operator, crossover operator, and mutation

operator. Each population Pt is manipulated by the genetic operators to obtain the
next generation Pt+1.

• Termination: When the evolution generation reaches the maximum T, the evolution
is terminated.

2.4. Framework of Rotation-Ensemble-GA Algorithm

R-E-GA is a GA-based ensemble learning framework with the aid of feature rotation.
It follows the workflow of GA, including population initialization, crossover and mutation
operation, fitness value evaluation, elite retention, and loop iteration. First, it initializes the
population and generates M individuals randomly as the primary population according
to the encoding method. Then the population is processed by the crossover and mutation
operators to generate offspring, obtaining a total of 2×M individuals from both parent and
offspring populations. The fitness of the 2×M individuals is calculated through the fitness
function, and then M individuals with higher fitness are selected and retained to form a
new population. Before reaching the maximum evolutionary generation number T, the
new population is operated by the crossover and mutation step to continue the loop. When
T is reached, the loop is terminated and the final generation is the high-quality solutions
obtained by our algorithm.

Among them, the part of feature subspace rotation and ensemble learning is applied in
the fitness function, i.e., the Evaluation Fitness Value Part in Figure 2. The unit for calculating
fitness value is an individual, which consists of K feature subsets. The K feature subsets
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are all rotated by principal component analysis (PCA) or multiple correspondence analysis
(MCA) to form K new feature subsets, which are applied to train K weak classifiers used
for ensemble learning. The ensemble learning method adopted by R-E-GA is a boosting
method similar to Adaboost. First, it trains a weak classifier with the initial weights of
the training samples. Next, it updates the weights according to the error rate of the weak
classifier to train the next weak classifier based on the training set. This process continues
until K weak classifiers are generated sequentially. Finally, these K weak classifiers are
integrated through an ensemble strategy to obtain the final ensemble represented by the
related individual.
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of our algorithm, the blue fonts represent the objects and elements operated by the algorithm, and
the black fonts represent some descriptions of the operation.

The rotation step in the R-E-GA is inspired by the Rotation Forest algorithm, which
mainly refers to dividing all features into K equal-sized subsets, and then using PCA to
rotate the feature subset. It is well known that the variance of different classes becomes
larger in the rotated feature space, making the classification task much easier. However,
compared with the rotation effect of the feature space containing all features, the feature
subspace formed by a part of appropriate features often leads to better discriminative
capability, improving the quality of the data and the performance of the model. GA
provides a great global search for proper K feature subsets, based on which the solution of
the R-E-GA is defined as the division method of K feature subsets. An individual represents
an ensemble classifier containing K weak classifiers, fused by the Adaboost strategy.

In R-E-GA, each ensemble is represented as an individual for evolution. New solutions
are found through the crossover and mutation operations. The individuals with better
performance are selected and retained. In this way, the solution in the candidate set is
in a process of gradual optimization. The search process finds a better feature subset
through continuous evolution, evolving better ensembles. When the evolution ends, the
optimal individual is regarded as the approximate global optimal solution. Because of the
randomness of each operation in GA, it is guaranteed that the algorithm tends to generate
an optimal solution close to the global optimum.
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2.5. Details about R-E-GA
2.5.1. Initialization

R-E-GA defines the solution to the problem as K feature subsets suitable for rotation.
Therefore, each bit of an individual indicates a feature index. Each feature subset consists
of S f s feature indices, so each individual consists of K feature index sets of size S f s, which
may contain duplicate feature indexes. The following Algorithm 1 is the pseudo-code
of initialization.

Algorithm 1 Initialization

Input: M: the amount of individuals in a population.
K: the amount of feature subsets in an individual.
S f s: the size of feature index in a feature subset.
S f : feature size.
Output: P0: the first population of R-E-GA
1: for m = 0 . . . . . . M do
2: m = m + 1
3: reset f eature_subset to []
4: while k = 0 . . . . . . K do
5: k = k + 1
6: add the f eature_index randomly generated in S f range to f eature_subset
7: add f eature_subset to P0

2.5.2. Crossover and Mutation

The crossover operator randomly exchanges the effective information between indi-
viduals to reorganize the individuals, which is beneficial to search for better solutions in the
solution space. A specific crossover operation is described in Figure 3a. Two individuals in
the population are randomly selected first. Then a position is picked up as the intersection
point, and the two parts of the two individuals are exchanged by the intersection point
to form two offspring. The iteration continues until all individuals have undergone the
crossover operation to form the initial offspring.

The mutation operator aims to randomly change several codes to introduce new
feature combinations. Modifying a small proportion of several feature indexes on the
existing feature subsets allows for the exploitation of new solution space. Therefore, the
mutation operator is used to introduce new information, explore new coding possibilities,
and generate new solutions. The mutation operator has a random search direction, which
is conducive to jumping out of the local optimal solution. Figure 4 is an example of a
mutation of a subset of features in an individual.



Molecules 2022, 27, 3112 8 of 21Molecules 2022, 27, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 3. Genetic Operator: (a). Schematic diagram of the cross operation. Two individuals generate 

offspring by exchanging the parts before and after the Crossover Point. (b). Specific calculation flow 

chart of the fitness function. 

The mutation operator aims to randomly change several codes to introduce new fea-

ture combinations. Modifying a small proportion of several feature indexes on the existing 

feature subsets allows for the exploitation of new solution space. Therefore, the mutation 

operator is used to introduce new information, explore new coding possibilities, and gen-

erate new solutions. The mutation operator has a random search direction, which is con-

ducive to jumping out of the local optimal solution. Figure 4 is an example of a mutation 

of a subset of features in an individual. 

 

Figure 4. An instance of mutation in a feature subset in an individual. It randomly selects a number 

of codes and mutates into a certain number randomly. The limited range of this number is the num-

ber of features, which is the same as the range of individual codes. 

The pseudo-code of the whole process of Crossover and Mutation Algorithm 2. is as 

follows. 

  

Feature Subset I1 Feature Subset I2 Feature Subset I3 Feature Subset I4 Feature Subset I5

Individual I

Feature Subset J1 Feature Subset J2 Feature Subset J3 Feature Subset J4 Feature Subset J5

Individual J

Feature Subset I1 Feature Subset I2

Children I

Feature Subset J1 Feature Subset J2

Children J

Feature Subset J3 Feature Subset J4 Feature Subset J5

Feature Subset I3 Feature Subset I4 Feature Subset I5

base clf 1

PCA

Continuous

MCA

Binary

base clf 2

PCA

Continuous

MCA

Binary

base clf 3

PCA

Continuous

MCA

Binary

base clf 4

PCA

Continuous

MCA

Binary

base clf 5

PCA

Continuous

MCA

Binary

Feature Subsets Ⅰ Feature Subsets Ⅱ Feature Subsets Ⅲ Feature Subsets Ⅳ Feature Subsets Ⅴ

Individual

boost

boost

boost

boost

Evaluate An Individual Fitness Value

(a)

(b)

1-6-9-19-53-55-67-89-37-162-120-267-379-410…-3297

Feature Subset

1-6-9-19-49-55-67-89-490-162-120-267-379-777…-3297

Figure 3. Genetic Operator: (a). Schematic diagram of the cross operation. Two individuals generate
offspring by exchanging the parts before and after the Crossover Point. (b). Specific calculation flow
chart of the fitness function.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 3. Genetic Operator: (a). Schematic diagram of the cross operation. Two individuals generate 

offspring by exchanging the parts before and after the Crossover Point. (b). Specific calculation flow 

chart of the fitness function. 

The mutation operator aims to randomly change several codes to introduce new fea-

ture combinations. Modifying a small proportion of several feature indexes on the existing 

feature subsets allows for the exploitation of new solution space. Therefore, the mutation 

operator is used to introduce new information, explore new coding possibilities, and gen-

erate new solutions. The mutation operator has a random search direction, which is con-

ducive to jumping out of the local optimal solution. Figure 4 is an example of a mutation 

of a subset of features in an individual. 

 

Figure 4. An instance of mutation in a feature subset in an individual. It randomly selects a number 

of codes and mutates into a certain number randomly. The limited range of this number is the num-

ber of features, which is the same as the range of individual codes. 

The pseudo-code of the whole process of Crossover and Mutation Algorithm 2. is as 

follows. 

  

Feature Subset I1 Feature Subset I2 Feature Subset I3 Feature Subset I4 Feature Subset I5

Individual I

Feature Subset J1 Feature Subset J2 Feature Subset J3 Feature Subset J4 Feature Subset J5

Individual J

Feature Subset I1 Feature Subset I2

Children I

Feature Subset J1 Feature Subset J2

Children J

Feature Subset J3 Feature Subset J4 Feature Subset J5

Feature Subset I3 Feature Subset I4 Feature Subset I5

base clf 1

PCA

Continuous

MCA

Binary

base clf 2

PCA

Continuous

MCA

Binary

base clf 3

PCA

Continuous

MCA

Binary

base clf 4

PCA

Continuous

MCA

Binary

base clf 5

PCA

Continuous

MCA

Binary

Feature Subsets Ⅰ Feature Subsets Ⅱ Feature Subsets Ⅲ Feature Subsets Ⅳ Feature Subsets Ⅴ

Individual

boost

boost

boost

boost

Evaluate An Individual Fitness Value

(a)

(b)

1-6-9-19-53-55-67-89-37-162-120-267-379-410…-3297

Feature Subset

1-6-9-19-49-55-67-89-490-162-120-267-379-777…-3297

Figure 4. An instance of mutation in a feature subset in an individual. It randomly selects a number
of codes and mutates into a certain number randomly. The limited range of this number is the number
of features, which is the same as the range of individual codes.

The pseudo-code of the whole process of Crossover and Mutation Algorithm 2 is
as follows.
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Algorithm 2 Crossover and Mutation

Input: Pi: ith population.
PM: the possibility of mutation.
M: the amount of individuals in a population.
K: the amount of feature subsets in an individual.
S f : feature size.

Output: C: generated newly population after crossover and mutation operation.
1: C ← []
2: for i = 0 . . . M/2 do
3: select two individuals Ii and Ij from Pi randomly
4: select crossover point CP in 0 to K randomly
5: CP divides Ii and Ij into left and right parts, i.e., Ii_le f t, Ii_right, Ij_le f t, Ij_right, respectively
6: Ci = Ii_le f t + Ij_right
7: Cj = Ij_le f t + Ii_right
8: add C_i and C_j to C.
9: for individual I in Children do
10: select a number of mutation bits MBS with the probability P_M
11: for b in MBS do
12: I [b] = random number in S_f

2.5.3. Fitness Function

Figure 3b shows the fitness evaluation process of an individual. The fitness value is a
very important step in GA, equivalent to the objective function of the problem. The specific
fitness function is described as follows.

First, each feature subset is divided into continuous features and binary features, and
then the rotation operation is performed by applying the principal component analysis
(PCA) to the continuous feature and the multiple correspondence analysis (MCA) to the
binary feature. Then, the two parts of the features are merged to accomplish the rotation
operation of a feature subset. After the rotation, each feature subset needs to train its weak
classifier subsequently. The training of the first classifier uses all samples with the weight
defined in Equation (1). The sample weights are adjusted according to the results of the
first classifier in the training set by Equation (2), and the weight of the wrong samples
is increased according to Equation (4). The second classifier is trained based on the re-
assigned sample weights and the second feature subset, and so on. In this way, each
classifier is trained based on the training of the previous classifier, which is based on the
Adaboost scheme. Finally, all classifiers make predictions about the validation set, and the
weight of each classifier’s vote is assigned by Equation (3) according to the error rate of
each classifier on the training samples. The voting rules are shown as Equation (5). The
F1-score calculated by Equation (8) after weighted voting is used as the fitness value of
the individual.

w1 = [w1, . . . , wN ], w1
j =

1
N

. ∑N
j=1 w1

j = 1 (1)

εk = ∑N
j=1 wk

j l j
k,
(

l j
k = 1 if Dk misclassifies tj and l j

k = 0 otherwise.
)

(2)

βk =
εk

1− εk
,where εk ∈ (0, 0.5) (3)

wk+1
j =

wk
j β(1−l j

k)

∑N
i=1 wk

i β(1−li
k)

, j = 1, . . . , N. (4)

µt(x) = ∑
Dk(x)=wt

ln
(

1
βk

)
(5)

precision =
TP

TP + FP
(6)
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recall =
TP

TP + FN
(7)


TP : The number o f samples that are actually positive and predicted to be positive
FP : The number o f samples that are actually negative and predicted to be positive
FN : The number o f samples that are actually negative and predicted to be negative
TN : The number o f samples that are actually positive and predicted to be negative

 (8)

The pseudo-code of the fitness function Algorithm 3 is as follows.

Algorithm 3 Fitness Function

Input: N: The samples amount of training set.
K: The amount of feature subsets in an individual. The number of weak classifiers to train.
I: An individual.
T: Training Set.
Output: V: Fitness value of I.
1: For k = 1, . . . , K do
2: Divide features into Binary Feature FB and Continuous Feature FC.
3: Rotation: Apply PCA to FC and apply MCA to FB and then merge the two parts.
4: Initialize the weights w1 = [w1, . . . , wN ], w1

j = 1
N . ∑N

j=1 w1
j = 1.

5: For k = 1, . . . , K do
6: Take a sample Sk from T using distribution wk.
7: Train a classifier Dk using Sk as the training set.
8: Calculate the weighted ensemble error at step k by εk = ∑N

j=1 wk
j l j

k, (l j
k = 1 if Dk

misclassifies tj and l j
k = 0 otherwise.)

9: If εk = 0 or εk ≥ 0.5, ignore Dk, reinitialize the weights wk
j to 1

N and continue.
10: Else, calculate βk = εk

1−εk
, where εk ∈ (0, 0.5).

11: Update the kth part weights in I by wk+1
j =

wk
j β(1−l jk )

∑N
i=1 wk

i β(1−lik )
, j = 1, . . . , N.

12: Calculate the support for each class wt in Validation Set by µt(x) = ∑Dk(x)=wt
ln
(

1
βk

)
.

13: The class with the maximum support is chosen as the label for x.
14: V is calculated by F1− score = 2×precision×recall

precision+recall n validation data.

2.6. Experiment Settings

The dataset is randomly divided into the training set, the validation set, and the test
set in a ratio of 2:1:1. The average result of the five-fold cross-validation is used as the
final result of the algorithm. The preprocessing step only includes the normalization in
Equation (9). The final dataset contains 2931 samples with 3296 features.

x′ =
x−min(x)

max(x)−min(x)
(9)

The algorithm settings in the experiments are as follows: Among them, Iteration Size,
Population Number and Possibility of Mutation are the parameters of the optimization
algorithm, while Base Classifier, Ensemble Size and Feature Subset Size are not. They are
all user-selectable.

• Base Classifier: RandomForestClassi f ier(n_estimators = 50)
• Iteration Number T: 50
• Population Size M: 50
• Possibility of Mutation: 0.1
• Ensemble Size K: 10
• Feature Subset Size: 300
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2.7. Details of the Comparison Algorithm
2.7.1. Voting Ensemble

The Ensemble vote classifier combines similar or conceptually different machine learn-
ing classifiers and tries to obtain better predictive performance than the individual classifier
alone. Previous articles often used soft voting ensemble models to predict DILI [8,9]. To
compare the prediction performance of R-E-GA, we constructed the predictive performance
of Voting Ensemble using five base classifiers in the Python 3.8 scikit-learn package [62],
including RF, Xgboost, GBDT, SVC, and Adaboost. Each base classifier has the same weight
in our Voting Ensemble models. We did not collect all the base classifiers mentioned in the
literature, and for the prediction accuracy of the model, the number of base classifiers is not
better for the performance of prediction [63]. We believe that the ensemble model based
on an excessive multi-base classifier does not have a extensive generalization ability and
simplicity principle. Therefore, we choose a certain base classifier to stabilize the prediction
performances of the model.

2.7.2. Graph Embedding Neural Networks

The graph embedding neural networks achieve a good prediction accuracy in com-
pound attribute prediction [15]. In this study, we used the Python 3.8 DGL-LifeSci-0.7.0
package to predict DILI using four graph-based neural network algorithms, i.e., GCN
(Graph Convolutional Network), AttentiveFP, GIN_AttrMasking and GIN_ContextPred [60].
AttentiveFP is a graph neural network architecture using a graph attention mechanism to
learn from relevant drug discovery datasets [13]. GIN_AttrMasking and GIN_ContextPred
pre-trained Graph Isomorphism Network (GIN) with Attribute Msking and Context pre-
diction, respectively. The hyper-parameters were set as follows: hidden dims = 512, train
epoch = 150, learn rate = 0.001, batch size = 128.

3. Results and Discussion
3.1. Comparison of the Results of Each Algorithm

First of all, Table 2 shows the comparison of different prediction algorithms in the
data proposed by this paper. The algorithms include Random Forest, SVC, Xgboost, Voting
Ensemble, AttentiveFP, GCN, GIN_AttrMasking and GIN_ContextPred.

Table 2. Comparison of ACC, F1-score, and AUC results.

Models ACC F1-Score AUC

SVC 0.747 0.685 0.766
Random Forest 0.760 0.700 0.782

XGBoost 0.723 0.669 0.740
AttentiveFP 0.729 0.716 0.750

GCN 0.725 0.698 0.759
GIN_AttrMasking 0.732 0.697 0.785
GIN_ContextPred 0.754 0.703 0.790
Voting Ensemble 0.753 0.752 0.826

R-E-GA 0.770 0.769 0.842

For our datasets of 2931 compounds, it can be seen that compared with the current
commonly used drug discovery algorithms, R-E-GA achieved the best results in vari-
ous evaluation metrics, and each evaluation indicator was improved. Compared with
the traditional machine learning method, the Voting ensemble method has a higher pre-
diction accuracy than the basic classifier, which is consistent with the literature [8–10].
The graph-based neural network method shows strong competitiveness compared to the
traditional fingerprint-based method and outperforms most fingerprint-based methods,
reflecting the superiority of the graph neural network for molecular representation, such as
GIN_ContextPred in DILI prediction. Compared with the pre-experiment, the ACC results
of RF and SVC are improved, indicating that our multi-fingerprint strategy has a certain
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effect on DILI prediction. However, both F1-Score and AUC show a declining trend, which
fully illustrates the bottleneck of the traditional model in extracting high-dimensional
features and fails to predict DILI well. However, R-E-GA solved it by finding a subset of
features after rotation in the feature space and achieved a better prediction performance.

3.2. External Validation

In this section, three computational features, i.e., One-hot encoded [6,64], Mold2 [65]
descriptor, and PaDEL [66] descriptor were used for model training on the Combined vali-
dation dataset from Xu et al. [6]. The label information of Xu et al. [6] was shown in Table 3.
The Combined dataset was compiled by Xu et al. with four original datasets sources, that
is, NCTR [6,67], Liew [68], Greene [45], and Xu [69]. Moreover, the algorithms that Xu et al.
used are the original UGRNN [64] and DNN algorithms [6]. Their main experimental
results comparing three computational features were compared on the Combined dataset,
and we performed the calculations under exactly the same dataset settings. The results of
experiments are shown in Tables 4 and 5.

Table 3. Summary of datasets used in the external validation study.

Datasets DILI-Positive DILI-Negative Total Number

Training Combined training dataset [6] 236 239 475
External validation Combined validation dataset 114 84 198

Table 4. Performance of training using Mold2 and PaDEL descriptors in external validation study.

Molecular
Descriptors Index

Neural Network [6] Xu et al. Model [6] R-E-GA

10-Fold Test Validation 10-Fold Test Validation 10-Fold Test Validation

Mold2
descriptors

ACC 0.825 0.823 0.832 0.833 0.852 0.851
AUC - 0.916 - 0.931 0.912 0.949
SEN 0.784 0.711 0.831 0.790 0.855 0.794
SPE 0.866 0.976 0.833 0.893 0.850 0.898

PaDEL
descriptors

ACC 0.816 0.791 0.823 0.811 0.840 0.821
AUC - 0.869 - 0.895 0.906 0.904
SEN 0.758 0.723 0.852 0.821 0.831 0.797
SPE 0.875 0.881 0.794 0.798 0.853 0.858

Table 5. Performance of external validation datasets training by Combined dataset with molecular
One-hot Encoded representation.

Models
Internal 10-Fold Cross Validation External Validation

ACC AUC SEN SPE ACC AUC SEN SPE

Xu et al. [6] 0.884 - 0.899 0.87 0.869 0.955 0.825 0.929
R-E-GA 0.702 0.721 0.803 0.690 0.711 0.725 0.780 0.663

Number of drugs (positive/negative = 236/239) (positive/negative = 114/184)

We first compared the computational models of Xu et al. [6] based on molecular
descriptors on the Combined dataset. In the original article, Xu et al. calculate two
molecular Mold2 (777) [65] and PaDEL (1444) [66] for model training, respectively. We
also calculated Mold2 and PaDEL descriptors as model inputs and the results to compare
algorithms were shown in Table 4. We adopted the same 10-fold cross-validation and
evaluation index as ACC, AUC, SEN, and SPE for modeling in the Combined dataset.
The prediction results of R-E-GA on the Combined dataset with the Mold2 descriptor
were an ACC of 0.852, SEN of 0.855, SPE of 0.850 on the 10-fold test dataset, and the
prediction results were an ACC of 0.851, AUC of 0.949, SEN of 0.794, SPE of 0.898 on
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the external dataset, which are about an average 0.02 index higher than Xu’s model. For
PaDEL descriptors used in this study, we also outperformed Xu’s model in the 10-fold
test and external validation set as shown in Table 4. Thus, we find that R-E-GA has better
performance in the descriptor-based model.

At the same time, we compare SMILES‘ one-dimensional linear representation of the
one-hot coding model of Xu et al. [6,69]. In Xu et al.’s model, atom types are encoded
as C = (1,0,0), N = (0,1,0), O = (0,0,1) , and bond types are similarly encoded [6,64]. The
same molecular encoding method was adopted in our model, and the performance of
comparison to R-E-GA on the Combined dataset was shown in Table 5. We find that the
performance of this model is lower than that of Xu’s model when using SMILES ′ one-hot
encoded vector for DILI prediction. We thought the One-hot Encoder method can be
regarded as the representation extracted from the one-dimensional linear representation
of molecules’ SMILES [6,12]. The model R-E-GA cannot extract toxicity fingerprints, such
as physicochemical properties and pharmacophores from linear representations based on
SMILES for DILI prediction. Meanwhile, RNN and deep learning show excellent accuracy
in processing natural language or sequence data [6,64]. In addition, on the same dataset,
R-E-GA based on a single descriptor Mold2 and deep learning based on a one-hot encoded
model was basically consistent with index AUC (0.949 to 0.955).

We can conclude that R-E-GA performs best in descriptors of Modl2 and PaDEL. Each
metric can achieve the best performance in each dataset. However, in the One-hot encoded
vector for molecules, the performance is more moderate, and the results of R-E-GA are
worse than Xu et al’s. The result was in line with our expectations. R-E-GA is designed as a
DILI prediction model for the multiple molecular fingerprint (descriptor) fusion method,
and it has obvious computational advantages for high-dimensional fusion representations
data. Therefore, R-E-GA obtains better performance than Xu et al. when using Mold2
and PaDEL descriptors for model training. The above results show that R-E-GA has
obvious advantages in the processing of the DILI prediction model based on molecular 2D
fingerprints (descriptors), but it has limitations in the processing of linear representation.
and we already proved the complexity of multiple molecular representations fusion is
conducive to reflecting the superiority of R-E-GA.

3.3. Evolutionary Curve

According to the GA framework, the population is continuously optimized in the
evolutionary process. The evolution curve depicts the change in the outcome of the best-
performing individuals in each generation in the evolutionary process. Figure 5 shows the
evolution curve of each fold data in the algorithm from a five-fold crossover experiment.

The fitness value in the algorithm was calculated on the validation set. Because the
top half with better performance is retained each time a new population is generated, the
performance of the algorithm on the validation set is monotonically increasing, as shown
in Figure 5a–e. Although the performance of the test set may not necessarily improve in
a short time, the performance of the test set is improved in terms of the entire evolution
process. As shown in Figure 5a–d, the test set has both rising and falling trends, but the
final results are all improved compared to the initial results.
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Figure 5. The evolution curve of each fold data in five-fold cross-validation. The blue curve represents
the results of the validation dataset, and the orange curve represents the test dataset. The abscissa
represents the current evolutionary generation, and the ordinate represents the F1-score of the current
optimal individual. Among them, (a–e) are the evolution curves of each fold data in a five-fold
cross-validation experiment.

3.4. Ablation Experiment

The feature data include features from several parts of ECFP2, MACCS, Rdkit2D, and
Pubchem. In order to observe the contribution of the features of each part to the results, we
conducted ablation experiments. The final experimental results are shown in Figure 6.

From Figure 6, F1 and ACC scores are relatively close. First, all three metrics achieved
the best results when all the features were used. The effect of missing any part will be
reduced, so in the end, all the parts of the feature are needed. Secondly, it can be seen that
for the F1 score and ACC indicators, the lack of some features of MACCS has the lowest
effect. For AUC, the lack of features in the Rdkit2D part is the least effective. This can
indicate that the contribution of MACCS and Rdkit2D to the final effect of the experiment
is slightly larger than that of ECFP2 and Pubchem.
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Figure 6. Results of ablation experiments. “All” means using all the features, “lack ECFP2” means
removing the ECFP2 part of the features from all the features, and so on for other labels.

In addition to the comparative experiment of ablating one type of fingerprint, ablating
two types of fingerprints and three types of fingerprints was also performed. Figure 7
shows the experimental results using only two fingerprints. The blue bar of the ACC is close
to the orange bar of the F1-score. It can be seen that the F1-score results of the two feature
combinations are in the range of 0.75–0.77, and the AUC results are in the range of 0.82–0.84.
The difference between the highest and the lowest of various feature combinations is two
percentage points. The best performing feature combination is the fingerprint feature
combination of ECFP2 and Rdkit2D, and the worst is the fingerprint feature combination
of MACCS and Pubchem, which both belong to substructure fingerprints. This means that
mutual information from fingerprints of the same type is minimal in our study. Figure 8
shows the result that only one type of fingerprint is kept. The F1-score result of one
fingerprint is in the range of 0.74–0.76, and the AUC result is in the range of 0.81–0.84.
The experimental results of the four fingerprints are not very different, and the Pubchem
fingerprint feature is the best. From the comparison between various ablation experiments,
it can be seen that the experimental effect of the combination of three fingerprints is one
percentage point better than the experimental effect of the combination of two fingerprints.
Additionally, the experimental effect of the combination of two fingerprints is better than
that of only one fingerprint. However, all ablation experiments are less effective than all
fingerprints. So, we finally decided to use four fingerprint features.

Molecules 2022, 27, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 7. Results of ablation experiments by using only two fingerprints. “ECFP2&MACCS” means 

using the ECFP2 and MACCS part of the features from all the features, and so on for other labels. 

 

Figure 8. Results of ablation experiments by using only one fingerprint. 

These results indicate that molecular fingerprints based on substructure and phar-

macophores can better represent the toxic fingerprints for DILI prediction. Meanwhile, 

pharmacophore-based fingerprints named Pharmcoprint show that pharmacophore fin-

gerprints are superior to other molecular fingerprints for protein targets prediction [70]. 

In the pre-experiment, we also found that the fingerprint based on pharmacophores had 

the highest accuracy in the single fingerprint experiment, but the prediction accuracy was 

higher when it was combined with other fingerprints by using R-E-GA. Furthermore, tox-

icity prediction is better if the characteristic codes of pharmacophores are taken into ac-

count, especially for models based on molecular graphs and linear molecular representa-

tions. The combination of fingerprints and pharmacophore descriptors is not new, but the 

R-E-GA framework proposed by us for the first time can better complete the extraction 

and classification calculation of the toxicity of fingerprint combination, and successfully 

apply it to DILI prediction. 

  

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

F1score ACC AUC

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

ECFP2 MACCS Rdkit2D Pubchem

F1score ACC AUC

Figure 7. Results of ablation experiments by using only two fingerprints. “ECFP2&MACCS” means
using the ECFP2 and MACCS part of the features from all the features, and so on for other labels.



Molecules 2022, 27, 3112 16 of 21

Molecules 2022, 27, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 7. Results of ablation experiments by using only two fingerprints. “ECFP2&MACCS” means 

using the ECFP2 and MACCS part of the features from all the features, and so on for other labels. 

 

Figure 8. Results of ablation experiments by using only one fingerprint. 

These results indicate that molecular fingerprints based on substructure and phar-

macophores can better represent the toxic fingerprints for DILI prediction. Meanwhile, 

pharmacophore-based fingerprints named Pharmcoprint show that pharmacophore fin-

gerprints are superior to other molecular fingerprints for protein targets prediction [70]. 

In the pre-experiment, we also found that the fingerprint based on pharmacophores had 

the highest accuracy in the single fingerprint experiment, but the prediction accuracy was 

higher when it was combined with other fingerprints by using R-E-GA. Furthermore, tox-

icity prediction is better if the characteristic codes of pharmacophores are taken into ac-

count, especially for models based on molecular graphs and linear molecular representa-

tions. The combination of fingerprints and pharmacophore descriptors is not new, but the 

R-E-GA framework proposed by us for the first time can better complete the extraction 

and classification calculation of the toxicity of fingerprint combination, and successfully 

apply it to DILI prediction. 

  

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

F1score ACC AUC

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

ECFP2 MACCS Rdkit2D Pubchem

F1score ACC AUC

Figure 8. Results of ablation experiments by using only one fingerprint.

These results indicate that molecular fingerprints based on substructure and phar-
macophores can better represent the toxic fingerprints for DILI prediction. Meanwhile,
pharmacophore-based fingerprints named Pharmcoprint show that pharmacophore fin-
gerprints are superior to other molecular fingerprints for protein targets prediction [70].
In the pre-experiment, we also found that the fingerprint based on pharmacophores had
the highest accuracy in the single fingerprint experiment, but the prediction accuracy
was higher when it was combined with other fingerprints by using R-E-GA. Furthermore,
toxicity prediction is better if the characteristic codes of pharmacophores are taken into
account, especially for models based on molecular graphs and linear molecular representa-
tions. The combination of fingerprints and pharmacophore descriptors is not new, but the
R-E-GA framework proposed by us for the first time can better complete the extraction and
classification calculation of the toxicity of fingerprint combination, and successfully apply
it to DILI prediction.

3.5. The Proportion of Import Features

When the R-E-GA framework reaches the last generation, all individuals at this time
are excellent solutions to the problem. The features in K feature subsets of all individuals
in the last generation are counted. In this way, the features that contribute more to the
classification effect can be screened out. The features that appear with higher frequencies
are considered to be more important. We filter out the top 500 features of feature importance
by this rule and count the proportion of them belonging to various types of fingerprints. As
shown in Figure 9, it can be seen that the ECFP2 has the largest number of fingerprints in the
top 500, followed by the Pubchem class, while the MACCS and Rdkit2D are few. However,
considering that the number of features of various fingerprints originally input into the
algorithm is inconsistent, it cannot be analyzed only in terms of quantity. ECFP2, MACCS,
Rdkit2D, and Pubchem have 2048, 167, 200, and 881 features of various fingerprints,
respectively. The ratios obtained by dividing the number of features of various fingerprints
in the top 500 by the number of their original inputs are compared in Figure 10. The
proportion of the four types of fingerprints is not very different in the range of 0.14–0.17.
Among them, MACCS and Pubchem account for a higher proportion, while ECFP2 and
Rdkit2D account for a lower proportion. This shows that the effective fingerprints in the
MACCS and Pubchem features are higher than the others.
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frequency of features in k feature subsets of all individuals in the last generation.

Molecules 2022, 27, x FOR PEER REVIEW 18 of 22 
 

 

3.5. The Proportion of Import Features 

When the R-E-GA framework reaches the last generation, all individuals at this time 

are excellent solutions to the problem. The features in K feature subsets of all individuals 

in the last generation are counted. In this way, the features that contribute more to the 

classification effect can be screened out. The features that appear with higher frequencies 

are considered to be more important. We filter out the top 500 features of feature im-

portance by this rule and count the proportion of them belonging to various types of fin-

gerprints. As shown in Figure 9, it can be seen that the ECFP2 has the largest number of 

fingerprints in the top 500, followed by the Pubchem class, while the MACCS and Rdkit2D 

are few. However, considering that the number of features of various fingerprints origi-

nally input into the algorithm is inconsistent, it cannot be analyzed only in terms of quan-

tity. ECFP2, MACCS, Rdkit2D, and Pubchem have 2048, 167, 200, and 881 features of var-

ious fingerprints, respectively. The ratios obtained by dividing the number of features of 

various fingerprints in the top 500 by the number of their original inputs are compared in 

Figure 10. The proportion of the four types of fingerprints is not very different in the range 

of 0.14–0.17. Among them, MACCS and Pubchem account for a higher proportion, while 

ECFP2 and Rdkit2D account for a lower proportion. This shows that the effective finger-

prints in the MACCS and Pubchem features are higher than the others. 

 

Figure 9. Results of the top 500 features of feature importance were obtained by counting the fre-

quency of features in k feature subsets of all individuals in the last generation. 

 

Figure 10. The ratios obtained by dividing the number of features of various fingerprints in the top 

500 by the number of their original inputs are compared. 

Although R-E-GA obtained better performance of DILI prediction than other ma-

chine learning algorithms in this experiment, our understanding of molecular representa-

300

28
29

143

T O P  5 0 0  F E A T U R E  N U M S

ECFP2 MACCS Rdkit2D Pubchem

0.146484375

0.1676646710.145

0.162315551

R A T I O

ECFP2 MACCS Rdkit2D Pubchem

Figure 10. The ratios obtained by dividing the number of features of various fingerprints in the top
500 by the number of their original inputs are compared.

Although R-E-GA obtained better performance of DILI prediction than other machine
learning algorithms in this experiment, our understanding of molecular representation is
still limited by traditional molecular representations. Compared with deep learning, we
find that it is hard for R-E-GA to extract toxicity fingerprints from one-dimensional linear
representations, which is the same problem in current traditional machine learning. This
is the impetus for our continued research on new molecular representations and toxicity
prediction methods. In addition, we believe that it is difficult to greatly improve the DILI
prediction accuracy by relying only on the molecular representation of compounds. We
are prepared to combine molecular representations and multi-omics data to develop a
multi-dimensional data fusion toxicity prediction machine learning algorithm next. The
multi-omics contains transcriptional expression profiles, metabolites and target data of
compounds, etc. This is a challenge for R-E-GA, but in the process of multi-dimensional
data fusion, the model performance can be further improved through information comple-
mentarity, and it also provides us with the direction of model improvement.

4. Conclusions

This paper proposes a new method to generate and process DILI data in the process of
drug discovery. Based on the data, a classification machine learning algorithm, R-E-GA,
is proposed. This algorithm is based on the GA and combines the rotation operation in
the Rotating Forest and ensemble learning. It designs the individual in the R-E-GA as an
ensemble learning classifier containing k feature subsets. After the features are extracted
from the k feature subsets, the PCA and MCA operations are performed on continuous
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features and binary features, respectively, to complete the rotation and obtain a feature
space with a better classification effect. Then, K weak classifiers are trained from K feature
subsets, and specific ensemble rules are designed for training and prediction according
to the Adaboost-type ensemble method. Through our experiments, it was found that
predicting DILI on a large number of datasets can achieve better experimental accuracy
and generalization ability, which is consistent with the literature [8]. At the same time, the
neural network model based on the molecular graph is indeed very competitive. We found
that the use of multi-molecular fingerprints can better characterize compounds compared to
single-molecule fingerprints, which indicated the insufficiency of existing characterization
methods. Therefore, we expect to be able to characterize compounds through better
molecular representation methods in the future. Finally, the solution searched by GA is
considered to be the approximate global optimal solution obtained by the algorithm. In
the external validation experiment, R-E-GA obtained better predictive performance than
Xu et al.‘s model on the model 2 and PaDEL molecular descriptors. Experimental results
showed that the R-E-GA algorithm outperforms other algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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