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Abstract   During a survey of cold-adapted fungi in alpine glaciers on the Qinghai-Tibet Plateau, 1 428 fungal isolates 
were obtained of which 150 species were preliminary identified. Phoma sclerotioides and Pseudogymnoascus pan-
norum were the most dominant species. Psychrotolerant species in Helotiales (Leotiomycetes, Ascomycota) were 
studied in more detail as they represented the most commonly encountered group during this investigation. Two 
phylogenetic trees were constructed based on the partial large subunit nrDNA (LSU) to infer the taxonomic place-
ments of these strains. Our strains nested in two well-supported major clades, which represented Tetracladium and 
a previously unknown lineage. The unknown lineage is distant to any other currently known genera in Helotiales. 
Psychrophila gen. nov. was therefore established to accommodate these strains which are characterised by globose 
or subglobose conidia formed from phialides on short or reduced conidiophores. Our analysis also showed that an 
LSU-based phylogeny is insufficient in differentiating strains at species level. Additional analyses using combined 
sequences of ITS+TEF1+TUB regions were employed to further investigate the phylogenetic relationships of these 
strains. Together with the recognisable morphological distinctions, six new species (i.e. P. antarctica, P. lutea, P. oli-
vacea, T. ellipsoideum, T. globosum and T. psychrophilum) were described. Our preliminary investigation indicates 
a high diversity of cold-adapted species in nature, and many of them may represent unknown species.
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INTRODUCTION

Cold-adapted fungi are ubiquitous in cold habitats such as the 
deep seas, Arctic and Antarctic areas, and glaciers. Cold-adapt-
ed fungi have evolved special properties, e.g., cold adapted 
enzymes, change of membrane fluidity, and other cellular 
components, to enable them to grow at low temperatures at 
rates comparable to those of mesophiles at moderate tempera-
tures (D’Amico et al. 2006, Ruisi et al. 2007). During the past 
two decades, research on cold-adapted fungi has increased, 
driven by their potential value for application in biotechnology 
(Margesin & Schinner 1994, 1999). Cold-adapted fungi have 
become important sources for the discovery of novel bioactive 
secondary metabolites and enzymes (Flam 1994, Pietra 1997, 
Biabini & Laatch 1998, Gudjarnnson 1999, Höller et al. 2000, 
Verbist et al. 2000, Bhadury et al. 2006, Ebel 2006, Blunt et al. 
2007, Rateb & Ebel 2011).
Microorganisms living in low temperature environments are ge- 
nerally referred to as psychrophiles or psychrotolerants. Psy-
chrophiles have been defined as species that can grow at 
or below 0 °C; have optimum growth temperatures (OGT) of 
≤ 15 °C and maximum growth temperatures (MGT) of ≤ 20 °C; 
while psychrotolerants can grow close to 0 °C, have OGT 
> 15 °C and MGT > 20 °C (Morita 1975). However, these defi- 
nitions are also ambiguous and may not be applicable for 
most of the eukaryotes, as some higher organisms known as 
psychrophiles, such as some algae, plants, insects, marine 
and terrestrial invertebrates, and fish may have much broader 
growth-temperature ranges. The terms stenopsychrophile and 
eurypsychrophile have therefore been proposed to modify the 
definitions of psychrophilic and psychrotolerant. The ‘steno-’ 

and ‘eury-’ are referred ecological terms derived from Shelford’s 
law of tolerance that describe narrow or wide tolerance to an 
environmental determinant, respectively. The stenopsychro-
phile (equal to ‘psychrophile’) refers to microorganisms with 
a restricted growth-temperature range that cannot tolerate 
higher temperatures. Eurypsychrophile (equal to ‘psychrotole-
rant microorganisms’) describes microorganisms that ‘like’ 
permanently cold environments, but can also tolerate a wide 
range of temperatures extending into the mesophilic range 
(Cavicchioli 2006).
Since the discovery of bioluminescent bacteria that are able 
to grow at 0 °C by Forster (1887), a number of psychrophilic 
bacteria have been discovered from deep ocean sediments, 
glacier ice, and soils of the polar regions (DeLong et al. 1997, 
Mountfort et al. 1998, Price 2000, Berestovskaya et al. 2002, 
Margesin et al. 2003, Bowman et al.  2004, Seo et al. 2005, 
Zhang et al. 2006, 2008, Grünke et al. 2012). However, the num-
ber of known cold-adapted fungi, especially psychrophilic fungi, 
is relatively low. In recent years, the diversity of filamentous 
fungi in cold niches has been increasingly investigated, and 
the number of known species has greatly expanded (Möller & 
Dreyfuss 1996, Robinson 2001, Blanchette et al. 2004, Arenz 
et al. 2006, Connell et al. 2006, Held et al. 2006, Malosso et 
al. 2006, Duncan et al. 2008, Onofri et al. 2008, Selbmann 
et al. 2008, Arenz & Blanchette 2009, Jurgens et al. 2009). 
Most species in these studies, however, are psychrotolerant, 
and only a few were documented as psychrophiles such as 
Thelebolus microsporus, Mucor strictus, Phoma herbarum, 
Humicola marvinii, Pseudogymnoascus destructans, and some 
snow molds (e.g. Sclerotinia borealis, Microdochium nivale, 
Coprinus psychromorbidus) (Schipper 1967, Dejardin & Ward 
1971, Traquair & Smith 1982, Richard et al. 1997, Hsiang et 
al. 1999, Tronsmo et al. 2001, Singh et al. 2006, Gargas et 
al. 2009, Hoshino et al. 2010, Anupama et al. 2011, Minnis & 
Lindner 2013). Species in several yeast genera including Mra-
kia, Mrakiella and Rhodotorula were usually described as psy-
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chrophilic. For example, Mrakia frigida grew well at 15 °C and 
4 °C but poorly at 20 °C (Margaret 1966); Mrakia psychrophila 
from Antarctic soil had an optimal growth temperature of 10 °C 
and a MGT of 18 °C (Xin & Zhou 2007); Mrakiella cryoconiti, 
M. aquatica and M. niccombsii from alpine and arctic habitats 
also exhibited psychrophilic features and failed to grow at 
temperatures over 20 °C (Margesin & Fell 2008, Robin et al. 
2010). Psychrophilic fungi are phylogenetically diverse and we 
identified the cold-adapted fungi through a polyphasic approach 
integrating phylogenetic analysis, morphological characterisa-
tion and cold-adapted features in the present study.
The Qinghai-Tibet Plateau, often called the ‘world’s roof ’ or 
‘the third pole’, is located in the southwest of China and is the 
highest and largest low-latitude region with permafrost in the 
world. The high elevation and low latitude make the Qinghai-
Tibet Plateau a unique alpine ecosystem that is sensitive to 
changes in climate and surface conditions (Cheng 1998). In 
the last 30 years, the permafrost area on the Qinghai-Tibet 
Plateau has decreased by over 10 000 km2 (Li & Cheng 1999). 
Therefore, researchers have been paying more attention to 
investigate microorganisms on the Qinghai-Tibet Plateau. Al-
though prokaryotes have been extensively investigated in this 
area (Xiang et al. 2005, 2009, Liu et al. 2006, 2007, 2009a, 
b, Yao et al. 2006, Zhang et al. 2007, 2009, Yang et al. 2008), 
fungi have not received much attention. During an investiga-
tion of the cold-adapted fungi of the Qinghai-Tibet Plateau, 1 
428 fungal isolates were obtained, of which 150 species were 
preliminarily identified. In this paper, we studied some dominant 
fungi from Qinghai-Tibet Plateau in Helotiales in detail. A few 
related isolates from the Antarctic were also included.

MATERIALS AND METHODS

Sample collection 
Soil samples were collected from seven glaciers in 2009–2011. 
The sampling areas were located at the edge or centre of the 
following glaciers: Midui and Zhadang Glacier in Tibet, Qiyi and 
Toumingmengke Glacier in Gansu Province, Hailuogou Glacier 
in Sichuan Province, Yuzhufeng Glacier in Qinghai Province 
and Mingyong Glacier in Yunnan Province. In addition, some 
soil samples were also collected from Antarctic, near the Great 
Wall Station in January 2011 (Table 1). For all sampling, clean 
hand tools were surface sterilised with 70 % ethanol before 
use. After the removal of the top 5–10 cm of surface sediment, 
c. 500 g soil sample was collected from the underlying layer 
and placed in a fresh Zip-lock plastic bag. The samples were 
maintained at 4 °C until arrival at the laboratory.

Isolation of fungi 
Fungi were isolated from soil samples as soon as they were 
taken to the lab using a traditional pour plate method. A 10 g 
quantity of each soil sample was suspended in sterile-distilled 
water in a flask. The volume was then increased to 100 mL 
before the suspension was shaken to disperse soil particles 
and then serially diluted to 10-2, 10-3 and 10-4. For selec-

tion of psychrophilic or psychrotolerant fungi, about 0.1 mL 
of each dilution was placed on the surface of three 90 mm  
diam Petri plates containing 1/4 PDA (potato dextrose agar plus 
chloramphenicol at 0.1 mg/mL and streptomycin at 0.1 mg/mL 
to suppress bacterial growth) and spread evenly. The plates 
were sealed and incubated at 4, 10 and 20 °C (one plate per 
temperature). The plates were examined for fungal growth at 
1 wk intervals for 4 wk. Colonies that appeared on the plates 
were transferred to three new plates, which were incubated at 
4, 10 and 20 °C as temperature test. The change in colony dia-
meter after 4 wk (growth rate) was determined for each isolate 
at the three temperatures. The psychrophilic and psychrotoler-
ant fungi isolated in this study were consolidated but not strictly 
defined by the definition given by Morita (1975). The fungi grew 
better at 4 and 10 °C than at 20 °C and those that grew better 
at 20 °C were considered psychrophilic and psychrotolerant. 
The ex-type specimens (dried culture) were deposited in HMAS 
(Herbarium Mycologicum Aca demiae Sinicae), with the living 
culture in CGMCC (China General Microbiological Culture 
Collection Center).

Morphological observations
A number of psychrophilic or psychrotolerant fungi were iso-
lated. Among them, Phoma sclerotioides and Pseudogymnoas-
cus pannorum (= Geomyces pannorum) were most frequently 
encountered (137 and 52 isolates, respectively) and are well-
known cold-adapted species. Sixteen isolates representing 
some frequently encountered fungi (190 isolates in total) in the 
Helotiales were studied in more detail. Morphological charac-
teristics were observed, photographed, and measured using 
material from agar plate and slide culture (Coetzee & Eicker 
1990). The colony diameter of fungi growing on PDA plates 
was measured in two perpendicular directions after 4 wk at 
different temperatures, and the mean diameter was obtained 
from five replicate plates cultivated at the same temperatures. 
Morphological characteristics of colonies including aerial myce-
lium, density, and pigment production were noted. Microscopic 
morphology was examined using slide cultures: each isolate 
was transferred to a 50 mL centrifugal tube and incubated at 
10 °C for 3 wk before hyphae, conidiophores, and conidia on 
water mounts were observed, photographed, and measured 
with a Nikon 80i microscope with differential interference con-
trast (DIC) optics.

DNA extraction, PCR amplification, sequencing, 
phylogenetic analysis and SNP detection
Genomic DNA was extracted from the fungal mycelia on PDA 
plates following the protocol described by Wang & Zhuang 
(2004). The primers LROR and LR5 (Vilgalys & Hester 1990) 
were used to amplify the partial large subunit nrDNA (LSU); 
ITS1 and ITS4 (White et al. 1990) were used to amplify the 
internal transcribed spacer region of the nuclear ribosomal 
RNA gene; EF1-728F and EF1-986R (Carbone & Kohn 1999) 
were used to amplify partial translation elongation factor 1-α 
gene (TEF1), and Bt-2a and Bt-2b (Glass & Donaldson 1995) 
were used to amplify partial β-tubulin gene (TUB). PCR was 

Sampling location Collection date GPS location Altitude (m) Depth of collection (cm)

Midui 16 October 2009 N29°27' E96°30' 3874 5–10
Zhadang 27 September 2010 N30°28' E90°38' 5800 5–10
Yuzhufeng 1 October 2009 N35°41' E94°17' 4658 5–10
Toumingmengke 3 October 2010 N39°29' E96°32' 4545 5–10
Qiyi 7 October 2010 N39°15' E97°45' 4315 5–10
Hailuogou 20 April 2011 N29°33' E101°58' 3461 5–10
Mingyong 4 May 2011 N28°27' E98°45' 2811 5–10
Antarctic 5 January 2011 S62°12' W58°57' 10 5–10

Table 1   Details of the soil samples collected at 5–10 cm depth for the survey of cold-adapted fungi on the Qinghai-Tibet Plateau and Antarctic.
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Table 2   Fungi and their GenBank accession numbers used in this study. The newly generated sequences in this study are shown in bold.

  GenBank no.1

Species  Strain number LSU ITS TEF1 TUB

Arachnopeziza variepilosa M337 – EU940163 – FJ477045
Ascocoryne sarcoides OSC #100772 FJ176886 – – –
 – AJ406399 – – –
Botryotinia fuckeliana LGM002 – KC683713 – KC6837123
Bulgaria inquinans ZW–Geo52–Clark AY789344 – – –
 CBS 118.31 DQ470960 – – –
Cadophora fastigiata DAOM 225754 JN938877 – – –
Cadophora luteo-olivacea Clo-40 – HQ661093 HQ661078 HQ661063
 ICMP:18096 HM116760 – – –
Catenulifera luxurians  CBS 647.75 – GU727560 – GU727569
Ciborinia camelliae  EFA 1 – FJ959095 – GQ181121
Cistella spicicola CBS 731.97 – GU727553 – GU727565
Cudoniella clavus OSC 100054 DQ470944 – – –
 ILLS60488 JN012006 – – –
Cudoniella indica VG 113-4 GQ477325 – – –
 VG 112-1 GQ477324 – – –
Cudoniella tenuispora ILLS60490 JN012008 – – –
Dermea acerina CBS 161.38 DQ247801 – – –
Fabrella tsugae – AF356694 – – –
Hyaloscypha aureliella M235 EU940153 – – –
 M234 EU940152 – – –
Hyaloscypha daedaleae ZW-Geo138-Clark AY789415 – – –
Hyaloscypha fuckelii M233 EU940154 – – –
Hyaloscypha hepaticola M339 EU940150 EU940226 – –
Hyaloscypha vitreola M236 EU940156 – – –
 M39 EU940155 – – –
Hymenoscyphus pseudoalbidus  FC-2799 – AB705220 AB705213 –
Hyphodiscus hymeniophilus CBS 529.87 GU727555 – – –
 CBS 602.77 – DQ227264 – DQ227270
Leotia lubrica OSC 100001 NG_027596  – – –
 ZW-Geo59-Clark AY789359 – – –
Loramyces macrosporus CBS 235.53 DQ470957 – – –
Neofabraea perennans RGR 90.0107 – AF281397 – AF281476
Phacidium lacerum CBS 130.30 DQ470976 – – –
Phialocephala fortinii  K93 395 – – DQ274568 DQ274834
Psychrophila antarctica ANT80 KF768459 JX001628 KF768425 KF768438
 ANT92 KF768452 JX001640 KF768424 KF768437
 ANT94 KF768458 JX001639 KF768423 KF768436
Psychrophila lutea HAILUO374 KF768456 JX001638 KF768421 KF768441
 HAILUO407 KF768455 JX001615 KF768422 KF768439
 HAILUO409 KF768454 JX001637 KF768420 KF768440
Psychrophila olivacea HAILUO368 KF768457 JX001618 KF768427 KF768443
 HAILUO563 KF768453 JX001633 KF768426 KF768442
Rhynchosporium orthosporum  H4 – HM627471 HM627456 KC819296
Rutstroemia firma CBS 341.62 DQ470963 – – –
Sclerotinia sclerotiorum CBS 499.50 AF431951 – – –
 CBS 499.50 DQ470965 – – –
 WZ0067 AY789347 – – –
Tetracladium apiense CCM F-23199 EU883420 – – –
 CCM F-23399 EU883421 – – –
Tetracladium breve CCM F-10501 EU883418 – – –
Tetracladium ellipsoideum MIDUI20 KF768465 JX029111 KF768431 KF768444
 MIDUI21 KF768466 JX029124 KF768432 KF768451
 MIDUI30 KF768467 JX029113 KF768430 KF768445
Tetracladium furcatum CCM F-06983 EU883428 – – –
 CCM F-11883 EU883432 – – –
Tetracladium globosum HAILUO215 KF768460 JX029109 KF768433 KF768448
 MY24 KF768461 JX029118 KF768434 KF768449
 MY25 KF768462 JX029133 KF768435 KF768450
Tetracladium marchalianum CCM F-26399 EU883415 – – –
 CCM F-11391 EU883417 – – –
 CCM F-19399 EU883423 – – –
Tetracladium maxilliforme CCM F-529 EU883429 – – –
 CCM F-13186 EU883430 – – –
Tetracladium palmatum CCM F-10001 EU883424 – – –
Tetracladium psychrophilum HAILUO380 KF768464 JX029119 KF768429 KF768446
 MY376 KF768463 JX029129 KF768428 KF768447
Tetracladium setigerum CCM F-19499 EU883426 – – –
 CCM F-20987 EU883425 – – –
Trichoglossum hirsutum OSC61726 AY789313 – – –
Vibrissea flavovirens MBH39316 AY789426 – – –
Vibrissea truncorum CBS #258.91 FJ176874 – – –
 CUP 62562 AY789402 – – –

1 LSU: large subunit nrDNA; ITS: Internal transcribed spacers 1 and 2 together with 5.8S nrDNA; TEF1: partial translation elongation factor 1-alpha gene; TUB: partial beta-tubulin gene.
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performed in 25 μL reactions containing DNA template 1.0 μL, 
each forward and reverse primers 1.0 μL, 2 × MasterMix 
12.5 μL (TIANGEN Co. Ltd., Beijing, China) and H2O, using 
the following parameters: 94 °C for 40 s; followed by 40 cycles 
at 54 °C for LSU, 53 °C for ITS, 55 °C for TEF1and 52 °C for 
TUB gene for 50 s and 72 °C for 60 s; and a final extension 
at 72 °C for 7 min. The PCR products were sequenced with 
primers mentioned above by Invitrogen Biotechnology Co. Ltd. 
(Beijing, China). Sequences were compared to accessions in 
the GenBank database via BLASTn searching to find the most 
likely taxonomic designation (Table 2).

Sequence data of the four genes were aligned with Clustal X 
(Thompson et al. 1997). Further manual alignment was car-
ried out with MEGA v. 5 (Tamura et al. 2011) and alignments 
were deposited in TreeBASE (www.treebase.org, submission 
no. S16864). Maximum Parsimony (MP) analyses were con-
ducted using PAUP v. 4.0b10 (Swofford 2002) and Bayesian 
analysis using MrBayes v. 3.1.2 (Altekar et al. 2004). For the 
MP analysis, ambiguously aligned regions were excluded from 
all analyses. An unweighted parsimony (UP) analysis was per-
formed. Trees were inferred using the heuristic search option 
with TBR branch swapping and 1 000 random sequence addi-

Fig. 1   Phylogenetic tree derived from maximum parsimony analysis based on LSU rDNA sequences (TL = 610, CI = 0.5607, RI = 0.7609, HI = 0.4393 and 
RC = 0.4266). Trichoglossum hirsutum OSC61726 was used as outgroup. The LSU alignment consists of 851 characters, with 184 phylogenetically informative 
positions. Bootstrap values of more than 50 % are shown on the respective branches and significant Bayesian posterior probability (≥ 95 %) are indicated as 
bold branches. Ex-type cultures are marked with asterisks (*).
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tions. Branches of zero length were collapsed and all equally 
most parsimonious trees were saved. Descriptive tree statistics 
such as tree length (TL), consistency index (CI), retention index 
(RI), rescaled consistency index (RC) and homoplasy index 
(HI), were calculated for trees generated. Clade stability was 
assessed using bootstrap analysis with 1 000 replicates, each 
with 10 replicates of random stepwise addition of taxa. For the 
Bayesian analyses, the models of evolution were estimated 
by using MrModeltest v. 2.3 (Nylander 2004). Posterior prob-
abilities (PP) (Rannala & Yang 1996, Zhaxybayeva & Gogarten 
2002) were determined by Markov Chain Monte Carlo sam-
pling (MCMC). Six simultaneous Markov chains were run for 
1 000 000 generations and trees were sampled every 100th 

generation (resulting in 10 000 total trees). The first 2 000 
trees represented the burn-in phase of the analyses and were 
discarded and the remaining 8 000 trees were used for calculat-
ing posterior probabilities (PP) in the majority rule consensus 
tree. Trees were visualised in TreeView v. 1.6.6 (Page 1996).
Unique fixed nucleotide positions are used to characterise and  
describe several sterile species (see applicable species notes). 
For the sterile species that was described, the closest phylo-
genetic neighbour(s) were selected from Fig. 3 and 4, and this  
focused dataset was subjected to SNP analyses. These single 
nucleotide polymorphisms (SNPs) were determined for each 
aligned data partition using DnaSP v. 5.00.07 (Librado & Rozas 
2009).

Fig. 2   Phylogenetic tree derived from maximum parsimony analysis based on LSU rDNA sequences (TL = 325, CI = 0.7815, RI = 0.9015, HI = 0.2185 and 
RC = 0.7046). Trichoglossum hirsutum OSC61726 was used as outgroup. The LSU alignment consists of 845 characters, with 151 phylogenetically informative 
positions. Bootstrap values of more than 50 % are shown on the respective branches and significant Bayesian posterior probability (≥ 95 %) are indicated as 
bold branches. Ex-type cultures are marked with asterisks (*).
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RESULTS 

In the current investigation, 1 428 fungal isolates were obtained 
from 350 samples, which were mainly collected from seven 
glaciers on the Qinghai-Tibet Plateau; a few specimens were 
collected from Antarctica. Isolates were preliminarily identified 
to belong to 78 genera representing 150 species. About one-
tenth of these isolates were psychrophilic (stenopsychrophile), 
mostly belonging to the genera Pseudogymnoascus, Phoma, 
Tetracladium and Psychrophila, the new genus described in 
this paper. Based on the preliminary identification, 16 isolates 
belonging to Helotiales, which were the most frequently encoun-
tered cold-adapted fungi, were selected to study in more detail.

Phylogenetic analysis and SNP detection
The phylogenetic relationships were determined for 16 isolates. 
According to the phylogenetic trees based on the partial large 
subunit nrDNA (LSU), 16 isolates clustered into two independ-
ent clades, one was strongly supported and well separated from 
other known genera in the Helotiales (Fig. 1) and should repre-
sent a new genus and the other eight isolates clustered within 
the Tetracladium clade (Fig. 2). In the phylogenetic trees (Fig. 
3, 4) generated from combined sequences of ITS+TEF1+TUB, 
the isolates in Fig. 1 clustered into one clade comprising three 
subclades that were well supported and separated from each 
other. Based on phylogenetic relationships and morphological 
characteristics, a new genus, Psychrophila, is proposed to 
accommodate these three new species (P. antarctica, P. lutea 
and P. olivacea).

Tetracladium is one of the three aquatic genera with tetraradi-
ate conidia that were described by de Wildeman (1893, 1894, 
1895). According to our phylogenetic trees (Fig. 2, 4), isolates 
in the present study formed three independent subclades that 
could not be assigned to any known species.
LSU regions had relatively few informative sites for the studied 
strains and were therefore not selected as good markers at 
species level. The remaining three loci had varied success 
for species identification and all of the sterile new species 
described here could be identified by all three loci.

Taxonomy

Psychrophila M.M. Wang & Xing Z. Liu, gen. nov. — Myco-
Bank MB801296

 Etymology. Psychrophila means cold-loving and is referring to those fungi 
well adapted to low temperature habitats.

 Type species. Psychrophila antarctica M.M. Wang & Xing Z. Liu.

Colonies on PDA slow-growing, cream-white, yellowish or dark-
olive to dark-brown, with sparse aerial mycelium; vegetative hy-
phae hyaline, smooth, thick-walled, transversely septate, most 
agglomerate to bundles, or swollen to moniliform. The cells of 
aerial hyphae often aggregated in dense clumps, hyphae deep 
immerged into the agar. Conidiogenous cells phialidic, entero-
blastic, hyaline, flask-shaped, apically tapering into a broad 
funnel, bottleneck-like constriction; the collarette wedge-shaped 
to campanulate and widely flaring. Conidiophores reduced to 

Fig. 3   Phylogenetic tree derived from maximum parsimony analysis based on combined ITS+TEF1+TUB sequences (TL = 2295, CI = 0.7085, RI = 0.7600, 
HI = 0.2915 and RC = 0.5384). Phialocephala fortinii K93 395 was used as outgroup. The length of the three genes alignment was 1 383 characters, with 746 
phylogenetically informative positions. Bootstrap values of more than 50 % are shown on the respective branches and significant Bayesian posterior probability 
(≥ 95 %) are indicated as bold branches. Ex-type cultures are marked with asterisks (*).
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conidiogenous cells, sometimes short, or much differentiated. 
Conidia hyaline, smooth, aseptate, pyriform to globose, within 
a single conidiogenous locus. 
 Habitat — Cold environments.

 Notes — Species with phialophora-like asexual morphs in 
the Helotiales include: Ascocoryne with Coryne asexual morphs,  
which have hyaline, more or less penicillate conidiophores 
and phialides that lack visible collarettes; asexual morphs 
of some species of the Dermateaceae, such as Mollisia and 
Pyrenopeziza, might be accommodated in Cadophora, which 
has more or less pigmented vegetative hyphae, pale to hyaline 
phialides and collarettes (Gams 2000); the asexual morph of 
Hyphodiscus hymeniophilus is Catenulifera rhodogena, which 
has cylindrical to ampulliform phialides, long and cylindrical col-
larette, and conidia born in chains or in droplets (Hosoya 2002), 
in contrast, species in the new genus Psychrophila have hyaline 
vegetative hyphae, phialides, and collarettes; conidiophores 
are reduced to conidiogenous cells, sometimes short, or much 
differentiated; collarettes are wedge-shaped to campanulate 
and widely flaring; and conidia are hyaline, pyriform to globose. 
The combination of a cold-adapted nature, morphological 
characters, and phylogenetic relationships well supports the 
establishment of the new genus Psychrophila (Fig. 1).

Psychrophila antarctica M.M. Wang & Xing Z. Liu, sp. nov. — 
 Myco Bank MB801298; Fig. 5

 Etymology. Antarctica refers to the type locality of this fungus.

Colony on PDA at 10 °C attaining 25 mm diam after 4 wk, 
OGT 20 °C, eurypsychrophile; colonies cream white, aerial 

mycelium less abundant or sparse on the surface of the colony. 
Conidiophores sometimes short, or much differentiated, coni-
diogenesis phialidic, phialides short, hyaline, flask-shaped, 
5.1–8.0 × 2.5–4.5 μm (mean ± S.D. = 6.4 ± 0.89 × 3.5 ± 0.77 
μm, n = 30), apically tapering into a broad funnel, bottleneck-
like constriction; the collarette 2.1–4 μm (mean ± S.D. = 2.9 
± 0.56 μm, n = 30), wedge-shaped, widely flaring; vegetative 
hyphae hyaline, sometimes agglomerate to bundles or swollen 
to irregular shapes, 2–4 μm. Conidia hyaline, 1-celled, smooth, 
mostly globose, 2.1–3.5 μm diam (mean ± S.D. = 2.7 ± 0.47 
μm, n = 30).

 Specimen examined. AntArctic, Great Wall Station, S62°12' W58°57', 
from soil, Jan. 2011, T. Zhang (dried culture HMAS244374 holotype, living 
culture ex-type CGMCC315133 (ANT92)).

 Other isolates examined. AntArctic, Great Wall Station, S62°12' W58°57', 
from soil, Jan. 2011, T. Zhang, living cultures ANT80, ANT94.

 Notes — Psychrophila antarctica is a psychrotolerant fungus 
with an OGT of 20 °C. This species is known from both Antarc-
tica and the Qinghai-Tibet Plateau, whose origin and evolution 
deserve further studies.

Psychrophila lutea M.M. Wang & Xing Z. Liu, sp. nov. —
 MycoBank MB801299; Fig. 6

 Etymology. Lutea refers to the yellow colour of the colony.

Cultures sterile. Psychrophila lutea differs from its closest 
phylogenetic neighbour, P. antarctica (Fig. 3), by unique fixed 
alleles in three loci based on alignments of the separate loci 
deposited in TreeBASE as study S16864: ITS positions 76 (A), 

Fig. 4   Phylogenetic tree derived from maximum parsimony analysis based on combined ITS+TEF1+TUB sequences (TL = 2881, CI = 0.6977, RI = 0.7565, 
HI = 0.3023 and RC = 0.5278). Phialocephala fortinii K93 395 was used as outgroup. The length of the three genes alignment was 1 577 characters, with 
1 043 phylogenetically informative positions. Bootstrap values of more than 50 % are shown on the respective branches and significant Bayesian posterior 
probability (≥ 95 %) are indicated as bold branches. Ex-type cultures are marked with asterisks (*).
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316 (C), 413 (C), 416 (A), 449 (T) and 454 (T); TUB positions 
134 (T), 138 (A), 146 (A), 147 (A), 170 (A), 206 (C), 294 (T), 
303 (C), 305 (G), 314 (T) and 356 (G); TEF1 positions 174 (C), 
208 (C), 247 (C), 283 (G), 297 (A) and 327 (A).
Colony on PDA at 10 °C attaining 15 mm diam after 4 wk, OGT 
20 °C, eurypsychrophile; bright to brown-yellow, part of the 
colonies submerged in the medium, hyphae above the medium 
compacted densely, aerial mycelium absent or sparse, hyaline; 
vegetative hyphae yellow or brown, smooth-walled, 2–8 μm; 
aggregated in dense clumps or bundles, sometimes swollen to 
irregular shapes. Conidiophores and conidia absent.

 Specimen examined. chinA, Sichuan, Hailuogou Glacier, N29°33' E101°58',  
from soil, 20 Apr. 2011, M. Wang (dried culture HMAS244372 holotype, living 
ex-type culture CGMCC315134 = HAILUO409).

 Other isolates examined. chinA, Sichuan, Hailuogou Glacier, N29°33' 
E101°58', from soil, 20 Apr. 2011, M. Wang, living cultures HAILUO374, 
HAILUO407.

 Notes — We have used some low nutrient media such as 
corn meal agar (CMA) and water agar (WA) to induce strains 
of P. lutea to sporulate without success. Phylogenetic analyses 
showed that it formed a distinct clade most closely related to  

P. antarctica (Fig. 1, 3) but could be differentiated from the later 
by SNP analysis.

Psychrophila olivacea M.M. Wang & Xing Z. Liu, sp. nov. — 
Myco Bank MB801300; Fig. 7

 Etymology. Olivacea refers to the olive colour of the colony.

Cultures sterile. Psychrophila olivacea differs from its closest 
phylogenetic neighbour, P. antarctica and P. lutea (Fig. 3), by 
unique fixed alleles in three loci based on alignments of the 
separate loci deposited in TreeBASE as study S16864. 
P. antarctica: ITS positions 113 (C), 116 (A), 133 (A), 308 (C), 
343 (A), 346 (G), 364 (C), 411 (G), 413 (C), 425 (G), 431 (G), 
439 (G), 451 (A) and 454 (T); TUB positions 116 (C), 137 (T), 
151 (G), 163 (T), 198 (T), 199 (A), 220 (C), 223 (T), 295 (C), 
304 (G), 306 (C), 328 (C) and 371 (T); TEF1 positions 174 (C), 
195 (G), 203 (A), 208 (C), 247 (C), 252 (C), 297 (A), 306 (T), 
307 (T), 308 (G), 313 (A), 327 (C), 333 (T) and 340 (T).
P. lutea: ITS position 113 (C), 116 (A), 308 (C), 316 (T), 317 (C), 
333 (C), 343 (A), 346 (G), 364 (C), 411 (G), 416 (G), 425 (G), 
431 (G), 439 (G), 449 (T), 451 (A) and 454 (T); TUB positions 

Fig. 5   Psychrophila antarctica (from strain ANT92) a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–e. conidiophores 
and conidiogenous cells; f. conidia. — Scale bars = 10 μm.

Fig. 6   Psychrophila lutea (from strain HAILUO409). a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–e. swollen and 
aggregated hyphae. — Scale bars = 10 μm.
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134 (C), 138 (G), 151 (G), 163 (T), 170 (G), 199 (A), 206 (T), 
223 (T), 294 (A), 295 (C), 303 (T), 304 (G), 305 (G), 306 (C), 
314 (G), 316 (A), 356 (A) and 371 (T); TEF1 positions 195 (G), 
203 (A), 252 (C), 283 (A), 306 (T), 307 (T), 308 (G), 313 (A), 
327 (C), 333 (T) and 340 (T).

Colony on PDA at 10 °C attaining 10–15 mm diam after 4 wk, 
growth rate similar at 10 and 20 °C, stenopsychrophile; light 
to dark olive, sometimes appearing light grey on the surface 
because of some young aerial hyphae; part of the colonies 
immerged in the medium, some hyphae above the medium 
compact densely, colony surface sometimes furrowed; aerial 
hyphae sparse, hyaline or olive, vegetative hyphae, olive to dark 
olive, smooth-walled, 2–7 μm; aggregate in dense clumps or 
rhizomorphs, sometimes swollen to irregular shapes. Conidio-
phores and conidia absent.

 Specimen examined. chinA, Sichuan, Hailuogou Glacier, N29°33' 
E101°58', from soil, 20 Apr. 2011, M. Wang (dried culture HMAS244375 
holotype, living culture ex-type CGMCC315135 = HAILUO368).

 Other isolate examined. chinA, Sichuan, Hailuogou Glacier, N29°33' 
E101°58', from soil, 20 Apr. 2011, M. Wang, living culture HAILUO563.

 Notes — No conidia or conidiophores were observed for  
P. olivacea on PDA, CMA and WA. Psychrophila olivacea differs 
from P. lutea in the colony morphology and OGT. 

Tetracladium globosum M.M. Wang & Xing Z. Liu, sp. nov. —
 MycoBank MB801301; Fig. 8

 Etymology. Globosum refers to its globose conidia.

Colonies on PDA at 10 °C attaining 30–45 mm diam after 4 wk, 
pale yellow to light pinkish, OGT 10 °C, stenopsychrophile; part 
of the colony immerged in the medium, aerial hyphae sparse 
and hyaline; vegetative hyphae hyaline, smooth, thin-walled, 
transversely septate, 1–4 μm. Conidia 1-celled, hyaline, glo-
bose, smooth-walled, 3.0–5.5 μm (mean ± S.D. = 4.4 ± 0.81 
μm, n = 30), attaching to the hyphae with very short conidio-
phores, which are not obvious.

 Specimens examined. chinA, Sichuan, Hailuogou Glacier, N29°33' 
E101°58', from soil, 20 Apr. 2011, Manman Wang, dried culture specimen 
HMAS244377 holotype, living culture ex-type CGMCC315136 = HAILUO215.

 Other isolates examined. chinA, Yunnan, Mingyong Glacier, N28°27' 
E98°45', from soil, 4 May 2011, M. Wang, living cultures MY24, MY25.

 Notes — Species described in the genus Tetracladium are all 
aquatic and mostly inhabit decaying litter in streams and rivers 
(Bärlocher 1992). Tetracladium species produce tetraradiate co-
nidia, which are thought to aid in their colonisation of substrates 
(Read et al. 1992). Unlike the previously described species, 
T. globosum has globose conidia, indicating that tetraradiate 
conidia may be an ecologically adapted characteristic. The OGT 

Fig. 7   Psychrophila olivacea (from strain HAILUO368). a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–d. aggregated 
hyphae. — Scale bars = 10 μm.

Fig. 8   Tetracladium globosum (from strain HAILUO215). a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–e. conidia 
and hyphae. — Scale bars = 10 μm.
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is 10 °C but the fungus can also grow at 20 °C. It is interesting 
that the OGT of T. globosum varied among different isolates. 
This phenomenon has also been observed in other fungi such 
as Pseudogymnoascus pannorum, indicating psychrophily may 
be an adapted character (Kochkina et al. 2007).

Tetracladium ellipsoideum M.M. Wang & Xing Z. Liu, sp. nov.  
— MycoBank MB801302; Fig. 9

 Etymology. Ellipsoideum refers to the shape of the conidia.

Colony on PDA at 10 °C attaining 30–40 mm diam after 4 wk, 
pale to bright yellow, OGT at 10 °C, stenopsychrophile; aerial 
hyphae absent or sparse; vegetative hyphae hyaline, smooth, 
thin-walled, transversely septate, 1–3 μm. Conidia borne on 

short, undifferentiated or sessile pedicels (up to 1 μm long), 
1-celled, hyaline, ellipsoid, smooth-walled, 4–6.8 × 2–3.4 μm 
(mean ± S.D. = 5.3 ± 0.69 × 3.7 ± 0.67 μm, n = 30).

 Specimen examined. chinA, Tibet, Midui Glacier, N29°27' E96°30', from 
soil, 16 Oct. 2009, Manman Wang (dried culture specimen HMAS244378 
holotype, culture ex-type CGMCC315137 = MIDUI20).

 Other isolates examined. chinA, Tibet, Midui Glacier, N29°27' E96°30', 
from soil, 16 Oct. 2009, M. Wang, living cultures MIDUI30, MIDUI21.

 Notes — The morphology of T. ellipsoideum is very similar to 
that of T. globosum. Tetracladium ellipsoideum produces conidia 
that are pyriform to ellipsoid rather than globose as observed for 
T. globosum. Conidiophores are somewhat differentiated and 
obvious for T. ellipsoideum but not obvious for T. globosum.

Fig. 9   Tetracladium ellipsoideum (from strain MIDUI20). a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–d. conidia, 
conidiogenous cells and hyphae. — Scale bars = 10 μm.

Fig. 10   Tetracladium psychrophilum (from strain HAILUO380). a. Colony morphology at three temperatures after 4 wk (left-to-right: 4, 10 and 20 °C); b–d. 
hyphae. — Scale bars = 10 μm.
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Tetracladium psychrophilum M.M. Wang & Xing Z. Liu, 
 sp. nov. — MycoBank MB801304; Fig. 10

 Etymology. Psychrophilum refers to the cold-loving character of the spe-
cies.

Cultures sterile. Tetracladium psychrophilum differs from its 
closest phylogenetic neighbour, T. globosum (Fig. 4), by unique 
fixed alleles in three loci based on alignments of the separate 
loci deposited in TreeBASE as study S16864: ITS positions 97 
(C), 108 (A), 310 (C), 336 (C), 337 (C), 397 (A), 416 (G), 427 
(C) and 430 (G); TUB positions 125 (C), 131 (T), 140 (A), 152 
(G), 157 (C), 185 (A), 186 (T) and 196 (C); TEF1 positions 78 
(C), 80 (G), 84 (T), 99 (C), 153 (T), 161 (T) and 166 (C).

Colony slow-growing, attaining about 10–15 mm diam on PDA 
at 10 °C after 4 wk, cream-white to pale yellow; OGT 10 °C, 
MGT 20 °C, stenopsychrophile; aerial mycelium sparse or 
absent, conidia absent; vegetative hyphae hyaline, often ag-
gregate, 2–14 μm. Conidia and conidiophores absent.

 Specimen examined. chinA, Sichuan, Hailuogou Glacier, N29°33' E101°58',  
from soil, 20 Apr. 2011, M. Wang (dried culture HMAS244371 holotype, living 
ex-type culture CGMCC315139 = HAILUO380).

 Other isolate examined. chinA, Yunnan, Mingyong Glacier, N28°27' 
E98°45', from soil, 4 May 2011, M. Wang, living culture MY376.

 Notes — Tetracladium psychrophilum grows slowly with 
OGT at 10 °C and MGT at 20 °C. Unlike T. globosum and 
T. ellipsoideum, T. psychrophilum did not produce conidia or 
conidiophores.

DISCUSSION

The rising of the Qinghai-Tibet Plateau was an important geo-
logical event in the Quaternary period when the average rate 
of rising was 1.0–1.1 mm/year. In the last 10 000 years, the 
plateau has raised 300–700 m and is still rapidly rising (Li & 
Wang 1983). This steady rising of the Qinghai-Tibet Plateau 
may have resulted in gradual environmental changes and 
niches that are inhabited by cold-adapted fungi.
Species of Geomyces and Phoma are widespread and espe-
cially common in northern temperate regions or Arctic and Ant-
arctic permafrost soils. Traditionally, Geomyces is characterised 
by short but distinctly branched conidiophores that have spore 
chains formed directly from the conidiogenous cells. Members 
of the genus are psychrotolerant and have been reported from 
Arctic and Antarctic permafrost soils (Kirk et al. 2008, Blehert et 
al. 2009). Phylogenetic analyses indicate Geomyces and allied 
genera such as Gymnostellatospora and Pseudogymnoascus 
should be classified in the family Pseudeurotiaceae (Minnis 
& Lindner 2013). The best-known psychrophilic fungus in this 
group is perhaps Pseudogymnoascus destructans, which 
causes white nose syndrome and high mortality of bats (Blehert 
et al. 2009, Gargas et al. 2009). In our study, Pseudogymno-
ascus pannorum was found to be dominant on the Qinghai-
Tibet Plateau, accounting nearly 10 % of all isolates obtained. 
Interestingly, although the morphological characteristics and 
temperature profile differ among isolates of this species, all iso-
lates presented identical ITS and SSU rDNA sequences. Phoma 
sclerotioides is known as a snow mould and as the causal agent 
of brown root rot of alfalfa and other perennial forage legumes 
in temperate regions with harsh winters (Wunsch & Bergstrom 
2011). It was also the most frequently isolated species from a 
decomposing high arctic moss Schistidium apocarpum (Leung 
et al. 2011). In this survey, we obtained 52 P. sclerotioides 
isolates in a total of 1 428 isolates from Qinghai-Tibet Plateau, 
with all of the strains of P. sclerotioides isolated from soil and 
identified based on comparison of morphologies and ITS and 
SSU rDNA sequences. Phoma sclerotioides has been divided 

into seven intraspecific varieties, which differ in their morphol-
ogy, temperature adaptation, and plant hosts (Sanford 1933, 
Berkenkamp & Baenziger 1969, Wunsch & Bergstrom 2011). 
Whether these varieties satisfy the phylogenetic concept of 
species should be considered in future research.
Psychrophila antarctica produces phialidic conidiogenous cells, 
which is also shared by some species in genera such as Asco-
coryne, Cadophora and Catenulifera in the Helotiales. Although 
there are no special morphological characters in Psychrophila, 
the cold-adaptation of all isolates and species and the phylo-
genetic distinction from other genera well support its establish-
ment as novel genus.
Tetracladium species are common in aquatic habitats, and 
they produced tetraradiate conidia that may facilitate their 
attachments to the substrate and provide a stable base for 
rapid germination (Read et al. 1992). Tetracladium species 
are primary agents of leaf litter and wood decay in streams 
and rivers. Some aquatic fungi including Tetracladium species 
are distributed worldwide (Descals 1997, Shearer et al. 2007, 
Wurzbacher et al. 2010) and in lotic habitats from the equator 
to the Arctic (Shearer et al. 2007). Tetracladium species have 
been documented from streams of alpine glaciers and from 
snow-covered soil (Robinson et al. 2000, Kuhnert et al. 2012), 
and are likely to be cold-adapted. The genus is rather homo-
geneous in terms of cultural characters and conidiogenesis. 
In addition to the type species, T. marchalianum, seven other 
species have been reported in the genus, e.g. T. apiense (Sin-
clair & Eicker 1981), T. breve (Roldán et al. 1989), T. furcatum 
(Descals & Webster 1983), T. maxilliforme (Ingold 1942), T. nai- 
nitalense (Sati et al. 2009), T. palmatum (Roldán et al. 1989) 
and T. setigerum (Ingold 1942). Recent phylogenetic analyses 
suggested that the genus is monophyletic and affiliated with 
Helotiales (Nikolcheva & Bärlocher 2002, Baschien et al. 2006, 
Letourneau et al. 2010, Seena et al. 2010). The three new spe- 
cies described here are paraphylogenetically clustered with 
aquatic Tetracladium species. Tetracladium globosum and  
T. ellipsoideum produce simple globose or clavate conidia on 
very short conidiophores or on the hypha (sessile), and T. psy- 
chrophilum does not produce conidia. All three are clearly dif-
ferent from previously described aquatic species in this genus 
and may reflect their adaptation to glacial niches with little free 
water. The three new species can grow well at temperatures 
below 20 °C and produce colonies that are light or bright yel-
low or light pink. Their colonies are often flat, with sparse or no 
aerial mycelium, which may be beneficial for cold-adaptation.
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