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Introduction
Margulis’ manuscript on the endosymbiotic origin of mitochon-

dria was rejected by several journals before it was published as 

a book (Margulis, 1970). Despite the initial controversy, the 

wealth of molecular and biochemical insight that has accumu-

lated over the last three decades clearly corroborates the close 

relationship of mitochondria and bacteria and leaves no doubt 

about the prokaryotic origin of mitochondria. In many of their 

biochemical and physiological properties, mitochondria still 

closely resemble their bacterial ancestors. Clearly, during the 

course of evolution, mitochondria underwent substantial 

changes to adapt to the specifi c needs of an intracellular organ-

elle. However, the basic housekeeping functions, such as the 

principles of metabolic conversion, the propagation and expres-

sion of genetic information, or the synthesis and folding of pro-

teins, are still similar to those in bacteria. In bacteria, newly 

synthesized proteins achieve their correct fold by chaperones 

that function according to two basically distinct principles. In 

the cytosol, chaperones use the hydrolysis of ATP to interact 

with their unfolded or partially folded substrates. Two ATP-

consuming chaperone systems are of outstanding importance 

in bacteria: the DnaK–Hsp70 and the GroEL–Hsp60 systems 

(for review see Hartl and Hayer-Hartl, 2002). Both have closely 

related orthologues in the mitochondrial matrix, and the 

principles of protein folding in the mitochondrial matrix closely 

match those in the bacterial cytosol. However, the bacterial 

periplasm is devoid of ATP, and protein folding is driven by the 

oxidation of thiol residues (for reviews see Kadokura et al., 

2003; Nakamoto and Bardwell, 2004). Sulfhydryl oxidases re-

ceive electrons from newly synthesized proteins and pass them 

on to the electron transport chain in the inner membrane. The 

introduction and reshuffl ing of disulfi de bonds thereby drives 

the stable folding of periplasmic proteins.

Some IMS proteins contain disulfi de bridges
Until very recently, virtually nothing was known of the mecha-

nisms by which proteins in the intermembrane space (IMS) of 

mitochondria are folded nor were any chaperones identifi ed in 

this compartment. However, studies on the structure or bio-

chemistry of several proteins in the IMS revealed the presence 

of disulfi de bonds in IMS components, which were initially 

considered to be artifacts of aerobic oxidation during protein 

purifi cation (Table I). IMS proteins for which oxidized cysteine 

residues have been reported are listed in Table I. In all of these 

proteins, the cysteine residues are highly conserved and, for 

those tested so far, are essential for functionality.

Recently, machinery was identifi ed in the IMS that catalyzes 

protein oxidation and presumably is responsible for all of the 

disulfi de bonds present in the IMS. It consists of two known 

components: a fl avin adenine dinucleotide (FAD)–containing 

sulfhydryl oxidase named Erv1 (essential for respiration and 

vegetative growth) and a redox-activated import receptor named 

Mia40 (Fig. 1). These proteins constitute a disulfi de relay system 

that is designed to drive the translocation of cysteine-containing 

proteins from the cytosol into the IMS of mitochondria.

Erv1, a conserved sulfhydryl oxidase 
in the IMS
Erv1 is a sulfhydryl oxidase of the IMS. The primary sequence 

of Erv1 does not show any recognizable similarity to that of 
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DsbA–DsbB and Ero1, the sulfhydryl oxidases of the bacterial 

periplasm and ER, respectively (Sevier et al., 2001, 2005). 

Thus, these enzymes are either unrelated or are very distant 

 relatives. However, sulfhydryl oxidases that share the FAD- 

binding domain of Erv1 are present in the ER of fungi (named 

Erv2 proteins) and of plants and animals (named quiescin/sulf-

hydryl oxidases; Coppock and Thorpe, 2006). Moreover, some 

viruses contain Erv1-like sulfhydryl oxidases that catalyze the 

oxidation of capsid proteins in the cytosol of infected host cells 

(Senkevich et al., 2000).

Erv1 consists of two structural segments. The N-terminal 

segment, which in Saccharomyces cerevisiae consists of 72 

amino acid residues, contains an invariant CxxC motif but other-

wise is hardly conserved. This segment is rich in glycine and 

proline residues and presumably represents a fl exible, unstructured 

region that functions as a lever arm to bring the redox-active 

CxxC motif into the proximity of substrate proteins (Hofhaus 

et al., 2003). The C-terminal segment forms an FAD-binding 

domain that in S. cerevisiae consists of 117 amino acid residues. 

This domain is well conserved among Erv1-like sulfhydryl oxi-

dases and also contains a redox-active CxxC motif (Lee et al., 

2000; Wu et al., 2003; Coppock and Thorpe, 2006). Recent 

achievements in crystallization of the FAD-binding domains of 

Erv1 and Erv2 revealed a direct proximity of the isoalloxazine 

ring of FAD to this second CxxC motif (Gross et al., 2002; Wu 

et al., 2003). This suggests that this CxxC is oxidized by transfer 

of its electrons to the FAD cofactor. In vitro, the electrons can be 

further passed on to molecular oxygen, resulting in the genera-

tion of peroxide. However, this reaction is slow but strongly 

enhanced in the presence of oxidized cytochrome c, suggesting 

that Erv1 can transfer its electrons via cytochrome c to the respi-

ratory chain (Allen et al., 2005; Farrell and Thorpe, 2005).

In baker’s yeast, Erv1 is essential for viability, and muta-

tions in the Erv1 protein lead to a wide variety of defects such 

as respiratory defi ciency, an altered mitochondrial morphology, 

depletion of cytosolic iron-sulfur clusters, and the inability to 

import certain IMS proteins into mitochondria (Lisowsky, 1994; 

Becher et al., 1999; Lange et al., 2001; Chacinska et al., 2004; 

Naoe et al., 2004; Terziyska et al., 2005). In addition, the mam-

malian Erv1 protein was proposed to function as a growth factor 

for hepatocytes because the addition of purifi ed Erv1 can stimu-

late the regeneration of partially hepatectomized livers (for 

 review see Pawlowski and Jura, 2006). As a result of this 

 observation, Erv1 is also named ALR (augmenter of liver regen-

eration) or hepatopoietin.

The variety of defects observed in Erv1 mutants might 

point to a wide range of different substrate proteins of Erv1 or, 

alternatively, to a role for Erv1 in oxidation of a factor of gen-

eral relevance. The only substrate of Erv1 identifi ed so far is the 

IMS protein Mia40, which indeed is a factor of general impor-

tance, as Mia40 functions as a redox-activated import receptor 

for IMS proteins.

Mia40, a redox-activated protein receptor 
in the IMS
Mia40 is ubiquitously present in the IMS of fungi, plants, and 

animals. All Mia40 homologues share a highly conserved do-

main of roughly 60 amino acid residues containing six invariant 

and essential cysteine residues (Chacinska et al., 2004; Naoe 

et al., 2004; Hofmann et al., 2005; Terziyska et al., 2005). In fungi 

but not in mammals or plants, this domain is tethered to the in-

ner membrane by an N-terminal membrane anchor. This anchor 

is not critical for Mia40 activity and can be functionally re-

placed by unrelated sorting sequences that direct the conserved 

Mia40 domain to the IMS.

The cysteine residues in Mia40 form a characteristic CPC-

Cx9C-Cx9C pattern. In vivo, at least some of these cysteine resi-

dues are predominantly present in an oxidized state, forming 

intramolecular disulfi de bonds (Allen et al., 2005; Hofmann 

et al., 2005; Mesecke et al., 2005). The individual function of 

these cysteine residues is still not clear, but they have been sug-

gested to constitute a redox-driven protein trap that is activated 

by Erv1-dependent oxidation and is used to import precursor 

proteins from the cytosol into the IMS (Mesecke et al., 2005; 

Tokatlidis, 2005). Erv1 directly interacts with Mia40 via disulfi de 

bonds, and this interaction is critical for the oxidation of Mia40. 

Table I. Proteins for which disulfi de bonds in the IMS have been reported

Protein Motif Function Reference

CCS Other Copper chaperone for Sod1 Lamb et al., 1999; Field et al., 2003

Cox11 Other Assembly factor for complex IV Banci et al., 2004

Cox12 Other Subunit of complex IV Tsukihara et al., 1995; Arnesano et al., 2005

Cox17 Twin Cx9C Copper chaperone Abajian et al., 2004; Arnesano et al., 2005

Cox19 Twin Cx9C Assembly factor for complex IV Nobrega et al., 2002; Arnesano et al., 2005

Cox23 Twin Cx9C Assembly factor for complex IV Barros et al., 2004; Arnesano et al., 2005

Erv1 Other Sulfhydryl oxidase Levitan et al., 2004

Mia40 Twin Cx9C Redox-mediated receptor Mesecke et al., 2005; Rissler et al., 2005

Rieske Other Subunit of complex III Iwata et al., 1998

Qcr6 Other Subunit of complex III Iwata et al., 1998

Tim8 Twin Cx3C Protein import component Curran et al., 2002b

Tim9 Twin Cx3C Protein import component Curran et al., 2002a

Tim10 Twin Cx3C Protein import component Curran et al., 2002a; Lu et al., 2004

Tim13 Twin Cx3C Protein import component Curran et al., 2002b

Sco1 Other Assembly factor for complex IV Chinenov, 2000

Sod1 Other Superoxide dismutase Lamb et al., 2001; Field et al., 2003
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Depending on the Erv1 activity and the amount of imported 

protein, Mia40 cycles between oxidized and reduced states 

(Mesecke et al., 2005). In vitro, reduced Mia40 can co ordinate 

metal ions like zinc and copper, and it was suggested that the 

reduced state of Mia40 might be stabilized in vivo by metal 

binding (Terziyska et al., 2005).

The Mia40–Erv1 disulfi de relay system 
drives protein import into the IMS
Proteins of the IMS are involved in several fundamental 

re actions of the eukaryotic cell-like energy metabolism, the 

 transport of metabolites, ions, and proteins, and apoptosis. All 

proteins of the IMS are encoded by nuclear genes and, after 

their synthesis on cytosolic ribosomes, need to be transported 

across the outer membrane of mitochondria. Some proteins of 

the IMS contain so-called bipartite presequences that allow im-

port in an ATP- and membrane potential–dependent manner (for 

reviews see Koehler, 2004a; Herrmann and Hell, 2005). In con-

trast, many, if not most of the IMS proteins lack presequences 

or other classic mitochondrial sorting signals. Instead, these 

proteins contain characteristic patterns of cysteine residues that 

are essential for their stable accumulation in mitochondria 

(Hofmann et al., 2002; Roesch et al., 2002; Lutz et al., 2003). 

All of these cysteine-containing proteins are of low molecular 

mass, mostly between 6 and 14 kD. This small size might allow 

them to diffuse rather freely across the protein-conducting chan-

nel of the protein translocase of the outer membrane (TOM) 

complex (Fig. 1). After their translocation into the IMS, they in-

teract with Mia40, forming mixed disulfi des (Chacinska et al., 

2004; Mesecke et al., 2005). Only the oxidized form of Mia40 

is able to form these intermediates, and reduced Mia40 appears 

to be inactive. Upon reshuffl ing of the disulfi de bonds from 

Mia40 to the imported precursor proteins, the substrate proteins 

are released into the IMS in an oxidized and folded state. Because 

folded proteins are unable to traverse the protein-conducting 

channel of the TOM complex, this leads to a permanent trap-

ping of the precursors in the IMS (Lu et al., 2004). The reaction 

is presumably completed by reoxidation of Mia40 by Erv1, 

which would explain why Erv1 is required for protein import. 

According to this model, Erv1 and Mia40 form a disulfi de relay 

system that facilitates vectorial protein translocation across the 

outer membrane by use of an oxidative folding mechanism.

In vivo, the process is presumably more complex and requires 

the role of additional factors. One of these factors might be 

Hot13, which infl uences the assembly and activity of small Tim 

proteins in the IMS (Curran et al., 2004). Moreover, Erv1 also 

apparently plays a second role further downstream in the assem-

bly of IMS proteins that is not understood (Rissler et al., 2005).

It should be stressed that this model, which is depicted in 

Fig. 1, is still rather speculative, and many points remain to be 

clarifi ed. The presented model matches the experimental obser-

vations, but alternative mechanisms by which Erv1 and Mia40 

function are also possible. For example, some substrates might 

be directly oxidized by Erv1, and Mia40 might then function as 

an analogue of a protein disulfi de isomerase. It will be neces-

sary to establish in vitro assays with purifi ed Mia40 and Erv1 to 

unravel the molecular function of both components in detail.

Substrates of the Mia40–Erv1 relay
The so far identifi ed substrates of the Mia40–Erv1 relay system 

can be grouped into two classes that differ in their characteristic 

cysteine signatures. Members of the fi rst group contain two 

pairs of cysteines that are spaced by three residues each; this 

pattern is called the twin Cx3C motif. Examples are the small 

Tim proteins, which serve as chaperones that usher hydropho-

bic inner membrane proteins through the hydrophilic IMS (for 

review see Koehler, 2004b). Mitochondria typically contain fi ve 

different small Tim proteins that in fungi are called Tim8, 9, 10, 

12, and 13. These proteins form hairpinlike structures in which 

two central antiparallel α helices are linked to each other by two 

parallel disulfi de bonds (Allen et al., 2003; Webb et al., 2006). 

The small Tim proteins form hexamers in which the central twin 

Cx3C motifs contact each other (Lu et al., 2004; Webb et al., 

2006). The intramolecular interactions between the cysteine 

residues play essential roles in complex formation, explaining 

why oxidation is vital for the assembly of these proteins (Allen 

et al., 2003; Lu et al., 2004).

Members of the second group of substrates are proteins 

containing twin Cx9C motifs. The best characterized represen-

tative is Cox17, a copper chaperone of cytochrome oxidase 

(Beers et al., 1997). Cox17 contains six conserved cysteine res-

idues that can undergo different intramolecular disulfi de inter-

actions, thereby infl uencing the affi nity and capacity of Cox17 

for copper ions. It was suggested that redox-regulated cycling 

Figure 1. Model of the Erv1–Mia40 disulfi de relay. Schematic representa-
tion of the reactions that mediate redox-driven protein import into the IMS 
of mitochondria. The sulfhydryl oxidase Erv1 is a dimeric FAD-binding pro-
tein that maintains an oxidized state by the use of molecular oxygen as a 
 fi nal electron acceptor. Erv1 directly interacts with Mia40, which functions as 
a redox-activated import receptor. The oxidized active state of Mia40 can 
interact with newly imported precursor proteins by intermolecular disulfi de 
bonds. It has been proposed that reshuffl ing of the disulfi de bonds releases 
the substrates from Mia40 in a stably folded oxidized state. Because these 
folded proteins cannot traverse the protein-conducting channel of the TOM 
complex, they remain trapped in the IMS. Alternatively, Erv1 might directly 
interact with some incoming substrates and pass them on to Mia40, which 
might function as a protein disulfi de isomerase. In both cases, the Erv1–
Mia40 system constitutes a folding trap that is designed to mediate the uni-
directional import of proteins into the IMS of mitochondria. Reduced and 
oxidized thiol groups are indicated by SH and SS, respectively.
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through these different conformations drives the binding and 

release of copper ions (Abajian et al., 2004; Horng et al., 2004; 

Arnesano et al., 2005). Twin Cx9C motifs are present in several 

additional IMS proteins such as Cox19, Cox23, Mdm35, Mic14 

(YDR031w), and Mic17 (YMR002w), which all require Erv1 

and Mia40 for their biogenesis (Gabriel et al., 2007). Interest-

ingly, the twin Cx9C motif of these proteins mimics the cysteine 

motif of Mia40; the reason for this symmetry is not known. Re-

cently, it was shown that the import of Erv1 requires the pres-

ence of Mia40 in the IMS (Gabriel et al., 2007), suggesting that 

the Mia40–Erv1 relay can also be used for the import of proteins 

with cysteines that are not organized in twin Cx3C or Cx9C motifs.

More Erv1 substrates?
Many proteins with disulfi de bonds do not contain twin Cx3C 

and Cx9C signatures (Table I). Still, in some of these proteins, 

the cysteine residues form similar patterns. For example, Cox12, 

which is subunit VIa of the cytochrome oxidase, contains a 

Cx9C-Cx10C pattern that presumably is functionally comparable 

with the twin Cx9C motif. However, in other proteins like the 

Rieske protein or copper/zinc superoxide dismutase (Sod1), 

only one pair of cysteine residues exists, and the spacing and 

organization of these residues are not similar to that found in 

twin Cx3C and Cx9C proteins. Experimental evidence for a role of 

Erv1 and Mia40 in the oxidation of these proteins is still missing.

Oxidative folding despite high levels 
of glutathione
According to most of the cell biology textbooks, eukaryotic 

cells can be divided into two sections of different redox chemistry: 

the ER and, to some degree, also other secretory compartments 

are generally considered to favor the oxidation of thiol residues 

and thus to generate disulfi de bonds between cysteine residues. 

In contrast, the cytosol, nucleus, and matrix of mitochondria are 

believed to counteract the formation of disulfi de bonds by main-

taining a high concentration of reduced glutathione and/or by 

the presence of thioredoxins (Ostergaard et al., 2004; for review 

see Holmgren et al., 2005). This is obviously also the case for 

the IMS because porin channels in the outer membrane presum-

ably allow the free transfer of reduced glutathione. Recent stud-

ies challenged the view that disulfi de bonds are limited to 

secretory compartments (Linke and Jakob, 2003; Paget and 

Buttner, 2003). The results made it clear that the simple ratio of 

reduced to oxidized glutathione does not determine the fate 

of intracellular thiol groups. Instead, the specifi c nature of the 

respective proteins and their interactions with reducing or 

 oxidizing enzymes decide their redox states.

The proteins of the IMS might counteract their reduction 

by two means. First, the disulfi de bonds in the IMS might be 

extremely stable and, thus, rather inert to glutathione reduction. 

The standard redox potential of Tim10 is very low, and the di-

sulfi de bridges in small Tim proteins resist even highly reducing 

conditions like incubation with 10 mM DTT (Curran et al., 

2002a,b; Lu and Woodburn, 2005). A second mechanism to 

counteract reductive unfolding might be provided by the specifi c 

arrangement of cysteine residues in IMS proteins; upon reduc-

tion, these patterns might be stabilized by the binding of metal 

ions like copper or zinc, which maintain the overall structure of 

the protein by keeping the cysteine residues in close proximity. 

The specifi c cysteine patterns providing four neighboring thiol 

groups are only found in IMS proteins and not in proteins of the 

periplasm or ER. It is conceivable that these patterns have devel-

oped specifi cally to promote oxidative protein folding in the 

presence of high concentrations of glutathione. Alternatively, it was 

proposed that the binding of zinc ions stabilizes nonimported 

precursors of small Tim proteins in the cytosol and that coordina-

tion of metal ions by the cysteine residues contributes to the import 

competence of IMS proteins (Lu and Woodburn, 2005).

Conclusion and perspectives
In summary, the IMS of mitochondria contains a system that 

catalyzes the oxidative folding of proteins to effi ciently trap in-

coming precursors. Although the principle of oxidative protein 

folding is conserved from the periplasm of bacteria to the ER 

and IMS of eukaryotic cells, the components that mediate the 

reactions do not show obvious sequence homology. In the fu-

ture, it will be exciting to track the phylogenetic origin and rela-

tionship of these systems to understand how they arose during 

evolution and from where they originated.
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