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Abstract

Depression is a seriously disabling psychiatric disorder with a significant burden of disease. Metabolic abnormalities have
been widely reported in depressed patients and animal models. However, there are few systematic efforts that integrate
meaningful biological insights from these studies. Herein, available metabolic knowledge in the context of depression was
integrated to provide a systematic and panoramic view of metabolic characterization. After screening more than 10 000
citations from five electronic literature databases and five metabolomics databases, we manually curated 5675 metabolite
entries from 464 studies, including human, rat, mouse and non-human primate, to develop a new metabolite-disease
association database, called MENDA (http://menda.cqmu.edu.cn:8080/index.php). The standardized data extraction process
was used for data collection, a multi-faceted annotation scheme was developed, and a user-friendly search engine and web
interface were integrated for database access. To facilitate data analysis and interpretation based on MENDA, we also
proposed a systematic analytical framework, including data integration and biological function analysis. Case studies were
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provided that identified the consistently altered metabolites using the vote-counting method, and that captured the
underlying molecular mechanism using pathway and network analyses. Collectively, we provided a comprehensive curation
of metabolic characterization in depression. Our model of a specific psychiatry disorder may be replicated to study other
complex diseases.
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Introduction

Depression is a seriously disabling psychiatric disorder with a
lifetime prevalence of 20% [1], characterized by high disease bur-
den and excess mortality [2]. From 1990 to 2016, depression was
the fifth leading cause of years lived with disability worldwide,
contributing 34.1 million of total years lived with disability [3].
As a complex mental illness, the pathogenic factors and clinical
manifestations of depression are diverse, and there is obvious
heterogeneity among different subtypes [4]. Although a variety
of theories of depression have been proposed, the molecular
mechanism remains poorly understood, and its treatment faces
the challenge that most first-line antidepressants target brain
monoamine modulation, which are crude compared with the
ideal rapid-acting agents [5].

As the final product of the molecular interactions of genes,
transcripts and proteins, metabolites play an important biolog-
ical role in the organism [6]. With the rapid progress in systems
biology over recent decades, metabolomics technologies, includ-
ing nuclear magnetic resonance, gas chromatography-mass
spectrometry and liquid chromatography-mass spectrometry,
have been widely applied to identify metabolic characterization
in depression and following antidepressant exposure in plasma
[7, 8], urine [9] and cerebrospinal fluid [10]. Findings from
in vivo magnetic resonance spectroscopy studies have also
shown neurometabolite abnormalities in various brain regions
of depression patients [11, 12]. Further, evidence from animal
models supports an association of metabolite abnormalities
in the brain and peripheral tissues with depression and
antidepressant exposure [13–15]. However, despite this progress,
there are only a few systematic efforts dedicated to integrating
the known knowledge from these varied studies [16], and

it remains unclear which metabolites are associated with
depression.

With the increasing output of high-throughput platforms,
knowledge bases for diseases including MetSigDis [17] and Dis-
GeNET [18] have been recently created to gather and display
useful molecular information. However, the amount of knowl-
edge data for a specific disease is limited in these pan-disease
bases, and the simple annotation scheme still does not address
the research needs of complex diseases, including depression. A
comprehensive analysis based on large-scale data would provide
higher statistical efficiency and more credible biological insights
than individual studies. However, few studies have investigated
the potential methods of data integration and interpretation
across studies for a metabolic database.

Thus, the aim of the present study was to provide a
panoramic and systematic view of metabolic characterization
in the context of depression by developing a knowledge base
of metabolic characterization in depression. To this end, we
manually integrated available knowledge for depressed patients
and animal models, as well as metabolic changes resulting from
treatments, in a new metabolite-disease association database
called the metabolite network of depression database (MENDA;
http://menda.cqmu.edu.cn:8080/index.php). The standardized
data extraction process was used for data collection, a multi-
faceted annotation scheme was developed and a user-friendly
search engine and web interface were integrated for database
access. To facilitate data analysis and interpretation based on
MENDA, we also proposed a systematic analytical framework.
Case studies were provided that identified the consistently
altered metabolites using the vote-counting method, and which
captured the underlying molecular mechanism using pathway
and network analyses.

Figure 1. Schematic architecture of the (A) MENDA and the (B) proposed systematic framework for data analysis.

http://menda.cqmu.edu.cn:8080/index.php
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Methods
Data collection and curation

Figure 1A illustrates the schematic architecture of the MENDA.
Researchers were trained using pilot tests before each step,
then two researchers completed data collection and curation
independently. All data were checked to identify disagreements,
and regular meetings were arranged to resolve any misunder-
standings or disagreements.

Literature search and study selection

Studies that investigated the metabolic characterization asso-
ciated with depression, and that used nuclear magnetic reso-
nance, mass spectrometry or magnetic resonance spectroscopy
technologies, were collected as follows. Five electronic literature
databases (PubMed, Cochrane Library, Embase, Web of Science,
and PsycINFO) were searched using the search terms provided
in Supplementary Table S1. Five metabolomics databases
(Human Metabolome Database (HMDB) [19], MetaboLights
[20], Metabolomics Workbench [21], MetabolomeXchange [22]
and Omics Discovery Index [23]) were searched with relevant
keywords, such as depression, depressive and mood disorder.
Further relevant studies were obtained by screening reference
lists of all included studies and relevant reviews. The citation
lists were also screened in Google Scholar. A total of 11 747
citations from literature databases and 208 citations from
metabolomics databases were identified as of 20 March 2018
(Supplementary Table S2).

Retrieved literature citations were imported into Endnote
X8 software (Clarivate Analytics; Philadelphia, PA, USA) to
remove duplicate records, and the remaining titles and abstracts
were then manually reviewed. Using the data inclusion
criteria described in the Supplementary Note, a total of 1525
potentially eligible articles were chosen. From these articles,
1064 articles were excluded after the full-text articles were
reviewed (Supplementary Table S3), resulting in 464 studies were
presented in MENDA.

Data extraction process

Data of interest were manually extracted from the original
reports using standardized data abstraction spreadsheets
(Supplementary Table S4). Candidate metabolites were selected
if the metabolites (including the ratio of two metabolites, e.g.
kynurenine/tryptophan ratio) were reported to be significantly
changed in the original reports. We chose these criteria because
data processing varied across different studies, and significant
metabolites were indicated by a P < 0.05 in most of included
studies. These criteria were also widely used in other knowledge
bases [17, 24].

Data annotation

A dataset containing the study entries (the study entry dataset)
and another dataset containing the metabolite entries (the
metabolite entry dataset) were generated based on the extracted
data. For dataset reformatting and cross-data set mapping, a

Figure 2. Data statistics of MENDA. N, number of studies; n, number of differential metabolite entries; CMS, chronic mild stress; SDS, social defeat stress; CRS, chronic

restraint stress; LH, learned helplessness; LPS, lipopolysaccharide; MRS, magnetic resonance spectroscopy; MS, mass spectrometry; NMR, nuclear magnetic resonance.
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multi-faceted annotation scheme (Supplementary Table S5) was
developed to homogeneously annotate extracted data in both
datasets. To create the metabolite entry dataset, metabolite
names in the original reports were manually matched in
HMDB [19], Kyoto Encyclopedia of Genes and Genomes (KEGG)
[25] and PubChem [26] for the purpose of metabolite name
standardization, then each metabolite entry was annotated with
external source identifiers and study-related information using
the annotation scheme.

Database architecture

A multilayer relational database was created for data storage
and management utilizing the MySQL 5.5 database system
(https://www.mysql.com/). A user-friendly search engine and
web interface were incorporated for users to search and browse

depression-associated metabolic alterations and relevant
studies. The Perl script was used for Common Gateway Interface
programming. For web browsing, the front page of the retrieval
system was based on HTML. The Apache HTTP Server 2.4 (http://
httpd.apache.org/) was used as the web server of the retrieval
system.

Framework for comprehensive analysis of metabolic
characterization

To facilitate data analysis and interpretation for users, we pro-
posed a systematic framework (Figure 1B). Users can download
the dataset provided in MENDA and perform personalized anal-
ysis. Users choose the appropriate methods based on research
objectives, data heterogeneity, tool accessibility and graphic

Figure 3. The numbers of entries for the most frequently reported metabolites in separate settings. The plots summarize the numbers of entries for the most frequently

reported metabolites in the central (A) and peripheral (B) systems of patients, in the central (C) and peripheral (D) systems of animal models before treatment, and in

the central (E) and peripheral (F) systems of patients, and the central (G) and peripheral (H) systems of animal models, after treatment. Orange and blue bars denote

the numbers of metabolite entries from human and animal models for the specific metabolites, respectively. GABA, gamma-aminobutyric acid; Glx, glutamate and

glutamine; NAA, N-acetyl-L-aspartic acid; tCho, choline-containing compounds; tCr, creatine and phosphocreatine.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
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output. In this study, we performed the following analyses
for providing case studies. The details for data selection are
provided in the Supplementary Note.

Data integration

The vote-counting method was used to identify the consis-
tently up-regulated or down-regulated metabolites across the
combined studies, and the numbers of up-regulated and down-
regulated differential metabolites in the original reports were
counted. A binomial test was then used to evaluate whether
a given metabolite was consistently regulated across the com-
bined studies, with the assumption of a probability of 0.5 that
a given metabolite is upregulated in each study. The one-tailed
P-value was calculated using the function ‘binom.test’ in R soft-
ware version 3.4.4 (https://www.r-project.org/). Statistical sig-
nificance was set at a Benjamini–Hochberg procedure adjusted
false discovery rate (FDR) < 0.05. Only metabolites reported for
least six different datasets were selected for analysis.

Biological function analysis

Details of the analysis are provided in the Supplementary Note.
In brief, metabolite set enrichment analysis and metabolic
pathway analysis were performed using MetaboAnalyst 4.0
[27] to identify the significantly disturbed metabolite sets and
metabolic pathways, respectively. Canonical pathway analysis
and molecular network analysis were then performed using
Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com).
Statistical significance was set at an FDR < 0.05 in all analyses.

Results
Data statistics in MENDA

The detail of data statistics in MENDA are shown in Figure 2, and
the information for each included study and each metabolite
entry (the study entry dataset and metabolite entry dataset)
are provided in Supplementary Data: MENDA.xlsx. From 464
included studies, we collected 5675 differential metabolite
entries. Most studies were conducted to identify candidate
metabolites between depressed and healthy states (type 1
studies, N = 391; with 3206 metabolite entries), or to identify can-
didate metabolites resulting from treatments in the depressed
state (type 2 studies, N = 151; with 1402 metabolite entries).
Figure 3 summarizes the numbers of metabolite entries for
the most frequently reported metabolites in separate settings.
Tryptophan metabolism-related metabolites (serotonin, 5-
hydroxyindoleacetic acid, quinolinic acid and tryptophan) were
the most frequently changed metabolites after treatment, which
may be explained by the monoamine modulation effects of
current antidepressants [28].

The distribution of metabolite entries in 18 tissues is shown
in Supplementary Figure S1. In brief, in type 1 studies that
compared the metabolic characterization between depressed
and healthy states, 20 metabolites in patients and 92 in animal
models were reported as differential metabolites in at least
three tissues (Supplementary Figure S1A). In type 2 studies
that identified differential metabolites resulting for depression,
8 metabolites in patients and 52 in animal models were
reported as differential metabolites in at least three tissues
(Supplementary Figure S1B).

Web interfaces in MENDA

A user-friendly web interface and search engine were incor-
porated for researchers in MENDA (http://menda.cqmu.edu.
cn:8080/index.php), as described below.

Data browsing

In the browse section, four entry points were offered. (i) General:
the systematic reviews of metabolic characterization for human,
rodent, non-human primate and all organisms were provided
(Supplementary Figure S2A). In each detailed page, relevant
studies and metabolites were displayed based on the subcat-
egories of depression. (ii) Metabolite: all metabolites collected in
MENDA were listed alphabetically (Supplementary Figure S2B).
The metabolite name, external source identifiers (HMDB,
KEGG and PubChem IDs), synonyms and relevant studies were
displayed in detailed pages. (iii) Study: the included studies in
MENDA were listed numerically (Supplementary Figure S2C).
Relevant information (including title, overall design, study
type, data available, organism, categories of depression, criteria
for depression, sample size, tissue, platform, paper links and
differential metabolites) for each study was provided in detailed
pages. (iv) Metabolite map: a graphical network generated
by the function ‘networkD3’ in R was presented to show
the relationships between tissues (blue nodes) and relevant
metabolites (yellow nodes).

Data search

In the search section, both quick search and advanced search
approaches were provided (Supplementary Figure S2D). (i) Quick
search: a quick search by metabolite names, external source
identifiers and fuzzy words was provided. (ii) Advanced search:
five search options (study type, tissue type, organism, category
of depression and platform) were incorporated for data filter-
ing. Relevant studies and metabolites with the hyperlinks were
shown in the Search Result page.

Others

The study entry dataset, the metabolite entry dataset, and 23
metabolomics datasets from our previous published studies
were available as Excel files, and the hyperlinks of 13 datasets
from other research teams were listed. Data are free for
download to all users. Other information for this database, such
as data statistics and tutorial, was provided in other sections.
Data updating and database structure upgrading in MENDA is
an ongoing process.

Application of MENDA for data integration

The vote-counting method was used to identify which metabo-
lites were consistently altered. Among the 202 metabolites that
were introduced to the vote-counting process in all settings,
18 metabolites were consistently up-regulated across studies,
and 24 were consistently down-regulated (Supplementary
Table S6). For example, depressed patients had lower levels
of brain gamma-aminobutyric acid and glutamate/glutamine
(Figure 4A), which is consistent with the findings of previous
meta-analyses [29, 30].

https://www.r-project.org/
http://www.ingenuity.com
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
http://menda.cqmu.edu.cn:8080/index.php
http://menda.cqmu.edu.cn:8080/index.php
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
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Figure 4. Plots for data integration and biological function analysis. (A) The plot for the results of the vote-counting method. The plot summarizes the distribution of

up-regulated or down-regulated of metabolites across studies. Red and blue bars denote the numbers of studies that reported that the metabolite was up-regulated or

down-regulated, respectively. An asterisk (∗) indicates an FDR < 0.05. (B) The plot for the results of metabolite set enrichment analysis. The top 20 enriched metabolite

sets are shown. For each metabolite set, the color of the bars denotes the P-value of the hypergeometric test, and the ‘enrichment factor’ was calculated by dividing

the number of uploaded metabolites (hits) by the expected number of matches. (C) The plot for the results of metabolic pathway analysis. Nodes represent metabolic

pathways, the x-axis shows the −log10(P-value), and the y-axis shows the pathway impact. (D) The plot for the results of canonical pathway analysis. Nodes represent

metabolic pathways, the x-axis shows the pathway names, and the y-axis shows the overlap rate of numbers actually matched from the user-uploaded metabolites

(hits) and the total number of molecules in the pathways (total). (E) The plot for a canonical pathway. Metabolites, proteins and the interrelation in this canonical

pathway are presented. (F) The plot for a molecular network. Metabolites, proteins and the interrelation in this network are presented.

Application of MENDA for biological function analysis

We also explored the enriched metabolite sets and disturbed
metabolic pathways using MetaboAnalyst. Enriched metabolite
sets across separate settings are shown in Supplementary
Table S7. For example, 19 metabolite sets in the central nervous
system of patients were enriched with P < 0.05, while none
were significantly enriched with an FDR < 0.05 (Figure 4B). The

results of the metabolic pathways analysis showed that 14
metabolic pathways were significantly altered before treatment,
and 19 pathways after treatment (Figure 4C and Supplementary
Table S8). Interestingly, most of these pathways were shared
both before and after treatment. To provide more detailed
information on the differential metabolites involved in each
pathway associated with depression, we integrated the 14
significantly disturbed metabolic pathways into a simplified

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
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pathway diagram (Figure 5). Another pathway diagram is also
provided for the seven metabolic pathways with P < 0.05 but an
FDR > 0.05 (Supplementary Figure S3).

We then identified the significantly altered canonical
pathways (Supplementary Table S9) and disturbed molecular
networks (Supplementary Table S10) using IPA. For example,
41 canonical pathways in the human central nervous system
were significantly enriched before treatment (Figure 4D). An
example of a canonical pathway is shown in Figure 4E. ‘Cellular

compromise, lipid metabolism, small molecule biochemistry’
was the only significantly disturbed molecular network in the
human central nervous system, with a score of 35 (Figure 4F).
Canonical pathway and network analyses also showed an
important role of the glutamate system in depression, which
supports previous reports that glutamate receptors are potential
targets for the development of novel antidepressant agents
[31–33]. One quarter of the top 20 canonical pathways in
the central nervous system were shared between patients

Figure 5. Metabolites and interactions in the 14 significantly altered metabolic pathways. Dotted boxes represent the significantly altered KEGG pathways (metabolic

pathway analysis FDR < 0.05). Rectangles represent the metabolites in the pathways. For each metabolite, nodes in each row represent the number of metabolite entries

in the human central, human peripheral, animal central and animal peripheral systems, respectively; nodes in the first and second columns represent the numbers

of metabolite entries before and after treatment, respectively. Red node: number of metabolite entries ≥3; blue node: number of metabolite entries <3; hollow node:

number of metabolite entries = 0. Colored rectangles represent the total number of metabolite entries across all eight settings, with darker colors representing larger

numbers.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz055#supplementary-data


1462 Pu et al.

and animal models, and 55% in the peripheral system were
shared between patients and animal models. These findings
implicated that animal models still could not mimic all the
molecular changes of patients, and more studies based on
human participants are needed to confirm the findings from
animal models.

Discussion
There is increasing evidence for metabolite abnormalities in
brain and peripheral tissues in depression and with antidepres-
sant treatment (Supplementary Figure S4). To provide a full view
of current knowledge from a perspective of systems biology,
we manually developed a new metabolite-disease association
database. We also proposed a framework for big-data driven data
integration and biological function analysis, which can provide
insights for the curated knowledge of MENDA. To our knowledge,
this is the first metabolic database for a specific neuropsychiatry
disease. Our model of a single psychiatry disorder may also be
replicated to study other complex diseases.

The aim of the present study was to manually collect and
annotate all available metabolic knowledge of depression from
the literature and other databases. To achieve this goal, we man-
ually curated 5675 metabolite entries from 464 studies through
systematic searches in 10 databases and full-text screening
from thousands articles. Compared with the MetSigDis that only
contains 37 metabolite entries for depression [17], we provided
a hundred-fold increase in metabolite entries. Nevertheless,
more disease-specific metabolic knowledge bases are required
to address the biochemical research needs of complex diseases.
The use of a standardized data extraction process and multi-
faceted annotation scheme also enabled us to present an
overview of metabolic characterization, which may be a valuable
resource for researchers interested in depression or database
development.

In addition to data presentation in MENDA, we proposed
a systematic framework of data integration and biological
function analysis to clarify underlying biological information
from heterogeneous data sources. For data integration, the
vote-counting method was chosen to combine data, as raw
metabolic datasets or mean concentrations of metabolites were
not accessible in many studies [34]. This method has been used
in previous large-scale systems biology studies [35, 36]. Other
statistical methods, including combining mean concentrations
[37, 38] and merging the raw data [27], are potential choices
for specific datasets from studies that have provided the mean
concentrations or even raw metabolomics data.

Compared with traditional methods that only focus on a
small number of metabolites, biological function analysis that
integrates complex information from heterogeneous datasets
allows for analysis of all available candidate molecules within
a systematic framework, to elucidate the biological mechanism
in complex diseases [39, 40]. Pathway and network analyses,
which examine the interactions between metabolites, genes and
proteins within biological pathways or networks [41, 42], are the
most common methods for big-data driven research [43, 44]. In
addition to MetaboAnalyst or IPA mentioned above, users can
choose other potential tools for bioinformatics analysis.

There are two major limitations of this study. First, like other
knowledge bases [45, 46], candidate metabolites were collected
based on the statistical threshold in the original reports. Further
statistical correction and bioinformatics analysis are needed
when the full quantitative data are available from many stud-
ies. However, the number of available metabolome datasets in

MENDA remains limited, as many obstacles remain for the goal
of making data findable, accessible, interoperable and reusable
[47]. Second, all the biological processes of depression cannot
be understood solely by metabolic changes [48]. Thus, we will
integrate other omics data, including proteomics and genomics,
in future research.

Conclusion
After screening more than 10 000 citations, we manually curated
5675 metabolite entries from 464 studies in MENDA (http://
menda.cqmu.edu.cn:8080/index.php). The standardized data
extraction process and the multi-faceted annotation scheme
enabled us to systematically provide a panoramic view of
metabolic characterization in depression. A user-friendly search
engine and web interface were integrated for database access.
To facilitate data analysis and interpretation based on MENDA,
we also proposed a systematic analytical framework, including
data integration and biological function analysis. Our model,
which systematically integrates metabolic knowledge base
construction for a specific psychiatry disorder, may be replicated
to study other complex diseases.

Key Points
• MENDA is the first metabolic database for a specific

neuropsychiatry disease.
• A multi-faceted annotation scheme containing study-

level and metabolite-level knowledge and a user-
friendly interface were provided in MENDA, which may
serve as an important resource for researchers inter-
ested in depression or database development.

• MENDA presents a panoramic view of metabolic char-
acterization in depression that is based on manual
curation of 5675 differential metabolite entries from 464
studies.

• Based on MENDA, we proposed a systematic analytical
framework, including data integration and biological
function analysis, to facilitate data analysis and inter-
pretation.

• Case studies were provided for the systematic analyti-
cal framework.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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