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Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to bemonomeric
in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests
that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes,
hypochromic effect, and hydrodynamic radius of binase.The immutability of binase secondary structure upon transition from low
to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell
membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results
made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.

1. Introduction

The low molecular weight guanyl-preferring ribonuclease
(RNase) secreted by Bacillus pumilus is known due to its
biological activity including antiviral and antitumor effects
[1–5]. Binase, the trivial name of the enzyme, derives from the
first letters of its producer strain’s name, Bacillus intermedius,
which recently has been reidentified as B. pumilus using
molecular methods [6]. Starting from the first publications
[7], binase had been considered as amonomeric cationic pro-
tein with molecular weight of 12 kDa. Today the dimerization
of binase has been confirmed by direct observation of dimers
in the culture fluid of the producer [8] supporting theoretical
calculations of binase monomer association in solution [9].
Covalent bonds do not take part in the oligomerization of
binase due to the absence of cysteine residues containing
SH-groups in the molecule. Probably, the dimerization takes
place during the interaction of N- or C-terminal domains
(domain swapping) suggesting the presence of several dimer
models which differ in stability [8].

Protein secretion in Bacillus is mainly mediated by the
Sec system. Chaperone SecB directs the newly synthetized
secreted protein towards the membrane pore SecYEG pre-
venting its folding into a native structure [10]. The binase
signal sequence of 28 amino acid residues is typical for
Sec-translocated proteins and is followed by the negatively
charged propeptide of 24 amino acid residues. Such small
propeptides increase the effectiveness of protein secretion in
Bacillus [11]. Proteins translocated through the SecYEG pore
to the cell surface immediately acquire a native conforma-
tion to avoid proteolytic degradation. Secretion of proteins
directly in a dimeric state is also possible [12, 13]. Most of
them are secreted through nonclassical pathways and require
an unknown three-dimensional recognition signal for secre-
tion.

In order to understand at which stage the binase dimer-
ization takes place, we put forward two alternative sugges-
tions: either the enzyme is secreted by B. pumilus in the form
of monomers and their association takes place along with an
increase of protein concentration, or the preformed dimer is
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secreted into the extracellular environment. In favor of the
first hypothesis, we can cite numerous studies on the physic-
ochemical properties of binase performed by various research
groups which actually have not mentioned the existence
of aggregated forms of enzyme, as well as crystallographic
studies which have not given an unambiguous answer to the
question about association properties of binase [14–17]. In
addition, the interaction of monomers occurs in many points
of contacting surfaces supported by dozens of weak bonds
(hydrophobic, ionic, and hydrogen bonds) and the enzyme
accumulates gradually in the culture fluid; therefore spatial
difficulties can ensure the absence of dimerization under
conditions of low protein concentration.

On the other hand, the protein hydration shell can screen
its polar fragments and prevent protein oligomerization. This
suggests that dimers of binase found in the culture fluid [8]
should be formed immediately after secretion. It should be
noted that the ability to form multimers was established for
the precursors of Bacillus secreted proteinases [18].

Thepresentworkwas carried out to analyze the possibility
of existing for natural monomeric forms of B. pumilus
secreted RNase. Their presence will unequivocally confirm
the first of our assumptions. If monomers are formed only
at the stage of translation and their oligomerization occurs
intracellularly or on the cell wall of Gram-positive bacilli,
such data will eliminate all questions about the ambiguity
and contradictions of previously obtained results concerning
binase supramolecular structure.

2. Materials and Methods

2.1. Enzyme. Binase is a cationic guanyl-preferring RNase
(pI 9.5) hydrolyzing RNA without a need for metal ions and
cofactors. It consists of 109 amino acid residues with the
molecular weight of 12.3 kDa. Binase was isolated from B.
pumilus culture fluid and purified according to the procedure
previously described for bacillary RNases [19, 20]. Catalytic
activity of binase was 1.4×107U/mg when measured against
highmolecular weight yeast RNA at pH8.5 and 37∘C [4]. One
unit of RNase activity was defined as the amount of enzyme
that increases the extinction of acid-soluble products of RNA
hydrolysis at 260 nmby one unit perminutemeasured at 37∘C
and pH 8.5.

2.2. SDS-PAGE. Protein oligomers were separated by the
polyacrylamide gel electrophoresis in the presence of 0.1%
SDS. Separating gel contained 15% acrylamide, and stacking
gel contained 6% acrylamide. Protein samples were sus-
pended in 4x sample buffer with final SDS concentrations of
1%, 1.5%, and 2%. Electrophoresis was performed at 150V for
60min. Proteins were stained with Coomassie R-250.

2.3. CD-Spectrometry. The Circular Dichroism (CD) spec-
tra were measured in the 190-260nm wavelength range
on the Jasco J-1500 spectrometer (Japan) with a scanning
speed of 50 nm/min. The binase was desalted and trans-
ferred into a 0.01M sodium phosphate buffer, pH 7 using
Zeba 7 kDa columns. The concentration of the stock binase
solution was determined after filtration through 0.22𝜇m

pore membrane using the extinction coefficient E280
0.1%

= 2.205. Quartz cuvettes with 0.01 cm and 0.1 cm opti-
cal path way were used to study enzyme concentrations
1mg/mL and 0.05mg/mL, respectively. The cuvettes were
thermostated at 25∘b. The content of the protein secondary
structure elements was determined with the help of the
CDSSTR algorithm (protein set 4) using DichroWeb server
(http://dichroweb.cryst.bbk.ac.uk).

2.4. UV-Spectrometry. The absorption spectra were recorded
on Lambda 25 instrument (Perkin Elmer, USA) in the
wavelength range 190–400 nm at 25∘C. The solutions were
prepared in the same way as for CD measurements. Stock
solutions in 0.01M sodium phosphate buffer, pH 6.1 or 0.1M
K2SO4, pH 3.0 were titrated directly in a measuring 1 cm
quartz cuvette with the same buffer composition. The calcula-
tions using on-line server http://protcalc.sourceforge.net/cgi-
bin/protcalc showed that at these pH values binase carries the
overall positive charge of +5 and +16, respectively.

2.5. Self-Diffusion Measurements. The NMR self-diffusion
method was applied for the direct assessment of hydrody-
namic size [21, 22] of binase at acidic and neutral pH. Samples
were studied at protein concentration 1.5mg/ml at pH 3.0 and
pH 6.4 by dissolving the protein powder in D2O in order to
minimize the signal fromwater protons in NMR spectra. 1H-
NMRexperimentswere carried out on theAVANCE IIINMR
spectrometer (Bruker, Germany) operating at 600.13MHz.
The spectrometer was equipped with a standard z-gradient
inverse probe head (TXI, 5mm tube) capable of producing
gradients with a maximum strength of 55.7 G/cm. We used
a stimulated-echo sequence incorporating bipolar gradient
pulses and a longitudinal eddy current delay (BPP-LED) [23].
The experimental parameters were as follows: a 90∘ pulse
length 10-13𝜇s; spectral width 13 ppm; time domain data
points 16-32K; the number of scans 16 recycling delay 2-5 s.
The amplitude of field gradient was varied from 2% to 98%
of its maximum value over 16-32 increments under constant
diffusion time (Δ=50ms) and gradient pulse duration (𝛿=6-
12ms). A gradient recovery delay of 0.1ms and an eddy cur-
rent delay of 5ms were used. Data processing and the analysis
were performed using the Bruker Topspin 3.5 software. The
chemical shift region for measurement of the self-diffusion
coefficient was chosen in the up-field domain of the spectrum
that contained strong proton signals at 0.7-0.9 ppm.

2.6. Statistics. Each experiment was performed in triplicate.
Statistical differences were analyzed with the standard meth-
ods using Microsoft Excel 2007.

3. Results

3.1. Electrophoresis Revealed Binase Monomers and Dimers
Depending on the Protein Concentration. Electrophoresis of
binase conducted at low concentrations of enzyme (less than
50 ng) in the presence of 0.1% SDS showed no dimeric bands
(Figure 1(a)). In-gel detection of catalytic activity of binase in
those concentrations confirmed the presence of monomeric
forms only (Figure 1(b)). However, the increase of binase
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Figure 1: Electrophoretic study of binase. (a) Polyacrylamide gel
electrophoresis (PAGE) with 0.1% SDS at nanoconcentrations of the
enzyme (M, molecular weight markers). (b) Zymogram of binase
at nanoconcentrations. (c) PAGE of binase at microconcentration
(10𝜇g) in the presence of strong denaturing agents: 1 - 1.5 % SDS; 2
- 2 % SDS.

concentration allowed detecting of its dimer even when SDS
concentration was increased up to 2%. Moreover, the use of
strong denaturing agents such as urea or guanidine chloride
did not lead to disappearance of binase dimeric band indi-
cating that micromolar enzyme concentrations facilitate the
identification of binase dimers even under strong denaturing
conditions (Figure 1(c)).

We can assume that the certain ratio between protein
and denaturing agent allows the complete destroying of
binase dimeric structure. Under the conditions when only
monomers were visible, the approximate ratio SDS/protein
wasmore than 1000whereas upon the detection ofmonomers
and dimers it was slightly more than 100 (calculated accord-
ing to Figures 1(a) and 1(c)). It is also possible that protein

forms unstable dimers at low concentrations susceptible to
disintegration due to the SDS action. High binase concentra-
tions allow the formation of highly stable dimers which do
not dissociate even in the presence of denaturing agents.

Probably, the ratio of unstable binase dimers to highly
stable swapping dimers which are simultaneously present in
the medium is crucial. According to the data obtained for
dimers of bull semen RNase (BS-RNase) the ratio of swapped
to unswapped dimers is 3 : 7 [21]. The similar dependence
can be assumed for binase. Therefore, at low enzyme con-
centrations (less than 100 ng) only monomers resulting from
unswapped dimers dissociation are visible (Figures 1(a) and
1(b)). With increasing protein concentration the amount of
stable swapped dimers raises making them detectable on the
gel (Figure 1(c)).

3.2. CD Spectroscopy Indicated No Protein Conformational
Transition under Increase of Binase Concentrations. The com-
parison of binase CD spectra at two studied concentrations
(0.05mg/mL and 1mg/mL) at pH 7 showed no significant dif-
ference in the shape of the spectra (Figure 2(a)) besides some
spreading of spectral data below 200 nm. The verification
measurements showed that the intensity of the 190 nm band
varies depending on the buffer absorbing properties owning
to decrease of signal/noise ratio due to the influence of
residual salt ions which have not been fully eliminated during
protein desalting. However, we did not detect the difference
in the secondary structure composition for two protein
concentrations (Figure 2(b)). Thus, the CD spectra indicated
the absence of significant changes in the binase secondary
structure and the expected monomer-dimer conformational
transition at the studied concentrations.

3.3. Binase Did Not Exhibit a Hypochromic Effect of UV Ab-
sorption in the Concentration Range 0-50𝜇g/mL. For binase
a linear dependence of absorption at 220 nm on enzyme con-
centration in the range from 0 to 50 𝜇g/mL and pH 6.1 was
established (Figure 3). Lysozyme under the similar condi-
tions demonstrated a hypochromic effect at protein con-
centrations exceeding 20𝜇g/mL [24, 25]. Based on our
previous results of hydrogen exchange andNMRdata [26], we
assumed that the increase in the binase charge under the
growth of solution acidity to pH 3.0 will shift the equilibrium
between dimers and monomers and will cause the changes
in solution optical properties. However, the optical density
at the peptide groups absorption maximum (216 nm) had a
linear dependence on concentration up to 0.05mg/mL and
the extinction was independent of the pH value (Figure 3).
Thus, HE had not been observed in the studied range of
binase concentration for both pH3.0 and pH 6.1 providing an
evidence for invariability of binase supramolecular structure
and the lack of monomer-dimer transition.

3.4. Hydrodynamic Radius Supported the Existence of Binase
in Dimeric Form. For water solutions the binase self-
diffusion coefficients D = 1.26 × 10−10m2/s and D = 1.38 ×
10−10m2/s were obtained for pH 2.8 and pH 6.4, respectively.
Self-diffusion coefficient of a particle is closely related to
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Figure 2: CD spectra of binase in units of molar (on a residue) ellipticity (a) and relative content of secondary structure elements of binase
(b) for enzyme concentrations of 0.05mg/ml (dark) and 1mg/ml (light symbols), pH 7.
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Figure 3: Changes in 216 nm absorbance of binase solution at pH
6.1 (light symbols) and pH 3 (dark symbols) with respect to protein
concentration.

molecular size as can be seen from the Stokes—Einstein
equation:

D = 𝑘T
6𝜋𝜂r (1)

where k is the Boltzmann constant, T is the temperature,
and r is particle (protein) effective hydrodynamic radius
(Stokes radius) in a solution of viscosity 𝜂. According to
this equation we obtained hydrodynamic radii of binase
molecules in solutions r = 2.01 nm (pH 3.0) and r = 2.14 nm
(pH 6.4). Figure 4 depicts average hydrodynamic radius r
= 2.1 nm (dashed sphere) in comparison with the results of
binase computer structural modeling [8].

The theoretical size of the binase monomer globule is
1.6 nm. The increase in hydrodynamic radius by 1.2-1.3 times
corresponds to the formation of the dimeric form of the
protein (Figure 4) according to the relation: D = (n)−1/3,

R

Figure 4: The model of binase dimer [8] and experimental hydro-
dynamic size (R = 2.1 nm) of protein determined by means of NMR
techniques.

where D is the self-diffusion coefficient and n is the degree
of oligomerization [27]. Small differences in the magnitude
of the effective radii measured at pH 2.8 and pH 6.4 may be
due to the differences in the extent of hydration water and the
electrostatic interactions between protein molecules.

4. Discussion

Many RNases are prone to formation of oligomeric struc-
tures. Bovine pancreatic RNaseA lyophilized from40%acetic
acid solution forms dimers, trimers, tetramers, and multi-
mers of higher order [28, 29]. RNase of bull semen (BS-
RNase), an enzyme with a molecular mass of 27 kDa and
isoelectric point of 10.3, is a mixture of natural dimers of two
types [30]. Dimers of the first type are formed by covalent
disulfide bonds between amino acid residues Cys31 andCys32
while prevalent dimers of the second type are additionally
stabilized by exchange of N-termini [31]. Binase as well as BS-
RNase, RNase A, and human pancreatic RNase H contains
hydrophobic fragments capable of participating in dimeriza-
tion [32], but does not have sulfur-containing amino acids
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for covalent cross-linking of dimers. The swapped form of
BS-RNase retains its dimeric structure even if the disulfide
bonds are disrupted [33]. Although the structure of RNase
fromRana pipiens oocytes, onconase, is also stabilized during
folding through disulfide bonds [34], recently discovered
dimers of onconase were formed by the domain overlapping
[35].

In the first works describing the oligomerization of
lysozyme it was shown that the key point for this process was
the ionization of amino group of active site (Glu35) which
had high equilibrium constant of the acid dissociation (pKa
6.2) due to its hydrophobic environment [24]. An impor-
tant characteristic of lysozyme self-aggregation was its pH
dependence [36, 37]. For binase the decrease in availabil-
ity of peptide groups to solvent molecules and increased
intermolecular electrostatic interactions leading to partial
protein association was demonstrated using the methods of
hydrogen exchange and NMR relaxation with pH increasing
from 2.5 to 6.0 [26]. The authors of the cited article showed
that in binase crystals, where one active site was blocked,
two carboxyl groups (Glu43, Glu59) were theoretically able
to participate in the oligomerization. Glu43 located on the
surface of protein molecule has a hydrophobic environment
(Phe81, Ser37, Ser79) and high pKa value making it a potential
analogue of Glu35 of lysozyme involved in the formation of
dimers.

Stereospecific combination of hydrophobicity and inter-
action of the 𝛽-domains plays a key role in the oligomeriza-
tion of proteins. In transition states preceding oligomeriza-
tion the 𝛼-domain remains structured while the 𝛽-domain
loses its secondary structure [38]. Binase, cross-linked by
dimethyl suberimidate, has shown the increased hydropho-
bicity and lower content of 𝛽-structures indicating the for-
mation of more stable dimers in comparison to the native
enzyme and not the transition of monomer into dimer,
as it was interpreted previously [39]. We have described
two plausible models of binase dimerization, one of which
is based on Van der Waals and electrostatic contacts and
another is stabilized mainly by electrostatic interactions; both
models provide a possibility for monomers to exchange their
terminal domains [8]. As it can be seen from Figure 1, some
dimeric structures were very stable and did not dissociate
even in the presence of strong denaturing agents (Figure 1(c))
and the others disintegrated into monomers during SDS-
electrophoresis (Figure 1(a)). It can be assumed that the
presence of unstable dimers in a highly purified enzyme
preparation, which were not detectable during denaturing
electrophoresis of the enzyme at low concentrations, led to
the fact that binase for a long time has been considered
as a monomer. Our analysis of the CD spectra, the optical
density at the band of peptide group absorption, and the
NMR results on binase hydrodynamic radius pointed out the
immutability of the protein secondary structure during the
transition from low to high (up to 1.0mg/mL) concentration
and excluded the presence of a monomer in the binase
preparation (Figures 2 and 3). Thus, the optical methods
confirmed native dimeric structure of binase and our second
assumption that B. pumilus secretes dimeric protein to the
environment. Thanks to the Sec signal sequence binase

translocates through the cell membrane in the unfolded
state. Dimerization of the enzyme probably occurs during
the folding or when it passes through the cell wall of B.
pumilus resulting in the detection of binase dimers only
in the culture fluid regardless of RNase concentration [8].
Propeptides of bacterial hydrolases prevent the activation of
the enzymatic function of proteins until the translocation and
catalyze the folding of secreted enzymes after their transfer
through the cytoplasmic membrane [40, 41]. Proteins usually
pass through the cell wall by passive diffusion [10]. Bacillus
spp. use the S-layer on the surface of their cells as the three-
dimensional grid for the self-assembly of secreted proteins
[42]. It should be noted that the presence of such component
of the cell wall as N-acetyl glucosamine does not eliminate
dimerization of lysozyme [43] as it was suggested earlier [24].
This fact indirectly confirms the stability of the dimeric form
of secreted binase during its diffusion through the cell wall of
Gram-positive bacilli.

5. Conclusions

Thus, the purification of binase from the culture fluid of
B. pumilus will always lead to the acquisition of dimers.
The monomer can be obtained by the implementation
of certain amino acid substitutions in the sites of binase
dimerization using the method of site-directed mutagenesis.
By this method a monomeric variant of natural dimer of
BS-RNase with fully preserved catalytic activity and 30-
fold increased cytotoxicity compared with the wild type
dimer was obtained [44]. The synthetic dimer of BS-RNase
constructed on its basis also demonstrated the enhanced
cytotoxicity as compared with the natural dimer [44] whose
antitumor activity in the reducing environment of cytosol is
due to noncovalent swapped form of BS-RNase only [30, 33].
Nevertheless, the cytotoxicity of synthetic dimer was lower
than that of the monomeric form. Thus, the obtaining of
binase monomer opens up the possibilities for unraveling
the precise mechanisms of binase antitumor action and will
help to determine the deposit of the RNase supramolecular
structure into its cytotoxicity.
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