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Abstract

There is a growing need to develop variant prediction tools capable of assessing a wide

spectrum of evidence. We present a Bayesian framework that involves aggregating patho-

genicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence

statistics in both quantitative and qualitative forms, and performs 5-tiered variant classifica-

tion based on the resulting probability credible interval. When evaluated in 1,161 missense

variants, our gene-specific in silico model-based meta-predictor yielded an area under the

curve (AUC) of 96.0% and outperformed all other in silico predictors. Multifactorial model

analysis incorporating all available evidence yielded 99.7% AUC, with 22.8% predicted as

variants of uncertain significance (VUS). Use of only 3 auto-computed evidence statistics

yielded 98.6% AUC with 56.0% predicted as VUS, which represented sufficient accuracy

to rapidly assign a significant portion of VUS to clinically meaningful classifications. Collec-

tively, our findings support the use of this framework to conduct large-scale variant prioritiza-

tion using in silico predictors followed by variant prediction and classification with a high

degree of predictive accuracy.

Introduction

The recent surge of sequencing-based clinical genetic testing has put a spotlight on associated

challenges in data interpretation. While advances in genomics allow for the development of

new genetic tests at an unprecedented pace and complexity, the interpretation of results has

remained a largely manual and time-consuming process that is not scalable to the volume and

diversity of available data [1]. In particular, the rich evidence in well classified variants is not

effectively incorporated in classification schemes relying on manual processing of large-scale

information.

The pathogenicity of a genetic variant can be assessed by various evolutionary, functional

and structural in silico scores and a range of evidence from clinical, family history, co-occur-

rence and co-segregation data, as well as the published findings of case-control, cohort or fam-

ily-based studies [2, 3]. One approach to variant classification is to follow a rule-based scoring

system, in which each line of evidence is converted into a score and the summary score from

all available evidence is used to determine the classification [4–6]. This rule-based approach
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assumes variants have strong and consistent evidence that is equally applicable across the

genome. It also makes use of only qualitative evidence and does not leverage existing knowl-

edge pertaining to other well classified variants. Another approach to variant classification

is the multifactorial likelihood method, in which the prior probability of pathogenicity is

obtained by using a genome-wide in silico (S1 Table) or ensemble (S2 Table) prediction

method and the posterior probability is derived by aggregating the prior probability over mul-

tiple quantitative evidence [7, 8]. While this multifactorial method is computationally simple,

it does not account for gene-specific differences and variability of the estimated prior probabil-

ity. A third approach uses allele frequencies and multiple in silico predictors in a Bayesian

logistic regression model that includes priors based on case-control proportions of carriers

reported in the literature or public databases, a categorical covariate for gene-specific effects,

and fixed model terms for each gene tested [9]. Such models improved prediction accuracy

over alternative approaches, but did not allow for all parameters to be freely estimated for each

gene or make use of the wide range of available evidence.

To efficiently and accurately determine the pathogenicity of genomic variants, there is a

growing need to develop data-driven tools that are capable of assessing a wide array of evi-

dence associated with each variant while leveraging information that is readily available for

well classified variants. To address this need, we developed a Bayesian framework for variant

prediction that aggregates multiple in silico scores and evidence statistics in both quantitative

and qualitative forms, and validated the models in genes associated with hereditary cancer syn-

dromes. Our approach improves upon existing methods by leveraging the vast information

available for classified variants, quantifying gene-specific in silico effects while incorporating

both quantitative and qualitative evidence, and predicting the pathogenicity of each variant

using a probability distribution to account for uncertainty.

Results

Analytical framework

Our Bayesian framework is a data-driven model-based tool for variant prediction and classifi-

cation analysis (Fig 1). Initially, a set of gene-specific in silico predictors is selected from publi-

cally available in silico scores. An in silico variant prediction (IVP) model is used to predict a

preliminary level of variant pathogenicity based on a training dataset that contains variants

with known classification and their accompanying 16 in silico predictors. Next, the prior prob-

ability distribution of pathogenicity for each variant is estimated from a corresponding IVP

model followed by a rescaled transformation, and the posterior probability distribution is esti-

mated from a multifactorial variant prediction (MVP) model that aggregates the prior distri-

bution over multiple evidence predictors (Fig 1A). Finally, variant classification is assigned

to 5-tiered classes of benign, variant of likely benign (VLB), variant of uncertain significance

(VUS), variant of likely pathogenic (VLP) and pathogenic based on the probability distribution

of pathogenicity (Fig 1B).

In silico model analysis

For each of 10 genes that collectively constitute the multigene panel test (MGPT) data con-

taining missense variants with known ClinVar consensus classification outcomes of benign,

VLB, VLP and pathogenic, we constructed a training dataset and derived an IVP model that

retained 1 to 4 in silico predictors from the 16 candidate standalone scores tested (S3 Table).

When these gene-specific IVP models were evaluated in all 1,161 class-known variants using

a leave-one-out cross validation (LOOCV) method and the 5-tiered classification scheme,

360 (31.0%) were predicted to be concordant with their known classes, 277 (23.9%) were
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categorized one level above or below their known classes (e.g., benign as VLB, pathogenic as

VLP, etc.), 520 (44.8%) were classified as VUSs, and 4 (0.3%) were discordant (e.g., patho-

genic/VLP classified as benign/VLB or vice versa) and therefore noted as false negatives or

false positives (Fig 2A; S4 Table). Thus, while the IVP model yielded high positive predictive

Fig 1. Algorithm modules of multifactorial model analysis for variant prediction and classification. (A) Modules of Bayesian multifactorial

model analysis for variant prediction and classification. SLR = stepwise logistic regression. (B) 5-tiered variant classification scheme based on

the estimated 95% probability credible interval (PCI) of variant pathogenicity.

https://doi.org/10.1371/journal.pone.0203553.g001

Fig 2. Outcome of 5-tiered predicted classes in MGPT data. (A) The proportions of predicted classes from gene-specific IVP model analysis

in which each prediction was evaluated from a subset of 16 in silico predictors. The analysis was based on 1,161 class known missense variants

in 10 genes using LOOCV. (B) The proportions of predicted classes from MVP model analysis in which each prediction aggregated a prior

distribution from IVP model with the available evidence predictors. The analysis was based on 1,016 variants with any available evidence

statistics.

https://doi.org/10.1371/journal.pone.0203553.g002
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value (PPV), negative predictive value (NPV) and accuracy (100.0%, 99.2% and 99.4%,

respectively), sensitivity and specificity were modest (35.7% and 65.5%, respectively)

(Table 1, lower section).

We next compared the predictive performance of the IVP model to that of each individual

in silico predictor. Using the same 1,161 class-known variants, the gene-specific IVP models

had the highest sensitivity (35.7%), PPV (100.0%), NPV (99.2%), accuracy (99.4%), and AUC

(96.0%), and lowest proportion of VUS (44.8%) compared to each of the 16 standalone and

6 meta-predictor models (Table 1). Among all 23 in silico models, the AUC statistics were

highest for IVP model and followed by REVEL and MetaSVM (Fig 3A and 3B; Table 1:

AUCIVP = 0.960 vs. AUCREVEL = 0.942, p = 0.01; AUCIVP = 0.960 vs. AUCMetaSVM = 0.940,

p = 0.002).

Table 1. In silico variant prediction in MGPT data.

Methoda No. by Predicted Outcomesb Performance Statisticsc

TP TN FP FN VUS Sen Spe PPV NPV Acc AUC PVUS

Standalone predictor:

MutPred 101 496 1 17 546 0.244 0.664 0.990 0.967 0.971 0.939 0.470

phyloP vertebrate 75 438 6 15 627 0.181 0.586 0.926 0.967 0.961 0.915 0.540

MutationAssessor 71 315 0 9 766 0.171 0.422 1.000 0.972 0.977 0.891 0.660

FATHMM 99 276 2 6 778 0.239 0.369 0.980 0.979 0.979 0.884 0.670

AGVGD 217 0 18 0 926 0.524 0.000 0.923 NA 0.923 0.878 0.798

Polyphen2 HVAR 0 414 0 21 726 0.000 0.554 NA 0.952 0.952 0.878 0.625

Siphy 0 277 0 5 879 0.000 0.371 NA 0.982 0.982 0.863 0.757

LRT 0 291 0 8 862 0.000 0.390 NA 0.973 0.973 0.862 0.742

GERP++ 0 329 0 12 820 0.000 0.440 NA 0.965 0.965 0.860 0.706

Polyphen2 HDIV 0 404 0 26 731 0.000 0.541 NA 0.940 0.940 0.859 0.630

SIFT 0 315 0 12 834 0.000 0.422 NA 0.963 0.963 0.856 0.718

PROVEAN 50 102 1 2 1,006 0.121 0.137 0.980 0.981 0.981 0.855 0.866

phastCons mammalian 0 361 0 14 786 0.000 0.483 NA 0.963 0.963 0.838 0.677

phastCons vertebrate 0 455 0 10 696 0.000 0.609 NA 0.978 0.978 0.836 0.599

phyloP mammalian 0 213 0 5 943 0.000 0.285 NA 0.977 0.977 0.742 0.812

Grantham 0 0 0 0 1,161 0.000 0.000 NA NA NA 0.662 1.000

Meta-predictor:

IVP 148 489 0 4 520 0.357 0.655 1.000 0.992 0.994 0.960 0.448

REVEL 90 475 4 20 572 0.217 0.636 0.957 0.960 0.959 0.942 0.493

MetaSVM 0 518 0 16 627 0.000 0.693 NA 0.970 0.970 0.940 0.540

Eigen 22 497 0 4 638 0.053 0.665 1.000 0.992 0.992 0.932 0.550

Eigen PC 12 506 0 5 638 0.029 0.677 1.000 0.990 0.990 0.927 0.550

CADD 61 330 17 3 750 0.147 0.442 0.782 0.991 0.951 0.906 0.646

MutationTaster 0 517 0 13 631 0.000 0.692 NA 0.975 0.975 0.894 0.543

aThe in silico variant prediction analyses were evaluated from gene-specific prediction models from each of 16 standalone predictors and 7 meta-predictors, respectively,

in which the IVP predictor was derived from the 16 standalone predictors. Each analysis was evaluated in MGPT data containing 1,161 missense variants (747 negatives,

414 positives) using LOOCV. Results are listed in descending order of AUC values among models using standalone predictors and meta-predictors, respectively.
bPredicted outcomes were derived from the predicted positive/negative categories and the known ClinVar consensus classes. TN = true negative, TP = true positive,

FN = false negative, FP = false positive.
cPerformance statistics were reported as Sen = sensitivity, Spe = specificity, PPV, NPV, Acc = accuracy, AUC, and PVUS = proportion of variants classified as VUS.

NA = not able to calculate. The best performance statistics among comparison in silico prediction methods are highlighted in bold.

https://doi.org/10.1371/journal.pone.0203553.t001
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Multifactorial model analysis

Among the 1,161 variants included in this analysis, 1,016 (87.5%) had data available for at least

one evidence statistic from qualitative and/or quantitative sources. When applying our MVP

model analysis to these variants, predictive performance improved as expected when com-

pared to that of the IVP models (Table 2, upper section vs. lower section). The proportions

of variants classified as concordant with their known classes, categorized one level above or

Fig 3. Comparison of AUC statistics of standalone and meta in silico predictors in MGPT data. (A) AUC statistics of top 10 standalone in silico
predictors. (B) AUC statistics of 7 meta in silico predictors. The analysis models in legend were listed in descending order of AUC values.

Abbreviations: AUC = area under the receiver operating characteristic curve; IVP = in silico variant prediction; MGPT = multigene panel test.

https://doi.org/10.1371/journal.pone.0203553.g003

Table 2. Multifactorial variant prediction in MGPT data.

Method and Data (n-, n+)a No. by Predicted Outcomesa Performance Statisticsa

TP TN FP FN VUS Sen Spe PPV NPV Acc AUC PVUS

Using all evidence data:

Any evidence data (686, 330) 263 519 2 0 232 0.797 0.757 0.992 1.000 0.997 0.998 0.228

LR < 0.1 or > 10 (372, 226) 210 358 2 0 28 0.929 0.962 0.991 1.000 0.996 0.999 0.047

LR < 0.01 or > 100 (223, 74) 74 223 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000 0.000

LR < 0.001 or > 1,000 (155, 23) 23 155 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000 0.000

Using only auto-computed evidence:

Any evidence data (618, 255) 95 287 2 0 489 0.373 0.464 0.979 1.000 0.995 0.986 0.560

LR < 0.1 or > 10 (225, 35) 31 212 2 0 15 0.886 0.942 0.939 1.000 0.992 0.996 0.058

LR < 0.01 or > 100 (174, 8) 8 174 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000 0.000

LR < 0.001 or > 1,000 (107, 0) 0 107 0 0 0 NA 1.000 NA 1.000 1.000 NA 0.000

aMultifactorial variant predictions by MVP model analyses were conducted using either all available evidence data, which includes all quantitative and qualitative

evidence predictors (total variants = 1,016), or only the 3 auto-computed predictors from readily available databases: family history, co-occurrence and mutation

hotspot indicator (total variants = 873), respectively. The prior model for the MVP analysis was constructed for each variant using LOOCV. The n- and n+ values refer to

the numbers of negative and positive variants, respectively, in the analytical dataset. LR = total LR from all evidence statistics or auto-computed ones. The abbreviation

terms of predicted outcomes and performance statistics are same as those in footnotes b and c of Table 1.

https://doi.org/10.1371/journal.pone.0203553.t002
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below their known classes, as VUSs, and discordant between benign/VLB and pathogenic/

VLP were 551 (54.2%), 231 (22.7%), 232 (22.8%) and 2 (0.2%), respectively (Fig 2B and S4

Table). With 2 false classifications and 782 appropriately categorized as benign/VLB or patho-

genic/VLP variants, the MVP model analysis achieved 99.2% PPV (95% CI: 97.1% or above)

and 100.0% NPV (95% CI: 99.1% or above). Moreover, in subsets of variants with moderate

evidence (total likelihood ratio (LR) statistic <0.1 or >10) or strong evidence (total LR statistic

<0.01 or >100) evidence for benign or pathogenic, 95.0% (568/598) and 100% (297/297) were

correctly classified into the clinically informative classes of benign/VLB and pathogenic/VLP,

respectively (Table 2, upper section). In particular, for the subset of variants with total LR sta-

tistic<0.01 or>100, we observed ideal performance statistics: 100.0% PPV, 100% NPV, 100%

AUC, and 0% predicted VUS (Table 2, upper section).

Given that some evidence may lend itself to automated computation, while others may

require manual examination or adjustment [10], we also applied MVP model analysis using a

subset of auto-computed predictors for which data were readily available: co-occurrence, fam-

ily history and mutation hotspot. Among the 1,161 variants initially included, 873 (75.2%) had

data for at least one of these 3 predictors. Results of the constrained MVP model for these vari-

ants were highly accurate, with 98.6% AUC (Table 2, lower section); the proportions of vari-

ants classified concordant with their known classes, categorized one level above or below their

known classes, as VUSs, and discordant between benign/VLB and pathogenic/VLP were 260

(29.8%), 122 (14.0%), 489 (56.0%) and 2 (0.2%), respectively (Table 2, lower section and S4

Table). Overall, 32.9% (382/1,161) of variants were appropriately categorized as benign/VLB

or pathogenic/VLP. Among variants with strong evidence for a benign or pathogenic classifi-

cation (total LR statistic <0.01 or >100, respectively), 100.0% (182/182) of variants were cor-

rectly classified as benign/VLB and pathogenic/VLP (Table 2, lower section).

Discussion

We present a Bayesian framework consisting of IVP models that assess variant pathogenicity

using a subset of gene-specific in silico predictors, and an MVP model that aggregates this

result with information from a variety of qualitative and quantitative evidence sources to accu-

rately and robustly predict the pathogenicity classes of missense variants. The performance of

MVP model analysis demonstrates that this approach is capable of leveraging a vast constella-

tion of pathogenicity information available in large-volume data, and has important implica-

tions for increased clinical utility given its high predictive accuracy, which was cross validated

in over 1,000 classified missense variants.

The IVP and MVP model analyses have several distinct features that allow for improved

prediction accuracy and practical utility. First, IVP model prediction is conducted with data-

driven model terms derived from gene-specific training data, and is supported by a data

expansion procedure to accommodate a sparse data scenario in which the training data con-

tains an insufficient number of class-known variants. Notably, our IVP model quantifies the

pathogenicity of each variant with a probability distribution, instead of a probability value,

which allows for improved prediction robustness and accuracy by accounting for estimation

uncertainty. Second, an exact and fast Bayesian sampling procedure using data-independent

Pólya-Gamma distributions is adapted for model estimation [11, 12], which facilitates analysis

without the estimation of data-dependent priors on a gene-by-gene basis. Third, the incorpo-

ration of evidence statistics in qualitative forms, which are typically collected for rule-based

classification schemes, makes the MVP model analysis capable of incorporating broader types

of evidence statistics for improved practical utility, although the MVP model is not limited by

the use of these data. We demonstrated that MVP model performance is highly accurate even

Bayesian variant prediction
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when only three auto-computed quantitative evidence predictors are included in the model.

Lastly, the use of 95% PCI is designed to reduce the potential misclassification between

benign/VLB and pathogenic/VLP by accounting for the variability in the predicted probability

of variant classification.

When applied to the 10 genes with varying numbers of class-known missense variants, the

gene-specific IVP models outperformed 16 standalone and 6 meta-predictors each based on a

genome-wide in silico score. These results support the notion that universal prediction models

tend to have varied performance across different genes, and gene-specific classifiers incorpo-

rating phenotype data and established disease-causing evidence can improve prediction accu-

racy [13–15]. For multifactorial variant classification, the MVP model correctly assigned 77%

of variants to its precise or closely matched class and misclassified only 0.2% of variants

between benign/VLB and pathogenic/VLP. In addition, we show that using auto-computed

evidence statistics derived from commonly collected and readily available phenotype and

genotype data, 33% of evaluated variants can be correctly classified to their precise or closely

matched classes. These results highlight the practical utility of applying IVP model analysis for

large-scale variant prioritization and MVP model analysis for variant classification.

Despite the fact that gene-specific models outperform those based on genome-wide infor-

mation, IVP models can be unstable when the gene-specific training data is of small sample

size and/or contains many ambiguously classified variants. Other approaches, such as a

weighted average of gene-specific and panel-specific models might improve model robustness

and prediction accuracy, and remain to be investigated. The IVP model presented here is lim-

ited to continuous in silico predictors, whereas categorical features such as domain effects and

variant types may also be informative [9]. Availability of evidence statistics is also a limiting

aspect of MVP model analysis; although the Bayesian MVP model we presented classified

a large proportion of variants with a high degree of accuracy, the remaining VUS were due

to either no (145/1,161 = 12.5%) or insufficient (232/1,161 = 20.0%) evidence statistics. In

addition, models that account for correlations among evidence statistics [16], incorporate

interaction and non-linear effects [9], and/or integrate LR statistics using distribution-based

sampling approaches have the potential for improved variant prediction and classification.

Our Bayesian IVP and MVP model analyses form a data-driven framework for variant pre-

diction and classification in aggregating a broad spectrum of pathogenic information. These

model-based approaches are adaptive to the complexity of large-scale data, and are applicable

to a wide variety of genes and phenotype conditions, provided that suitable training data are

available. Importantly, these models afford an opportunity to accurately and efficiently reclas-

sify VUS, and as such have the potential to improve the information on which clinical deci-

sions are based.

Methods

Data

To assess prediction performance, we obtained 1,161 classified missense variants identified

in 10 MGPT genes (BRCA1, BRCA2,CDH1, PALB2, PTEN, TP53,MLH1,MSH2,MSH6 and

PMS2) from ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/, downloaded in April 2017),

compiled in silico predictor information from dbNSFP (https://sites.google.com/site/jpopgen/

dbNSFP, downloaded in June 2017) and AGVGD (http://agvgd.hci.utah.edu/, released Sept

2014) databases, and collected variant-specific evidence statistics from Ambry Genetics data-

bases, respectively (S1 Data: MGPT data with all relevant variables). Variants obtained from

ClinVar were those with classifications established by expert panel review or deposited by

any of the 6 submitters that consistently provide assertion criteria: Ambry Genetics, Emory,
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PLOS ONE | https://doi.org/10.1371/journal.pone.0203553 September 13, 2018 7 / 15

https://www.ncbi.nlm.nih.gov/clinvar/
https://sites.google.com/site/jpopgen/dbNSFP
https://sites.google.com/site/jpopgen/dbNSFP
http://agvgd.hci.utah.edu/
https://doi.org/10.1371/journal.pone.0203553


GeneDx, InSiGHT, InVitae and SCRP. For each variant, we defined its consensus class per the

following hierarchy: 1) we selected the most supported category among negative, positive and

VUS, where negative and positive are designated as benign/VLB and pathogenic/VLP, respec-

tively (i.e., positive if Npositive > max(Nnegative, NVUS) or negative if Nnegative > max(Npositive,
NVUS); and 2) if the number of submitters is tied, and there was no conflict between positive

and negative classes, we assigned positive or negative as appropriate (i.e., positive if Npositive =

NVUS and Nnegative = 0 or negative if Nnegative = NVUS and Npositive = 0). Variants with conflicting

classes (i.e., Npositive =Nnegative), or classified as VUS by all submitters, were excluded from anal-

ysis. The number of variants with ClinVar consensus classes varied from 22 to 385 per gene

(S5 Table, upper section).

Predictors and their derivation

The dataset used for IVP model training contained a set of class-known variants which are des-

ignated benign, VLB, VLP and pathogenic. The response variable y is a binary outcome for

pathogenicity, with 1 for pathogenic or VLP and 0 for benign or VLB.

The predictor variables for IVP model analysis included 16 individual in silico scores from

publically available variant prediction tools (i.e., Grantham [17], GERP++ [18], phastCons (for

vertebrate and mammalian genomes) [19], AGVGD [20], SIFT [21], MutPred [22], SiPhy [23],

LRT [24], phyloP (for vertebrate and mammalian genomes) [25], Polyphen2 (built on Hum-

Var and HumDiv datasets) [26], MutationAssessor [27], PROVEAN [28] and FATHMM [29];

description in S1 Table). Six meta in silico scores were collected for comparisons of prediction

performance (i.e., MutationTaster [30], CADD [31], REVEL [32], Eigen (for overall and eigen-

decomposition) [33] and MetaSVM [34]; description in S2 Table). Missing values of in silico
predictors were imputed with the k-nearest neighbors method implemented in R package

DMwR2 version 0.02. The missing values for a given variant were assigned the average value

of the non-missing values for that predictor from its k = 40 nearest neighboring variants. In sil-
ico predictors with non-unit scale values (i.e., Grantham, GERP++, AGVGD, SiPhy, phyloP,

MutationAssessor, PROVEAN, FATHMM, CADD, Eigen and MetaSVM) were transformed

to unit scale of 0 to 1 by (xraw − xmin)/(xmax − xmin), where xraw is the in silico score in its origi-

nal scale and xmin and xmax are the minimum and maximum score values, respectively.

The predictor variables for MVP model analysis included 7 evidence predictors quantified

as LR statistics for a) frequency and association, b) co-occurrence, c) co-segregation, d) family

history, e) functional evidence, f) structural evidence, and g) other supporting data, respec-

tively (description in S6 Table). For each of the 7 evidence predictors, we extracted qualitative

evidence from variant-level classification records characterized by two parameters of pcut and

pfrac. Here pcut is a threshold probability of 0.001, 0.1, 0.9 or 0.99 for assigning a variant to a tar-

geted class of benign, VLB, VLP or pathogenic, respectively, as recommended in the American

College of Medical Genetics and Genomics (ACMG) guidelines [2]. Also, pfrac is a fraction of

evidence needed to reach a targeted class (e.g., 1, 0.5 and 0.25 are example values for evidence

predictors in qualitative form; see S6 Table for numerical illustration). Applying the Bayes rule

equation under a null probability of pnull = 0.5, the LR statistic for qualitative pathogenicity evi-

dence is

LRðpcut; pfracÞ ¼ ðpcut=ð1 � pcutÞÞ
pfrac : ð1Þ

For auto-computed predictors, we derived LR statistics directly from real-time in-house

subject-level genotype and phenotype data. The LR statistic of co-occurrence evidence was

estimated from a binomial likelihood model [35] under the rationale that a pathogenic variant

is less likely to co-occur with a known pathogenic mutation in trans. The LR statistic of family
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history evidence was derived from a history weighting score model [36] based on the premise

that pathogenic mutations are more likely to occur in high-risk individuals while the presence

of benign variants is unrelated to personal and family history. The mutation hotspot evidence

was filtered out for the existence of at least one pathogenic variant at the same amino acid resi-

due. For evidence statistics derived from two sources, denoted LR1 and LR2, the combined evi-

dence of two correlated LR statistics is quantified as

LRðLR1; LR2Þ ¼

maxðLR1; LR2Þ if both > 1;

minðLR1; LR2Þ if both < 1;

LR1 � LR2 otherwise:

8
><

>:
ð2Þ

Thus, the available pathogenicity evidence for each variant was summarized into 7 LR sta-

tistics, where LR statistic was set to1 for each missing evidence predictor.

Training data for IVP model

To build a gene-specific IVP model for gene G, we constructed a training data A containing all

class-known variants in that gene under a minimal sample size requirement of nnegative � 5

and npositive � 5. Here we define nnegative = nbenign + 0.5× nVLB and npositive = npathogenic + 0.5×
nVLP, where each n� represents the number of class � variants in training dataA. The variant

classes of benign, VLB, VLP and pathogenic are based on ClinVar consensus classifications, as

previously described. For a sparse data scenario in which the variants in training data A satisfy

nnegative + npositive � 5 and either nnegative < 5 or npositive < 5, we implemented a data expansion

procedure based on the assumption that variants with similar in silico scores residing in two

genes known to influence the same phenotype should have a more similar degree of pathoge-

nicity than those from two randomly selected genes. This procedure resulted in a training data

A for gene G that includes additional variants from other similar genes, and was implemented

as follows:

1. Computed the mean distance for all variant pairs between gene G and each other gene

H� G�, where G� is a gene set for all genes from the same panel or pathway except gene

G. The distance between variants g 2 G and h 2 H was defined as the Euclidean distance of

dgh = sqrt(Si = 1,� � �,I(xgi−xhi)2), where vectors (xg1,� � �,xgI) and (xh1,� � �,xhI) are the I = 16 unit

scaled individual in silico predictor values of variants g and h, respectively.

2. Chose a most similar gene G’� G� that showed the minimal mean distance with analysis

gene G and merged the negative and/or positive variants one by one from G’ to A in

descending order of between-variant distance until both nnegative � 5 and npositive � 5 were

met or all variants in G’ were merged into the training dataA.

3. If nnegative < 5 or npositive < 5 remains true, repeated step (2) by choosing another gene

G”� (G� − G’) and merging variants from G” toA until nnegative � 5 and npositive � 5 were

met.

Thus, this data expansion procedure provided a means by which gene-specific training data

may be constructed for genes that contain only a few classified variants.

Identification of IVP model

We derived a gene-specific IVP model by selecting a subset of in silico predictors using step-

wise logistic regression (SLR) and quantified the probability distribution of pathogenicity

using Bayesian logistic regression with coefficients sampled from data-independent Pólya-
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Gamma distributions. The set of predictors yielding the minimal cross validation error rate

among penalty coefficients (ranging from 2 to 8) were retained. The derived IVP model took

the form

logitðyÞ ¼ b0 þ b1z1 þ � � � þ bKzK ; ð3Þ

where Z = (z1, . . ., zK) is a subset of gene-specific in silico predictors retained from SLR analy-

sis, B = (b0, b1, . . ., bK) are regression coefficients for intercept and slopes, and logit(y) is the

logit transformation of response variable y for negative and positive variants. The distributions

of regression coefficients B of an IVP model were estimated by Bayesian Markov chain Monte

Carlo updated from Pólya-Gamma distributions [11], as implemented by the logit function

in R package BayesLogit version 0.5.1. For variant prediction purposes, the distributions

of K + 1 regression coefficients, denoted B ¼ ðbkn; 0 � k � K; 1 � n � NÞ, are estimated

jointly using N = 1,000 Gibbs samples after a burn-in period of 20,000 samples. Thus, the IVP

probability distribution of each variant was estimated by its logistic transformation, denoted

_P ¼ ð _pn; 1 � n � Nj _pn ¼ logit � 1ðb0n þ
P

kbknxknÞÞ.

Estimation of IVP prior probability distribution

As a principle of multifactorial variant classification analysis, at least two lines of evidence are

required for assigning a variant class to benign, VLB, VLP or pathogenic (i.e., classification

based on the probability distribution from in silico analysis alone is not possible) [2]. To

accommodate this framework, the IVP prior distribution of each variant was derived from

a rescaled IVP probability distribution in the range of 0.1 to 0.9 with standard deviation pro-

portional to the expected value. Specifically, the IVP prior distribution of a variant, denoted

P ¼ ðpn; 1 � n � NÞ, was quantified by a 2-sided shifted probability function

pn ¼ €pmed þ ð€pn � €pmedÞ � sdð€pmedÞ=sdð _pmedÞ; ð4Þ

where €P ¼ ð€pn; 1 � n � Nj€pn ¼ 0:8� _pn þ 0:1Þ is a linearly shifted probability distribution in

range of 0.1 to 0.9, _pmed and €pmed are the medians of IVP distribution _P and its shifted distribution

€P, respectively, and sdð _pmedÞ ¼ sqrtð _pmed � ð1 � _pmedÞÞ and sdð€pmedÞ ¼ sqrtð€pmed � ð1 � €pmedÞÞ
are the expected standard deviations of _pmed and €pmed, respectively. The use of a rescaled prior dis-

tribution, as quantified by Eq (4), ensures the variability of IVP distribution is maintained in the

prior distribution.

MVP model analysis

For each variant, the Bayesian MVP model analysis employed a distribution-based formation

of Bayes rule to quantify the posterior probability distribution of pathogenicity. Such a poste-

rior distribution, denotedQ ¼ fqn; 1 � n � Ng, was computed by aggregating the prior

probability distribution P from an IVP model analysis and the available LR statistics from 7

evidence predictors through the equation:

qn ¼ pnLRtotal=ð1 � pn þ pnLRtotalÞ: ð5Þ

where pn is a sample value from the prior distribution, and LRtotal = LRFAA × LRCOC× LRCSG ×
LRFHX × LRFUN × LRSTR × LROTH is the total LR statistic calculated under the assumption that

the 7 evidence predictors are statistically independent (see S6 Table for definition of each LR

statistic).
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5-tiered variant classification scheme

We employed a 5-tiered variant classification scheme to assign the predicted classes of benign,

VLB, VUS, VLP and pathogenic at the targeted probability thresholds of 0.001, 0.1, 0.9 and

0.99, respectively, following the ACMG guideline (Fig 1A) [2, 37]. The predicted class of each

variant was assigned based on the 95% probability credible interval (PCI) of pathogenicity

obtained from an IVP model or MVP model (Fig 1B). Here the 95% PCI is defined as the

2-sided 95% range of a probability distribution estimated from a corresponding prediction

model using Bayesian sampling from Pólya-Gamma distributions [11]. The use of 95% PCI,

instead of a point estimate of probability value, was designed to control the occurrence of false

events by accounting for the variability of probability distribution.

Performance evaluation

To evaluate the performance of variant prediction, we assessed predicted outcomes including

true positives (TP; predicted pathogenic/VLP concordant with known class), true negatives

(TN; predicted benign/VLB concordant with known class), false positives (FP; benign/VLB

predicted to be pathogenic/VLP), and false negatives (FN; pathogenic/VLP predicted to be

benign/VLB). Performance statistics such as sensitivity, specificity, PPV, NPV, accuracy,

AUC and proportion of predicted variants of uncertain significance (PVUS) were assessed [38]

(S7 Table). All performance statistics of IVP and MVP model analyses were evaluated using

LOOCV to control model overfitting. The 95% confidence interval (CI) of a proportion was

estimated from binomial distribution. Comparison of AUC estimates for different methods

was performed using Delong’s test [39]. All analyses were conducted with R for Statistical

Computing version 3.3.3.
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ables. J Am Stat Assoc. 2013; 108(504):1339–49. https://doi.org/10.1080/01621459.2013.829001

12. Choi HM, Hobert JP. The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly

ergodic. Electron J Statist. 2013; 7:2054–64. https://doi.org/10.1214/13-EJS837

13. Crockett DK, Lyon E, Williams MS, Narus SP, Facelli JC, Mitchell JA. Utility of gene-specific algorithms

for predicting pathogenicity of uncertain gene variants. J Am Med Inform Assoc. 2012; 19(2):207–11.

https://doi.org/10.1136/amiajnl-2011-000309 PMID: 22037892.

14. Li Q, Liu X, Gibbs RA, Boerwinkle E, Polychronakos C, Qu H-Q. Gene-specific function prediction for

non-synonymous mutations in monogenic diabetes genes. PLoS One. 2014; 9(8):e104452. https://doi.

org/10.1371/journal.pone.0104452 PMID: 25136813.

Bayesian variant prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0203553 September 13, 2018 13 / 15

https://doi.org/10.1016/j.atg.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/27284505
https://doi.org/10.1038/gim.2015.30
http://www.ncbi.nlm.nih.gov/pubmed/25741868
https://doi.org/10.1016/j.ajhg.2016.02.024
https://doi.org/10.1016/j.ajhg.2016.02.024
http://www.ncbi.nlm.nih.gov/pubmed/27153395
https://doi.org/10.1038/srep07953
https://doi.org/10.1038/srep07953
http://www.ncbi.nlm.nih.gov/pubmed/25608792
https://doi.org/10.1002/humu.22918
http://www.ncbi.nlm.nih.gov/pubmed/26467025
https://doi.org/10.1155/2016/2469523
http://www.ncbi.nlm.nih.gov/pubmed/27822389
https://doi.org/10.1002/humu.21627
http://www.ncbi.nlm.nih.gov/pubmed/21990134
https://doi.org/10.1002/humu.22213
http://www.ncbi.nlm.nih.gov/pubmed/22949379
https://doi.org/10.1016/j.ajhg.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28132688
https://doi.org/10.1080/01621459.2013.829001
https://doi.org/10.1214/13-EJS837
https://doi.org/10.1136/amiajnl-2011-000309
http://www.ncbi.nlm.nih.gov/pubmed/22037892
https://doi.org/10.1371/journal.pone.0104452
https://doi.org/10.1371/journal.pone.0104452
http://www.ncbi.nlm.nih.gov/pubmed/25136813
https://doi.org/10.1371/journal.pone.0203553


15. Wang M, Wei L. iFish: predicting the pathogenicity of human nonsynonymous variants using gene-spe-

cific/family-specific attributes and classifiers. Sci Rep. 2016; 6:31321. https://doi.org/10.1038/

srep31321 PMID: 27527004.

16. Feng BJ. PERCH: A unified framework for disease gene prioritization. Hum Mutat. 2017; 38(3):243–51.

https://doi.org/10.1002/humu.23158 PMID: 27995669.

17. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974; 185

(4154):862–4. https://doi.org/10.1126/science.185.4154.862 PMID: 4843792

18. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of con-

straint in mammalian genomic sequence. Genome Res. 2005; 15(7):901–13. Epub 2005/06/21. https://

doi.org/10.1101/gr.3577405 PMID: 15965027.

19. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved

elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034–50. https://

doi.org/10.1101/gr.3715005 PMID: 16024819

20. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, et al. Comprehensive statisti-

cal study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as

neutral. J Med Genet. 2006; 43(4):295–305. https://doi.org/10.1136/jmg.2005.033878 PMID:

16014699.

21. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein func-

tion using the SIFT algorithm. Nat Protocols. 2009; 4(8):1073–81. https://doi.org/10.1038/nprot.2009.

86 PMID: 19561590

22. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, et al. Automated inference of molecular

mechanisms of disease from amino acid substitutions. Bioinformatics. 2009; 25(21):2744–50. https://

doi.org/10.1093/bioinformatics/btp528 PMID: 19734154.

23. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements

by exploiting biased substitution patterns. Bioinformatics. 2009; 25(12):i54–62. https://doi.org/10.1093/

bioinformatics/btp190 PMID: 19478016.

24. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res.

2009; 19(9):1553–61. https://doi.org/10.1101/gr.092619.109 PMID: 19602639.

25. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mam-

malian phylogenies. Genome Res. 2010; 20(1):110–21. https://doi.org/10.1101/gr.097857.109 PMID:

19858363.

26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248–9. https://doi.org/10.1038/

nmeth0410-248 PMID: 20354512.

27. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer

genomics. Nucleic Acids Res. 2011; 39(17):e118. https://doi.org/10.1093/nar/gkr407 PMID: 21727090.

28. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitu-

tions and indels. PLoS One. 2012; 7(10):e46688. https://doi.org/10.1371/journal.pone.0046688 PMID:

23056405.

29. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional,

molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models.

Hum Mutat. 2013; 34(1):57–65. https://doi.org/10.1002/humu.22225 PMID: 23033316.

30. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-

sequencing age. Nat Methods. 2014; 11(4):361–2. https://doi.org/10.1038/nmeth.2890 PMID:

24681721.

31. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating

the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46(3):310–5. https://doi.org/10.

1038/ng.2892 PMID: 24487276.

32. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An ensemble

method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016; 99(4):877–

85. https://doi.org/10.1016/j.ajhg.2016.08.016 PMID: 27666373.

33. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrating functional genomic

annotations for coding and noncoding variants. Nat Genet. 2016; 48(2):214–20. https://doi.org/10.1038/

ng.3477 PMID: 26727659.

34. Kim S, Jhong JH, Lee J, Koo JY. Meta-analytic support vector machine for integrating multiple omics

data. BioData Min. 2017; 10:2. https://doi.org/10.1186/s13040-017-0126-8 PMID: 28149325.

35. Goldgar DE, Easton DF, Deffenbaugh AM, Monteiro ANA, Tavtigian SV, Couch FJ. Integrated evalua-

tion of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am

J Hum Genet. 2004; 75(4):535–44. https://doi.org/10.1086/424388 PMID: 15290653.

Bayesian variant prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0203553 September 13, 2018 14 / 15

https://doi.org/10.1038/srep31321
https://doi.org/10.1038/srep31321
http://www.ncbi.nlm.nih.gov/pubmed/27527004
https://doi.org/10.1002/humu.23158
http://www.ncbi.nlm.nih.gov/pubmed/27995669
https://doi.org/10.1126/science.185.4154.862
http://www.ncbi.nlm.nih.gov/pubmed/4843792
https://doi.org/10.1101/gr.3577405
https://doi.org/10.1101/gr.3577405
http://www.ncbi.nlm.nih.gov/pubmed/15965027
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
https://doi.org/10.1136/jmg.2005.033878
http://www.ncbi.nlm.nih.gov/pubmed/16014699
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nprot.2009.86
http://www.ncbi.nlm.nih.gov/pubmed/19561590
https://doi.org/10.1093/bioinformatics/btp528
https://doi.org/10.1093/bioinformatics/btp528
http://www.ncbi.nlm.nih.gov/pubmed/19734154
https://doi.org/10.1093/bioinformatics/btp190
https://doi.org/10.1093/bioinformatics/btp190
http://www.ncbi.nlm.nih.gov/pubmed/19478016
https://doi.org/10.1101/gr.092619.109
http://www.ncbi.nlm.nih.gov/pubmed/19602639
https://doi.org/10.1101/gr.097857.109
http://www.ncbi.nlm.nih.gov/pubmed/19858363
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1093/nar/gkr407
http://www.ncbi.nlm.nih.gov/pubmed/21727090
https://doi.org/10.1371/journal.pone.0046688
http://www.ncbi.nlm.nih.gov/pubmed/23056405
https://doi.org/10.1002/humu.22225
http://www.ncbi.nlm.nih.gov/pubmed/23033316
https://doi.org/10.1038/nmeth.2890
http://www.ncbi.nlm.nih.gov/pubmed/24681721
https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1016/j.ajhg.2016.08.016
http://www.ncbi.nlm.nih.gov/pubmed/27666373
https://doi.org/10.1038/ng.3477
https://doi.org/10.1038/ng.3477
http://www.ncbi.nlm.nih.gov/pubmed/26727659
https://doi.org/10.1186/s13040-017-0126-8
http://www.ncbi.nlm.nih.gov/pubmed/28149325
https://doi.org/10.1086/424388
http://www.ncbi.nlm.nih.gov/pubmed/15290653
https://doi.org/10.1371/journal.pone.0203553


36. Pruss D, Morris B, Hughes E, Eggington JM, Esterling L, Robinson BS, et al. Development and valida-

tion of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2

genes. Breast Cancer Res Treat. 2014; 147(1):119–32. https://doi.org/10.1007/s10549-014-3065-9

PMID: 25085752.

37. Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, et al. Application of a 5-

tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the

InSiGHT locus-specific database. Nat Genet. 2014; 46(2):107–15. https://doi.org/10.1038/ng.2854

PMID: 24362816.

38. Vihinen M. How to evaluate performance of prediction methods? Measures and their interpretation in

variation effect analysis. BMC Genomics. 2012; 13(Suppl 4):S2. https://doi.org/10.1186/1471-2164-13-

S4-S2 PMID: 22759650

39. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated

receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–45.

Epub 1988/09/01. https://doi.org/10.2307/2531595 PMID: 3203132.

Bayesian variant prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0203553 September 13, 2018 15 / 15

https://doi.org/10.1007/s10549-014-3065-9
http://www.ncbi.nlm.nih.gov/pubmed/25085752
https://doi.org/10.1038/ng.2854
http://www.ncbi.nlm.nih.gov/pubmed/24362816
https://doi.org/10.1186/1471-2164-13-S4-S2
https://doi.org/10.1186/1471-2164-13-S4-S2
http://www.ncbi.nlm.nih.gov/pubmed/22759650
https://doi.org/10.2307/2531595
http://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.1371/journal.pone.0203553

