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Carbohydrate response element-binding protein (ChREBP) plays an important role in the
development of type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease, as well
as tumorigenesis. ChREBP is highly expressed in lipogenic organs, such as liver, intestine,
and adipose tissue, in which it regulates the production of acetyl CoA from glucose by
inducing Pklr and Acyl expression. It has recently been demonstrated that ChREBP plays
a role in the conversion of gut microbiota-derived acetate to acetyl CoA by activating its
target gene, Acss2, in the liver. ChREBP regulates fatty acid synthesis, elongation, and
desaturation by inducing Acc1 and Fasn, elongation of long-chain fatty acids family
member 6 (encoded by Elovl6), and Scd1 expression, respectively. ChREBP also
regulates the formation of very low-density lipoprotein by inducing the expression of
Mtp. Furthermore, it plays a crucial role in peripheral lipid metabolism by inducing Fgf21
expression, as well as that of Angptl3 and Angptl8, which are known to reduce peripheral
lipoprotein lipase activity. In addition, ChREBP is involved in the production of palmitic-
acid-5-hydroxystearic-acid, which increases insulin sensitivity in adipose tissue. Curiously,
ChREBP is indirectly involved in fatty acid b-oxidation and subsequent ketogenesis. Thus,
ChREBP regulates whole-body lipid metabolism by controlling the transcription of
lipogenic enzymes and liver-derived cytokines.

Keywords: fatty acid synthesis, lipoprotein metabolism, b-oxidation, ketogenesis, carbohydrate response element-
binding protein (Chrebp), gut microbiota
INTRODUCTION

Excess carbohydrate intake causes hepatic triglyceride accumulation through the activation of
carbohydrate response element binding protein (ChREBP) and de novo lipogenesis. Dietary
carbohydrate is metabolized to acetyl CoA, which is a key intermediate in lipid metabolism (1).
Acetyl CoA is produced by the oxidation of pyruvate, the end product of glycolysis, through the
action of pyruvate dehydrogenase (PDH) and fatty acid b-oxidation, for use as a substrate in
triglyceride and cholesterol synthesis, as well as ketogenesis and protein acetylation (1). In the fed
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state, the resulting high nucleocytosolic acetyl CoA is readily
utilized for lipid synthesis and histone acetylation (1, 2). In
contrast, in the fasted state or under more extreme conditions,
acetyl CoA is preferentially directed to the mitochondria to
permit greater synthesis of adenosine triphosphate (ATP) and
ketone bodies (1, 2). Acetyl CoA is produced in the liver from
glucose and fructose, which are rapidly converted to
glyceraldehyde-3 phosphate (GAP) by glycolysis and fructolysis
(Figure 1). GAP is then converted to pyruvate by several
glycolytic enzymes, including liver-type pyruvate kinase
(encoded by Pklr), which is activated by ChREBP and converts
phosphoenolpyruvate to pyruvate (1). Pyruvate is then converted
to acetyl CoA by the PDH complex in the mitochondria. When
acetyl CoA enters the tricarboxylic acid cycle, there is an increase
Frontiers in Endocrinology | www.frontiersin.org 2
in the production of citrate, which is exported from the
mitochondria and converted to acetyl CoA by ATP citrate
lyase (encoded by Acly) (1, 2). Cytosolic acetyl CoA is
converted into long-chain fatty acyl CoA by lipogenic enzymes
such as acetyl CoA carboxylase 1 (encoded by Acc1) and fatty
acid synthase (encoded by Fasn).

Carbohydrate response element-binding protein (ChREBP)
plays a pivotal role in the pathogenesis of metabolic diseases and
tumors (3–6). ChREBP was initially identified as a glucose-
activated transcription factor that binds to the carbohydrate
response element (ChoRE) in the promoter of Pklr (6). ChoREs
are also found in the promoters of lipogenic genes, including Acc1
and Fasn (7, 8), and ChREBP, together with its heterodimerization
partner Max-like factor X, controls de novo lipogenesis in the liver
FIGURE 1 | High-fructose/high-sucrose diet-feeding causes an increase in de novo lipogenesis through the regulation of lipogenic gene expression and gut
microbiota-derived acetate utilization. Fructose is normally absorbed and converted to glucose and lactate. Glucose, lactate, and a small amount of fructose enter
the portal vein. In the liver, glucose and fructose activate ChREBP transcriptional activity through increases in the concentrations of glucose and fructose-derived
metabolites, such as xylulose-5-phosphate and glucose-6-phosphate, and this results in greater expression of lipogenic genes, such as Acc1, Fasn, Elovl6, and
Scd1. This higher expression causes the metabolism of glucose and fructose to generate acetyl CoA and fatty acyl CoA in the liver. Fructose that is not absorbed in
the small intestine is absorbed in the colon and enters the portal vein. In the liver, acetate is converted to acetyl CoA by acyl-coenzyme A synthetase short-chain
family member 2 (encoded by Acss2), and this is used for fatty acyl CoA synthesis, sterol synthesis, and histone acetylation. ChREBP transcription activity is also
regulated by acetyl CoA and uridine diphosphate-N-acetylglucosamine, through acetylation and O-GlcNAcylation, respectively. These substances are involved in
epigenic regulation, such as histone acetylation and histone methylation. GLUT5, glucose transporter 5; KHK, ketohexokinase; ALDOB, aldolase B; GLUT2, glucose
transporter 2; PKLR, liver-type pyruvate kinase; ACSS2, acyl-coenzyme A synthetase short-chain family member 2; G6P, glucose 6-phosphate; Xu5P, xylulose 5-
phosphate; ACLY, ATP citrate lyase; ACC1, acetyl CoA carboxylase; FASN, fatty acid synthase; ELOVL6, fatty acid elongase 6; SCD1, stearyl CoA desaturase;
BCKDK, branched-chain ketoacid dehydrogenase kinase; CBP, CREB binding protein; OGT, O-linked N-acetylglucosamine (GlcNAc) transferase; HCF-1, host cell
factor-1; PHF2, plant homeodomain finger 2; H3K4me3, trimethylated H3K4; H3K9me2, dimethylated H3K9.
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by upregulating the expression of lipogenic genes (9–12). Studies
that used DNA microarray, chromosome immunoprecipitation-
sequencing (ChIP-seq) and Chrebp knockout mice have
confirmed a critical role for ChREBP in hepatic glucose and
lipid metabolism (13–16). Interestingly, ChREBP also modulates
lipolysis in adipose tissue by directly regulating the expression of
Fgf21 and Angptl genes (14, 17–23). Furthermore, it regulates the
hepatic and intestinal metabolism of fructose, which is tightly
linked to lipogenesis and the pathogenesis of the metabolic
syndrome (24–28). In addition, ChREBP plays a critical role in
the conversion of gut microbiota-derived acetate, the production
of which is increased by excess dietary fructose intake, to acetyl
coenzyme A (CoA) by activating its target, Acss2, in the liver,
which contributes to hepatic triglyceride accumulation (29).
ChREBP also modulates hepatic b-oxidation and ketogenesis
(30–32). This review focuses on recent advances in knowledge
of the ChREBP-mediated regulation of lipid metabolism in the
liver, adipose tissue, and gut.
CARBOHYDRATE RESPONSE ELEMENT-
BINDING PROTEIN REGULATES HEPATIC
DE NOVO LIPOGENESIS

The Conventional Pathway for the
Production of Acetyl Coenzyme A
As described in the Introduction, ACLY is an important
mediator of the supply of acetyl CoA from glycolysis and fatty
acid oxidation. Because the ACLY-mediated conversion of citrate
to acetyl CoA is critical for the synthesis of triglycerides and
sterols, efforts have been made to develop ACLY inhibitors for
the treatment of hypertriglyceridemia and hypercholesterolemia
(2, 3). Acly is expressed mainly in the liver and white adipose
tissue and its expression is upregulated at the transcriptional
level by glucose-activated ChREBP and the insulin-induced
transcription factor sterol response element-binding protein-1c
(SREBP-1c) (13, 14, 33, 34). The enzymatic activity of ACLY is
post-translationally regulated by the phosphatidylinositol 3-
kinase (PI3K)/Akt pathway and acetylation (35, 36). In
addition, recent studies have demonstrated that ACLY is
activated by branched-chain ketoacid dehydrogenase kinase
(BDK) and mitochondrial protein phosphatase 1K (PPM1K),
which are respectively positively and negatively regulated by
ChREBP (37–39) (Figure 1). Furthermore, the branched-chain
a-ketoacid dehydrogenase complex (BCKDH) is an enzyme that
catalyzes the commitment step of branched-chain amino acid
(BCAA) catabolism and is negatively and positively regulated by
BDK and PPM1K, respectively. Thus, ChREBP regulates the use
of BCAAs in triglyceride synthesis by regulating BDK/PPM1K
(39). Therefore, ChREBP might contribute to the development of
BCAA-induced insulin resistance (39).

A Novel Pathway for the Production
of Acetyl Coenzyme A
Recent studies have revealed that gut microbiota-derived acetate
also represents an important source of acetyl CoA for hepatic
Frontiers in Endocrinology | www.frontiersin.org 3
lipogenesis (29). Dietary fructose is absorbed and metabolized to
glucose in the intestine, whereas unabsorbed fructose is
fermented by the gut microbiota to produce acetate (26, 27, 29,
40–42). Glucose induces the expression of both ChREBP-b and
SREBP-1c, whereas fructose only induces the expression of
SREBP-1c in the liver (28). Our group and others have
recently reported that ChREBP regulates intestinal fructose
absorption by inducing the expression of Glut5, Khk, and
Aldob in the intestine and that Chrebp knockout mice
consuming a sucrose-based diet show an irritable bowel
syndrome-like phenotype, which develops because of fructose
malabsorption and an increase in the numbers of acetate-
producing bacteria in the intestine (26, 27). These findings
suggest that the inhibition of intestinal ChREBP increases
microbial acetate production by increasing the entry of
unabsorbed fructose into the colon. Gut microbiota-derived
acetate is absorbed and reaches the liver via the portal vein.
Acetate is then converted to acetyl CoA by acyl-CoA synthetase
short-chain family member, which is encoded by Acss2, and used
as a substrate for lipogenesis (43, 44). Acss2 is highly expressed in
the kidney and liver and is present in both the cytosol and
nucleus (45, 46). Importantly, depletion of the gut microbiota
using antibiotics suppresses acetate production in the colon, and
subsequent acetyl CoA synthesis and de novo lipogenesis in the
liver; and the knock-down of Acss2 mRNA using siRNA also
reduces the hepatic production of acetyl CoA (29). In addition, it
has been shown that SREBP-1c, a critical regulator of hepatic
lipogenesis that is transcriptionally activated by insulin, induces
Acss2 mRNA expression (47–49). ChREBP also induces Acss2
expression (Figure 1) (14, 29, 33). Thus, inhibition of hepatic
ChREBP is likely to prevent fructose-induced triglyceride
accumulation by suppressing lipogenic gene expression and
hepatic acetyl CoA production from gut microbial acetate,
while the inhibition of intestinal ChREBP may increase acetate
production in the intestine (27).
Fatty Acid Synthesis, Elongation,
and Desaturation in the Liver
Acetyl CoA is converted to fatty acids through fatty acid
synthesis, elongation, and desaturation; and the resulting fatty
acids are then esterified with glycerol before being packaged into
very-low-density lipoprotein (VLDL) particles to be delivered to
the periphery (50). These processes are transcriptionally
regulated by ChREBP and SREBP-1c (51) (Table 1). In fatty
acid synthesis, both ChREBP and SREBP-1c induce Acc, which
encodes an enzyme that is required for the conversion of acetyl
CoA to malonyl CoA, and Fasn, which encodes an enzyme that is
required for the production of palmitoyl CoA from malonyl CoA
and acetyl CoA (9, 10, 13, 34, 51). In fatty acid elongation and
desaturation, ChREBP induces the expression of the stearoyl
CoA desaturase-1 gene (Scd-1) and Elovl6, both of which are
required for the synthesis of monounsaturated fatty acids
(MUFAs), while SREBP-1c induces Elovl2, fatty acid desaturase
1, and fatty acid desaturase 2, which are required for the
synthesis of polyunsaturated fatty acids (PUFAs), as well as
Scd-1 and Elovl6 (Figure 2) (52–56). Consistent with this,
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hepatic Chrebp overexpression reduces the concentrations of
saturated fatty acids (SFAs), such as palmitic acid (C16:0) and
stearic acid (C18:0); and increases that of the MUFA oleic acid
(C18:1 n-9) (32, 57). Furthermore, hepatic SREBP-1c
overexpression reduces the concentration of stearic acid
(C18:0) and increases that of oleic acid (C18:1 n-9) (58).
Importantly, PUFAs suppress the transcriptional activities of
both ChREBP and SREBP-1c (59, 60). Moreover, PUFAs also
reduce the cleavage of SREBP-1c at the post-transcriptional level
(61). Thus, both ChREBP and SREBP-1c regulate de novo
lipogenesis, elongation, and desaturation.

Carbohydrate Response Element Binding
Protein-Mediated Epigenetic Regulation
of Lipogenic Gene Expression
The transcriptional activity of ChREBP is activated by glucose-
derived metabolites such as glucose-6-phosphate, xylulose-5-
phophate, and fructose-2,6-bisphosphate via regulation of its
nucleocytoplasmic translocation (62–65). Moreover, ChREBP
transcription activity is also regulated by acetyl CoA and
uridine diphosphate-N-acetylglucosamine, through acetylation
and O-GlcNAcylation, respectively (66–73). These substances
are involved in epigenic regulation, such as histone acetylation
and histone methylation (Figure 1).

During weaning, Fasn mRNA expression is increased by
greater binding of ChREBP and SREBP-1c to Fasn promoter
Frontiers in Endocrinology | www.frontiersin.org 4
and greater histone H3 and H4 acetylation (70). Moreover,
ChREBP induces Fasn mRNA expression and triglyceride
synthesis by facilitating H3 and H4 acetylation, but these effects
are prevented by the inhibition of histone acetylation using
garcinol, a histone acetyltransferase (HAT) inhibitor (71). The
role of the histone deacetylase activity of CREB-binding protein
(CBP)/p300 in the mechanism of ChREBP-induced histone
acetylation is well known (72). In human hepatocytes, the
binding of farnesoid X receptor (FXR) to the ChREBP-
Hepatocyte Nuclear Factor 4a (HNF4a) complex triggers the
release of ChREBP from CBP/p300, leading to the recruitment of
the histone deacetylase, silencing mediator of retinoic acid and
thyroid hormone receptor (SMRT), to the Lpk promoter, where it
acts as a co-repressor of ChREBP transcriptional activity (73).
Interestingly, CBP/p300 HAT acetylates ChREBP, which
promotes transactivation by this molecule (72). Therefore, CBP/
p300 regulates ChREBP transcriptional activity through the
acetylation of substrates such as histones and ChREBP (Figure 1).

Glucose activates the hexosamine pathway and thereby O-
linkedN-acetylglucosamine transferase (OGT)-mediated ChREBP
O-GlcNacylation, which enhances ChREBP DNA-binding and
protein stability by reducing ubiquitin-mediated degradation (66–
68). Recently, host cell factor-1 (HCF-1) has been identified as a
ChREBP-interacting protein (74). Glucose stimulates HCF-1 O-
GlcNAcylation and cleavage, and interacts with ChREBP, thereby
augmenting ChREBP O-GlcNAcylation and the recruitment of
OGT to ChREBP (74). HCF-1 also augments the trimethylation of
H3K4, which promotes the recruitment of the histone
demethylase, PHD Finger Protein 2 (PHF2), resulting in greater
transcriptional activity (74). PHF2 is also known to be a
coactivator of ChREBP, and the ChREBP-PHF2 interaction
causes the expression of Scd1 and MUFA synthesis through
H3K9me2 demethylation (75). H3K4 methylation and
H3K9me2 contribute to transcriptional activation and
repression, respectively. Thus, ChREBP and its co-factors, such
as HCF-1, PHF2, and OGT, also regulate lipogenic gene
expression through epigenetic modifications (Figure 1).
THE REGULATION OF LIPOPROTEIN
METABOLISM BY CARBOHYDRATE
RESPONSE ELEMENT BINDING PROTEIN

It has been suggested that ChREBP may regulate lipoprotein
metabolism, because the plasma concentrations of cholesterol,
triglyceride, and very low density lipoprotein (VLDL)-
triglyceride, as well as the number of VLDL particles, are lower
in Chrebp knockout mice (13, 31, 58, 76). Our detailed analysis
demonstrated that the mRNA and protein expression of hepatic
microsomal triglyceride transfer protein (MTP) is lower in these
mice (58, 76). MTP catalyzes the rate-limiting step in the
production of apoB-containing VLDL, and therefore plays an
important role in VLDL secretion (77). Furthermore, the
consumption of a high fat/high sucrose diet is associated with
lower VLDL secretion in Chrebp knockout mice than in WT
mice, which is consistent with the effect of the genetic
FIGURE 2 | Differential regulation of monounsaturated fatty acid (MUFA) and
polyunsaturated fatty acid (PUFA) synthesis by ChREBP and SREBP-1c. Both
ChREBP and SREBP-1c regulate MUFA synthesis by regulating the
expression of genes involved in fatty acid synthesis (e.g., Acc1 and Fasn),
elongation (e.g., Elovl6), and desaturation (e.g., Scd1); whereas SREBP-1c,
but not ChREBP, regulates PUFA synthesis by regulating the expression of
genes involved in elongation (e.g., Elovl2) and desaturation [e.g., fatty acid
desaturase 1 (Fasd1) and fatty acid desaturase 2 (Fasd2)]. PUFAs suppress
the transcriptional activities of ChREBP and SREBP-1c. ACC1, acetyl CoA
carboxylase; FASN, fatty acid synthase; ELOVL6, fatty acid elongase 6;
SCD1, stearyl CoA desaturase; ELOVL5, fatty acid elongase 5; FASD1, fatty
acid desaturase 1; FASD2, fatty acid desaturase 2.
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manipulation on hepatic MTTP expression (76). Thus, the lower
MTP expression, together with the suppression of de novo
lipogenesis, in the livers of Chrebp knockout mice may
contribute to the lower hepatic VLDL secretion and plasma
lipid concentrations (58, 76). Interestingly, hepatic Chrebp
overexpression is also associated with lower plasma triglyceride
concentrations, but a different mechanism is involved (32).
Hepatic Chrebp overexpression is associated with higher
hepatic triglyceride content but lower plasma triglyceride
concentrations (32). The hepatic Mtp mRNA expression of
mice with hepatic Chrebp overexpression is similar to that of
control mice (32). Because hepatic Chrebp overexpression
reduces the concentrations of VLDL-triglycerides and low-
density lipoprotein-triglycerides (32), it has been suggested that
lipoprotein lipase (LPL) might be activated by hepatic Chrebp
overexpression. Consistent with this, we found that hepatic
Chrebp overexpression increased hepatic Fgf21 mRNA
expression and the plasma FGF21 concentration (20, 32, 57).
We also found that hepatic Chrebp overexpression was
associated with lower hepatic mRNA and protein expression of
ANGPTL3 (32). Because LPL is activated by FGF21 and
suppressed by the ANGPTL3/ANGPTL8 complex, it is
conceivable that high FGF21 and low ANGPTL3 might
activate peripheral lipoprotein metabolism by increasing LPL
activity, and thereby reducing plasma triglyceride concentration
(32). Thus, ChREBP controls lipoprotein metabolism through
the regulation of de novo lipogenesis, VLDL secretion, and the
Frontiers in Endocrinology | www.frontiersin.org 5
secretion of hepatokines that influence peripheral lipoprotein
metabolism (Figure 3).
CARBOHYDRATE RESPONSE ELEMENT
BINDING PROTEIN AND FATTY ACID
ESTERS OF HYDROXYFATTY ACIDS

Fatty acid esters of hydroxyfatty acids (FAHFAs) are a recently
discovered class of endogenous lipids that have anti-diabetic and
anti-inflammatory properties (78–83). FAHFAs, and especially
palmitic-acid-hydroxy-stearic-acid (PAHSA), have been found to
be present in much higher concentrations in mice that overexpress
GLUT4 in adipose tissue, which is a major site of FAHFA synthesis
(78, 79). PAHSA is hydrolyzed by carboxyl ester lipase, mutations of
which are known to causematurity-onset diabetes of the young type
8 (80). In humans, FAHFAs can be found in serum, breast milk,
meconium, and adipose tissue; and the serum PHASA
concentration correlates with insulin sensitivity (81). It has been
shown that PAHSA activates G-protein coupled receptor 120
(GPR120) to increase insulin-stimulated glucose uptake by
adipocytes and glucagon-like-peptide-1 (GLP-1) secretion in the
intestine (82). In addition, PAHSA activates G-protein coupled
receptor 40 (GPR40) to increase glucose-induced insulin secretion
(82) (Figure 4). PAHSA reduces adipose tissue inflammation and
potentiates the insulin-induced suppression of hepatic glucose
FIGURE 3 | Both the activation and inhibition of ChREBP reduce blood triglyceride concentration, but through differing mechanisms. Upper, ChREBP inhibition
reduces de novo lipogenesis and very-low density lipoprotein (VLDL) formation, resulting in lower circulating triglyceride concentration. Lower, ChREBP activation
increases hepatic triglyceride synthesis, increases Fgf21 expression, and reduces Angptl3 expression. High FGF21 and low ANGPTL3 concentrations increase
lipoprotein lipase activity in adipose tissue, thereby reducing the circulating triglyceride concentration. FGF21, fibroblast growth factor 21; MTTP, microsomal
triglyceride transfer protein; LPL, lipoprotein lipase; TG, triglyceride; FFA, free fatty acid; ANGPTL3, angiopoietin-like 3.
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production (78, 79, 83). Whole-body Chrebp knockout mice have
lower PAHSA concentrations in their adipose depots (78). Recently,
adipose tissue-specific Chrebp knockout mice were also shown to
have lower PAHSA concentrations in their serum and adipose tissue
(83). Although the relationship between carboxyl ester lipase and
ChREBP remain unclear, ChREBP regulates de novo lipogenesis in
adipose tissue. Therefore, ChREBP may regulate PAHSA
concentration via effects on biosynthetic and/or degradative
pathways in adipose tissue. because a reduction in adipose Chrebp
expression causes insulin resistance, the administration of PAHSA
might be a means of ameliorating this defect, but further
investigation is needed to clarify the mechanism involved.
CARBOHYDRATE RESPONSE ELEMENT
BINDING PROTEIN REGULATES
B-OXIDATION AND KETOGENESIS

b-oxidation and ketogenesis are upregulated in the fasting state
to produce ketone bodies that are used as an energy source in
Frontiers in Endocrinology | www.frontiersin.org 6
peripheral tissues, including brain, heart, and muscle. Through
b-oxidation, fatty acyl CoA is converted to acetyl CoA; and the
resulting acetyl CoA is then converted to 3-hydroxybutyric acid
(OHBA) or acetoacetyl CoA through ketogenesis. Although
ChREBP is activated by feeding, it is also involved in b-
oxidation and ketogenesis in the fasting state (30, 32, 76),
which was suggested by the observation that hepatic Chrebp
overexpression reduces plasma OHBA concentration and
increases free fatty acid concentrations (32). Hepatic Chrebp
overexpression causes an increase in the expression of Acc2,
which catalyzes the conversion of acetyl CoA to malonyl CoA.
Malonyl CoA reduces the entry of acyl CoA into mitochondria
by inhibiting carnitine palmitoyl transferase-1 (84). Hepatic
Chrebp overexpression also reduces the expression of acyl CoA
oxidase (58). Therefore, it has been suggested that ChREBP
activation suppresses b-oxidation and ketogenesis. However,
Chrebp knockout mice have paradoxically low plasma OHBA
concentrations, compared to their FFA concentrations, which
suggests that ChREBP inhibition also suppresses b-oxidation and
ketogenesis (30, 31, 58, 76). Recently, it was reported that
FIGURE 4 | Fatty acid esters of hydroxyfatty acid (FAHFAs) are novel bioactive lipids that are produced in adipose tissue under the regulation of ChREBP. FAHFAs
affect glucose uptake in adipose tissue, hepatic glucose output, GLP-1 secretion in the intestine, insulin secretion by pancreatic b-cells, and inflammation mediated
by macrophages and dendritic cells by activating GPR120 (adipose tissue), GPR40 (pancreatic b-cells), and other unknown mediators. Abbreviations: GLP-1,
glucagon-like peptide 1; Acly, ATP citrate lyase; Acc1, acetyl CoA carboxylase 1; Fasn, fatty acid synthase.
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peroxisome proliferator-activated receptor-a (PPARa) is
required for the ChREBP-mediated transcriptional activation
of the Fgf21 gene (85). Although ChREBP and PPARa mRNA
expression are reciprocally regulated in other tissues such brown
adipose tissues (86), these results suggest that ChREBP may act
in concert with PPARa to regulate gene transcription, even in
the fasting state, to fine-tune b-oxidation and ketogenesis.
CONCLUSIONS AND FURTHER
PERSPECTIVES

The last two decades of research have revealed critical roles of
ChREBP in lipid metabolism. ChREBP regulates hepatic
lipogenesis via acetyl-CoA produced by the conventional
pathway (glycolysis and fructolysis) and a novel pathway
(conversion of gut microbiota-derived acetate). It also regulates
lipoprotein metabolism in the liver and PAHSA production in
adipose tissue. Furthermore, ChREBP regulates b-oxidation and
ketogenesis in concert with PPARa. However, despite
remarkable progress in understanding of the roles of ChREBP
in these processes, a number of questions remain regarding its
relationship with lipid metabolism. First, to what extent does gut
microbiota-derived acetate induce hepatic triglyceride
accumulation? Although ChREBP regulates Acss2 mRNA, does
acetate itself affect ChREBP transcriptional activity? Second, the
role of ChREBP in cholesterol metabolism remains to be
determined. Chrebp knockout mice have lower plasma
concentrations of cholesterol, despite normal cholesterol
synthesis in their livers, and the low plasma cholesterol
concentrations may affect physiological processes, such as
steroidogenesis in the adrenal gland. Third, the physiological
and pathophysiological roles of ChREBP in the fasting state
require more in-depth investigation. Because ChREBP is
normally activated by glucose, it is conceivable that it regulates
post-prandial lipid metabolism. However, it remains unclear why
the ability of ChREBP to regulate b-oxidation and ketogenesis
evolved. Finally, it remains unclear whether ChREBP
suppression modifies the microbiota and lipid metabolism in
humans. As discussed above, Chrebp knockout mice have an
altered gut microbiota due to impaired fructose absorption from
the gut (25). Consistent with this, it has been demonstrated that
metformin treatment modifies the gut microbiota (87). AMP-
Frontiers in Endocrinology | www.frontiersin.org 7
activated protein kinase (AMPK) is known to be a major target of
metformin, and it also regulates the activity of several
transcription factors, such as SREBP-1c, PGC-1, FOXO1, and
CREB. In addition, both AMPK and metformin reduce the
transcriptional activity of ChREBP. Therefore, the effects of
metformin on the microbiota might be mediated partly
through ChREBP (88–90). Genome-wide scanning has also
identified a human ChREBP homologue, MLXIPL, genetic
variants of which are associated with plasma triglyceride
concentration (91). Thus, it would be interesting to determine
the effects of certain dietary habits (e.g., high fructose
consumption) on the gut microbiota of individuals with
MLXIPL variants (92). Further investigation is necessary to
clarify the various physiological and pathophysiological roles of
ChREBP in lipid metabolism.
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