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autoimmunity and cancer
Thomas A. Waldmann, Milos D. Miljkovic, and Kevin C. Conlon

IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play
pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block
IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases
in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in
combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and
with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.

Introduction
IL-15 is a 14–15-kD 4-α helix bundle family cytokine member
(Waldmann and Tagaya, 2000; Fehniger and Caligiuri, 2001). 25
yr ago, IL-15 was identified by our group and that of Grabstein in
culture supernatants from two cell lines (Cv-1/EBNA and HuT-
102) that stimulated proliferation of the cytokine-dependent
T cell line CTLL-2 in the presence of anti–IL-2 antibodies
(Bamford et al., 1994; Burton et al., 1994; Grabstein et al., 1994).
Since that discovery, there have been >6,000 papers and >170
clinical trials involving IL-15, which are beyond the scope of this
review and extensively covered in numerous reviews (Tagaya
et al., 1996; Waldmann 2003, 2006, 2014, 2015, 2018; Waldmann
et al., 1998, 2001; Fehniger and Caligiuri, 2001; Fehniger et al.,
2002; Lodolce et al., 2002; Becknell and Caligiuri, 2005; Ma
et al., 2006; Overwijk and Schluns, 2009; Rochman et al.,
2009; Jakobisiak et al., 2011; Steel et al., 2012; Mishra et al.,
2014; Anthony and Schluns, 2015; Pilipow et al., 2015; Patidar
et al., 2016; Chłopek et al., 2017; Robinson and Schluns, 2017; Lin
and Leonard, 2018). Rather, we present a discussion of com-
pelling topics that focuses on IL-15 in the pathogenesis of auto-
immune disorders and select malignancies and analyzes
approaches to block disordered IL-15 actions. The second theme
presented focuses on immunostimulatory aspects and transla-
tion of the dramatic effects of IL-15 on natural killer (NK) and

CD8 T cells generation and function in development of rational
combination therapies for cancer.

IL-15 mRNA is expressed by many tissues; however, IL-15
protein is largely limited to monocytes, macrophages, and den-
dritic cells (Bamford et al., 1996a). Although some regulation of
IL-15 protein production occurs with transcription, most control
of expression is at translation (Bamford et al., 1996a, 1996b).
Transcription of IL-15 is stimulated by type I and II interferons,
CD40 ligation, and TLR stimuli. IL-15 translation is impeded by
multiple 59-untranslated region AUG sequences, a long signal
peptide, and a negative regulatory element in the coding se-
quence C-terminus (Bamford et al., 1996b). Tight regulation of
IL-15 expression is required because of its potency as an in-
flammatory cytokine. The heterotrimeric IL-15 receptor is
composed of common gamma chain (γc) subunit (CD132) shared
with IL-2, IL-4, IL-7, IL-9, and IL-21; β chain (βc) subunit (IL-2R/
IL-15R, CD122) shared with the IL-2 receptor; and a private IL-
15–specific α subunit IL-15Rα (CD215; Fehniger and Caligiuri,
2001; Waldmann, 2006). IL-15 binding to IL-2/IL-15Rβ/γc het-
erodimer induces JAK1 activation that phosphorylates STAT3 via
the β chain and JAK3 that phosphorylates STAT5 (STAT5A,
STAT5B) via the γ chain (Fig. 1; Mishra et al., 2014).

IL-15 and IL-2 have several common functions including fa-
cilitating development of NK cells that reflect their sharing of
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receptor components IL-2/IL-15Rβ and γc and their use of
common JAK1/3 and STAT3/5 signaling (Carson et al., 1997;
Geginat et al., 2003; Farag and Caligiuri, 2006;Waldmann, 2006;
Huntington, 2014). However, NK cell development is fairly
normal in the absence of IL-2, whereas IL-15 is required for
normal NK development. There are also distinctions between IL-
2 and IL-15 in adaptive immune responses. IL-2 acts as a growth
factor during initiation of immune responses but also has crucial
roles in preventing immunity to self by termination of T cell
immune responses by activation-induced cell death (AICD) and
by action of regulatory T cells (T reg cells; Lenardo et al., 1999;
Snow et al., 2010; Sakaguchi, 2011).

In contrast, IL-15 has nomajor net effect on maintenance of T
reg cell fitness. IL-15 provides a sustained immune response to
invading pathogens by being an antiapoptotic factor; in partic-
ular, in IL-15 transgenic mice, IL-2–induced AICD is inhibited
(Marks-Konczalik et al., 2000). In addition, IL-15 promotes

maintenance of CD44hi CD8 T cell memory phenotype cells and
renewal of viral specific memory CD8 T cells (Becker et al., 2002;
Burkett et al., 2003; Schluns and Lefrançois, 2003; Munks et al.,
2006; Purton et al., 2007; Boyman et al., 2009; Burrack et al.,
2018). Furthermore, IL-15 is critical in development of tissue
memory phenotype CD103+CD28−CD8+ T cells (Mackay et al.,
2013; Mayassi and Jabri, 2018) and for the maintenance of
CD4+ T cells, CD8αα (+) intraepithelial lymphocytes (Kwong and
Lazarevic, 2014; Klose et al., 2014), and ILC1, 2, and 3 innate
lymphoid cells (Robinette et al., 2017; Fuchs et al., 2013), and
innate cells that express CD103+, CD56+, and CD44+ (Sciumè
et al., 2017).

IL-2 is a predominantly secreted molecule with wider effects,
whereas IL-15 is secreted only in small quantities; membrane-
bound IL-15 induces signaling in cell–cell contact at an immu-
nological synapse. IL-15 and IL-15Rα coexpressed by monocytes
and dendritic cells become associated on cell surfaces where IL-
15 is presented in trans to NK and CD8 memory T cells (Dubois
et al., 2002; Kobayashi et al., 2005; Lucas et al., 2007;
Huntington et al., 2009; Castillo and Schluns, 2012). In addition,
Zanoni et al. (2013) demonstrated that IL-15 cis presentation is
required for optimal NK cell activation in LPS-mediated in-
flammatory conditions.

IL-15 in autoimmune diseases
IL-15 is a proinflammatory cytokine that McInnes et al. (1996)
suggested is at the apex of the proinflammatory cytokine cas-
cade preceding expression of TNFα and inflammatory cytokines.
In an elegant opinion article, Jabri and Abadie (2015) proposed
that IL-15 functions as a danger signal to regulate tissue-resident
T cells and limit tissue destruction. IL-15 contributes to tissue
protection by promoting elimination of infected cells, but
chronically dysregulated IL-15 promotes organ-specific autoim-
mune diseases. IL-15 is constitutively up-regulated in a wide
variety of autoimmune diseases: rheumatoid arthritis (Harada
et al., 1999; Benito-Miguel et al., 2009), multiple sclerosis
(Vaknin-Dembinsky et al., 2008; Rentzos and Rombos, 2012),
systemic lupus erythematosus (Aringer et al., 2001; Robak et al.,
2002), alopecia areata (Xing et al., 2014), vitiligo (Richmond
et al., 2018), psoriasis (Villadsen et al., 2003; Bouchaud et al.,
2013), type 1 diabetes (Chen et al., 2013), and celiac disease
(Abadie and Jabri, 2014; Korneychuk et al., 2014; Meresse et al.,
2015). Disordered expression of IL-15 by resident cells is often
associated with up-regulated expression of ligands for activating
NK receptors including NKG2D. The severity of rheumatoid
arthritis was related to IL-15–induced expansion of CD4+ CD28−

T cells expressing NKG2D and stress-induced MHC class I–
related chain ligands on rheumatoid synoviocytes (Baslund
et al., 2005). An antibody to IL-2Rβ that targets IL-15 and IL-
2 was effective in a preclinical model of vitiligo (Richmond,
et al., 2018). Celiac disease is characterized by induction of
NKG2D ligands and HLA-E (Yokoyama et al., 2009; Abadie and
Jabri, 2014; Ettersperger et al., 2016). IL-15 promotes expansion
of intestinal intraepithelial lymphocytes, which have cytotoxic
activity and kill epithelial cells. Alopecia areata was shown to be
driven by cytotoxic CD8 T cells that express NKG2D responding
to IL-15 (Xing et al., 2014). Administration of ruxolitinib, a JAK1

Figure 1. IL-15 signaling pathways. IL-15, in one scenario at left, binds to
the heterotrimeric receptor in cis (Zanoni et al., 2013; Mishra et al., 2014). At
right, IL-15 binds to the high-affinity IL-15Rα subunit expressed on antigen-
presenting cells and is presented in trans to IL-2/IL-15Rβγ heterodimers on
NK or CD8 T cells (Dubois et al., 2002). Activation proceeds via three path-
ways. The first involves JAK1/3/STAT3/5 activation, with phosphorylated
STAT proteins forming dimers trafficking to the nucleus for transcriptional
activation. In the second IL-15 pathway, adaptor protein Shc binds to a
phosphotyrosine residue on IL-2/IL-15Rβ, resulting in activation of the Shc,
Grb2, GAB2, P13K, and AkT signaling pathway (Mishra et al., 2014). In the
third pathway, IL-15 signaling is associated with activation of Grb2 and SOS to
form a Grb2/SOS complex that activates the RAS-RAF MAPK pathway in-
volved in cellular proliferation. Collectively, these signaling pathways induce
expression and activation of c-Myc, c-Fos, c-Jun, Bcl-2, Bcl-xL, Mcl-1, NF-κB,
and TNFα (modified from Mishra et al., 2014).
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and JAK2 inhibitor, to patients with alopecia areata restored
near complete hair growth, supporting IL-15’s pathogenic role
(Mackay-Wiggan et al., 2016). To investigate the role of IL-15/IL-
15Rα in the pathogenesis of type 1 diabetes, we generated double
transgenic mice with pancreatic β cells expressing IL-15 and IL-
15Rα (Chen et al., 2013). The mice developed hyperglycemia,
mononuclear infiltration, β cell destruction, and anti-insulin
autoantibodies mimicking early human type 1 diabetes, and
hyperglycemia was reversed by inhibiting IL-15 signaling with
anti-IL-2/IL-15Rβ (anti-CD122) or pan JAK inhibitor tofacitinib.
We demonstrated data supporting IL-15’s role in human type
1 diabetes showing pancreatic β cell expression of IL-15 and IL-
15Rα in diabetic individuals but not in control subjects (Chen
et al., 2013). Abadie and Jabri (Abadie and Jabri 2014; Jabri and
Abadie, 2015) propose that two signals are required for tissue
destruction in type 1 diabetes and celiac disease. The latent po-
tential for autoimmune diseases like celiac disease and diabetes
in adults are characterized by dysregulated immune responses
to gluten and β islet cell antigens, respectively, with preserva-
tion of functional tissue. IL-15 up-regulation is absent in intes-
tinal epithelium and β islet cells of these patients, which
supports the hypothesis that tissue disruption by cytotoxic
T cells requires IL-15 signals to license them to kill target cells
(Jabri and Abadie, 2015).

IL-15 plays a role in diverse T cell malignancies
IL-15 transgenic mice develop fatal lymphocytic leukemias with
CD8 phenotype and with NK surface markers (Fehniger et al.,
2001; Sato et al., 2011). IL-15 treatment up-regulates NKmarkers
in both mice and humans.

Retrovirus HTLV-1 infection results in adult T cell leukemia
(ATL), a leukemia of T reg cells in 2–5% of infected individuals
(Cook et al., 2019). HTLV-1 associated protein Tax transactivates
two autocrine (IL-2/IL-2R and IL-15/IL-15R) and one paracrine
(IL-9) pathway, yielding activating JAK1/3 and STAT3/5, re-
sulting in spontaneous leukemic cell proliferation that is in-
hibitable ex vivo by anti-cytokine antibodies or JAK inhibitors
(Chen et al., 2008; Ju et al., 2011), which is being evaluated in a
clinical trial by our group (NCT01712659) with the JAK inhibitor
ruxolitinib. Döbbeling et al. (1998) demonstrated that IL-15 acts
as a growth and viability factor in cutaneous T cell lymphoma
(CTCL). Mishra and coworkers (Mishra et al., 2012; Mishra et al.,
2016) showed that ZEB1 is a transcriptional repressor of IL-15 in
T cells and that in CTCL, hypermethylation of the ZEB1 binding
region within the IL-15 promoter prevented ZEB1 binding and
caused increased IL-15 transcription.

IL-15Rα/IL-15 levels were elevated in T cell large granular
lymphocytic (LGL) leukemia (Chen et al., 2012), and a model of
survival signaling in T cell LGL leukemia suggested that IL-15
and platelet-derived growth factor are sufficient to reproduce
deregulations in T cell LGL leukemia (Zhang et al., 2008).

Therapeutic targeting of IL-15, its receptor, or signaling
pathway
IL-15–inhibiting agents developed include soluble IL-15Rα, mu-
tant IL-15 molecules (Kim et al., 1998; Ferrari-Lacraz et al., 2004;
Zhao et al., 2016), anti-IL-15 or IL-2/IL-15Rβ antibodies (Morris

et al., 2006; Waldmann et al., 2013; Sestak et al., 2018), and
modifications of IL-2 that block IL-15 interaction with its re-
ceptor (Mitra et al., 2015; Nata et al., 2015), as well as JAK in-
hibitors (Zhang et al., 2015; Fig. 2).

Engineered modifications of IL-2 that block binding of IL-
2 and IL-15 to IL-2/IL-15Rβ and γ chains, simultaneously in-
hibiting actions of both IL-2 and IL-15 (Mitra et al., 2015; Nata
et al., 2015; Wang et al., 2019), were generated. The RETR
mutant of H9 super IL-2 (denoted H9-RETR) binds to IL-2/IL-
15Rβ but not γ chain. BNZ-1, a 24-aa agent analogous to shared
elements of the D helix of IL-2 and IL-15, binds to γc and not to
IL-2/IL-15Rβ. Both agents prevent IL-2- and IL-15–mediated
heterodimerization of IL-2/15R β with γc, which is required
for signaling.

Figure 2. Approaches to block disordered IL-15 actions. Several agents
that inhibit IL-15 activity were developed including soluble IL-15Rα, IL-15
mutein (Kim et al., 1998), antibodies specific for IL-15 or IL-2/IL-15Rβ, mutant
modifications of IL-2 (BNZ-1 and 2, H9-RETR), to block IL-15 interaction with
its receptors (Mitra et al., 2015; Nata et al., 2015), and JAK inhibitors. IL-15
antagonists produced by mutating a glutamine residue to aspartic acid resi-
due at the C-terminus of IL-15 increased survival of pancreatic islet cell
allografts. Soluble high-affinity IL-15Rα prevented development of collagen-
induced arthritis in mice. An antibody specific for IL-15 was effective in mouse
models of autoimmune diseases. We developed humanized antibody (Hu-
Mik-Beta-1) specific for IL-2/IL-15Rβ. This antibody blocked trans presenta-
tion of IL-15 by antigen-presenting cells to target NK cells and CD8 T cells and
prolonged cardiac allograft survival in cynomolgus monkeys (Morris et al.,
2006). Clinical studies with Hu-Mik-Beta-1 are underway in patients with
refractory celiac disease (NCT01893775) and HTLV-1–associated tropical
spastic paraparesis (NCT00076180).
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IL-15 in the immunotherapy of cancer
Recombinant IL-2 was approved in 1992 by the US Food and
Drug Administration (Rosenberg, 2014). However, although IL-
2 is involved in cancer cell death by immune activation, it also
suppresses immune responses by maintenance of CD25+Foxp3+

T reg cells and participates in AICD (Snow et al., 2010;
Sakaguchi, 2011). Furthermore, IL-2 is associated with multiple
serious side effects such as capillary leak syndrome, hypoten-
sion, hypoxia, and oliguric renal failure. These issues prompted
the search for immunotherapeutics with benefits of IL-2 but
fewer negative effects. Whereas IL-15 has immune enhancing
properties like IL-2, it does not have major effects on T reg cells
but suppresses AICD and has less capillary leak syndrome and
vascular complications in mice, nonhuman primates, and pa-
tients. Multiple immunotherapy studies in murine models in-
dicated that IL-15 may be valuable in therapy of neoplasia
(Brentjens et al., 2003; Munger et al., 1995; Klebanoff et al.,
2004; Villinger et al., 2004; Teague et al., 2006). 10-d
20 µg/kg/d administration of IL-15 to rhesus macaques by
continuous i.v. infusion (CIV) was associated with 10-fold in-
creases in the number of circulating NK cells and 80–100-fold
increases in the number of circulating effector memory CD8
T cells (Sneller et al., 2011; Waldmann et al., 2011).

Clinical trials using IL-15 in the treatment of cancer
Over 170 clinical trials have been initiated in treatment of cancer
using different IL-15 preparations. The results of six of these
trials have been published in referenced journals (Table 1). We
initiated a first-in-human phase I trial of recombinant IL-15
administered by i.v. bolus daily for 12 d to adults with metastatic
malignancy (Conlon et al., 2015). This study started with an
initial dose of 3 µg/kg/d. However, after initial patients devel-
oped grade 3 hypotension and thrombocytopenia, doses of 1.0
and 0.3 µg/kg/d were added. All nine patients at the 0.3 µg/kg/d
dose level received 12 doses without dose-limiting toxicity.

Flow cytometry revealed a 10-fold increase in absolute NK cell
numbers with the 3 µg/kg/d dose level, as well as significant
increases in circulating CD8 T and γδ T cell numbers. The best
response was stable disease. Inflammatory cytokines IL-6 and
IFNγweremarkedly elevated, which coincidedwith acute clinical
toxicities of fever, chills, and blood pressure changes. To reduce
toxicity with the goal of reducing maximum serum concentra-
tion, excess cytokine release, and macrophage activation syn-
drome, two additional clinical trials were initiated. One involved
subcutaneous recombinant human IL-15 (rhIL-15) given daily five
times a week for 2 wk consecutively (Miller et al., 2018). There
were two serious adverse events among 19 patients treated: grade
2 pancreatitis, and grade 3 cardiac chest pain, hypotension, and
elevated troponin (a dose-limiting toxicity). No objective re-
sponses were observed; however, several patients had disease
stabilization. The treatment induced expansion of circulating NK
cells, especially CD56bright cells (Fig. 3). There was a proportional
but less dramatic increase of CD8+ T cells.

In a parallel trial, we administered rhIL-15 to patients with
metastatic malignancy by CIV for 10 d or in a subsequent trial for
5 d (Conlon et al., 2019). We observed two deaths at 4.0 µg/kg/d,
one disease progression, and a grade 5 visceral arterial ischemia.

An expansion cohort of nine patients was subsequently treated at
maximum tolerated dose of 2.0 µg/kg/d. In the CIV trial following
maximum serum concentration at 48 h, there was a gradual de-
cline of serum IL-15 concentration to 8% of the maximum level by
days 8–10 of the IL-15 infusions. This decline may reflect induc-
tion of IL-15 receptor–bearing cells and an increase in the number
of IL-2/IL-15Rβ (CD122) receptors per cell that acted as a sink
binding rhIL-15. Within 1–3 d of CIV infusion initiation, there was
a profound decline in the number of circulating NK and CD8
memory phenotype T cells, followed by a gradual increase until
termination of infusions. During 1–3 d following termination of
infusions, there was a 38-fold increase in the number of circu-
lating NK cells and a 358-fold increase in the number of circu-
lating CD56bright NK cells (Fig. 3). Studying purified NK cells
in vitro, Felices et al. (2018) suggested that continuous treatment
with IL-15 exhausts purified NK cells, resulting in decreased vi-
ability and a cell cycle arrest gene expression pattern. Further-
more, they proposed that their findings should inform IL-15
dosing strategies. Our studies with IL-15 in vivo by CIV to humans
do not support these conclusions (Dubois et al., 2017; Conlon et al.,
2019). The proliferation rate of different subsets of NK cells at
termination of 10-d IL-15 CIV assayed by Ki67 was >90%. The
cytolytic capacity of the CD56bright NK subset was very effective.
In particular, lytic activity was markedly increased by IL-15 CIV,
including antibody-dependent cellular cytotoxicity (ADCC) as-
sessed with CD20 antibody-coated Raji cells, natural cytotoxicity
to K562 cells mediated by NKp30 and NKp46, andMICA/NKG2D-
mediated cytotoxicity (Dubois et al., 2017). These observations on
the effects of IL-15 on NK subsets support the view that after 5- or
10-d rhIL-15 CIV, NK cells remain effective and do not support the
hypothesis that such strategies would be associated with NK cell
exhaustion.

Although rhIL-15 may show efficacy in metastatic malignancy,
a particular challenge is that it has a short in vivo survival. Indeed,
true IL-15 may not be an IL-15 monomer but may rather be an IL-
15Rα/IL-15 heterodimer (Dubois et al., 2008; Bergamaschi et al.,
2012). Therefore, an array of IL-15 agents with IL-15Rα were in-
troduced clinically (Fig. 4).

ALT-803 (IL-15 mutant/IL-15Rα/Ig1fusion protein) was ad-
ministered i.v. or s.c. to 33 patients with hematological malig-
nancies once weekly for four doses (Romee et al., 2018), and
pharmacokinetic analysis revealed prolonged serum concen-
trations following s.c. compared with i.v. infusion. There were
two deaths, one due to sepsis and one due to intracranial hem-
orrhage deemed to be unrelated to ALT-803. Administrations of
ALT-803 or hetIL-15 (mammalian IL-15/IL-15Rα) by s.c. injection
were associated with large (30 cm) erythematous plaques,
mimicking cellulitis (Romee et al., 2018). The rash was associ-
ated with an infiltrate predominantly of CD56+ NKp46− γδ
T cells. Development of this complication with both ALT-803
and hetIL-15 precluded further increases in IL-15 doses. As noted
in Fig. 3, rhIL-15 by CIV yielded by far the greatest increases in
total NK and CD56bright NK cells.

IL-15 in combination therapy
Although diverse forms of IL-15 monotherapy augment the
number of NK and CD8 T cells, due to immunological checkpoints,
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IL-15 will have to be used in combination therapy if it is to become
amajor factor in the cancer therapy armamentarium (Evans et al.,
1997; Romee et al., 2012; Ochoa et al., 2017a, 2017b; Johnson and
Miller, 2018).

Agents to relieve checkpoints on the immune system to
optimize IL-15 action
IL-15 is associated with expression of immune checkpoints, in-
cluding the inhibitory cytokine IL-10, TIM3, and TIGIT, and
expression of PD-1 on CD8 T cells (Yu et al., 2010, 2012). Fur-
thermore, IL-15 is critical in maintenance of CD122+CD8+ T reg
cells (Rifa’i et al., 2008). The combination of IL-15 superagonist
with anti–PD-L1 therapy was more effective than either agent
alone in murine tumor models (Kowalsky et al., 2018; Knudson
et al., 2019; Zhao et al., 2019). Furthermore, Desbois et al. (2016)
demonstrated that IL-15 trans-signaling with the receptor-link-
er-IL-15 (RLI) that consists of human IL-15 covalently linked to

the human IL-15Rα sushi domain promotes effector/memory
CD8+ T cell responses and enhances the antitumor activity of PD-
1 antagonists. With ALT-803 in combination with nivolumab in
patients with metastatic nonsmall cell lung cancer, 6 of 21 pa-
tients manifested an objective response (Wrangle et al., 2018).

To address checkpoints, we administered IL-15 in combina-
tionwith antibodies to cytotoxic T lymphocyte antigen-4 (CTLA-
4) and PD-L1 (Yu et al., 2012). In the CT26 or MC38 colon
carcinoma or TRAMP-C2 prostatic cancer syngeneic tumor
models, IL-15 alone provided modest antitumor activity. Addi-
tion of either anti-CTLA-4 or anti–PD-L1 alone in association
with IL-15 did not increase efficacy. However, tumor-bearing
mice receiving IL-15 in combination with both anti-checkpoint
antibodies manifested a marked prolongation of survival. In
translation, a phase I trial is initiated that involves IL-15 (rhIL-
15) in combination with nivolumab and ipilimumab in refrac-
tory cancers (NCT 03388632).

Table 1. IL-15 clinical trials in patients with metastatic malignancy

IL-15
agent

MTD or
expansion
dose/dosing
schedule

Study
population

Serious and notable
adverse events

Maximum
fold increase
in total NK
cells at MTD

Maximum
fold increase
in CD56bright

NK cells

Maximum
fold
increase in
CD8 T cells

Best clinical
response

References

E. coli rhIL-
15

0.3 µg/kg/d
bolus i.v. for 12 d
consecutively

18 patients with
malignant
melanoma or
renal cell cancer

Grade 3 hypotension;
grade 3
thrombocytopenia;
grade 3 ALT and AST
elevations

2–3 3–4 3 Stable disease
(five patients had
10–30% decrease
in marker lesions
and two had
disappearance of
lung lesions)

Conlon
et al., 2015

E. coli rhIL-
15

2 µg/kg/d CIV for
10 d

27 patients with
metastatic solid
tumors

Two deaths (one due
to gastrointestinal
ischemia and one due
to disease
progression); grade 3
bleeding; grade 3
papilledema; grade 3
uveitis; grade 3 hepatic
encephalopathy

38 358 5.8 Stable disease Conlon
et al., 2019

E. coli rhIL-
15

2 µg/kg/d s.c. on
days 1–5 and
8–12

19 patients with
advanced solid
tumors

Grade 2 pancreatitis;
grade 3 cardiac/chest
pain

10.8 39.7 3.3 Stable disease Miller et al.,
2018

ALT-803 10 µg/kg i.v. or
s.c. weekly for 4
wk

33 patients with
hematological
malignancies

Two deaths (one due
to sepsis, one due to
intracranial
hemorrhage); grade 4
sepsis; grade
2 pemphigus

8 8 2 1 CR, 1 PR, 3 SD Romee
et al., 2018

ALT-803 20 µg/kg s.c. for
4 wk
consecutively
every 6 wk

24 patients
(11 i.v., 13 s.c.)
with solid
tumors

Grade 4 congestive
heart failure; grade 4
neutropenia; injection
site reaction

3.3 6.3 1.3 No PR or CR Margolin
et al., 2018

ALT-803 +
nivolumab

20 µg/kg ALT-
803 s.c.
combination with
i.v. nivolumab
every 2 wk

21 patients with
metastatic non-
small cell lung
cancer

Grade 3 myocardial
infarction; injection
site reaction

3 NA Minor
response

6 PR, 10 SD Wrangle
et al., 2018

CR, complete response; NA, not available; PR, partial response; SD, stable disease.
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Combination of IL-15 plus optimized agonistic anti-CD40
As noted above, in rhesus macaques, CIV of IL-15 at 20 µg/kg/d
for 10 d led to an 80–100-fold increase in circulating effector
memory CD8 T cells. rhIL-15 by CIV to humans led to a lower CD8
T cell response with an up to eightfold increase in the number of
circulating activated CD38+, MHC Class II+ CD8+ T cells. How-
ever, there was little evidence that the CD8 T cells generated had
antitumor activity. IL-15 induces a complex of intracellular
regulatory suppressor of cytokine signaling (SOCS) agents
(Alexander and Hilton 2004). High concentrations of IL-15 in-
crease expression of CIS encoded by cytokine-inducible SH2-
containing protein, a potent checkpoint of NK-mediated tumor
immunity (Bottino et al., 2016; Delconte et al., 2016). Further-
more, SOCS1 attenuates IL-15 receptor signaling of CD8 thymo-
cytes and CD8+ CD44high memory T lymphocytes (Ilangumaran
et al., 2003a, 2003b; Calabrese et al., 2009). In addition,
SOCS2 up-regulation following IL-15 stimulation enhances IL-
15–primed human NK cell function via control of phosphory-
lated Pyk2 (Lee et al., 2010). Sckisel et al. (2015) demonstrated
that administration of γc cytokines was often ineffective in

cancer immunotherapy because it led to paralysis/depression of
CD4 but not CD8 T cells that was mediated through transient
expression of SOCS3, which inhibited the STAT5B signaling
pathway (Alexander and Hilton, 2004; Sckisel et al., 2015). This
paralysis of primary CD4 T cell helper activity prevented gen-
eration of tumor-specific CD8 T cells. The role of CD4 helper cell
interaction with dendritic cells and CD8 T cells was shown to be
alternatively mediated by CD40 agonists (Bennett et al., 1998;
Ridge et al., 1998; Schoenberger et al., 1998). In our studies in the
murine syngeneic tumor model, TRAMP-C2 treatment with ei-
ther IL-15 or agonistic anti-CD40 antibody alone prolonged
survival (Zhang et al., 2009, 2012). However, combination of IL-
15 with agonistic anti-CD40 produced markedly additive effects
when compared with either agent alone. IL-15 or anti-CD40
alone did not augment the number of tumor-specific CD8
T cells, whereas administration of a combination of IL-15 with
anti-CD40 antibody yielded a 10-fold increase in the number of
TRAMP-C2 tumor-specific Spas-/SCNC 9H tetramer-positive
CD8 T cells. A clinical trial is being initiated using an opti-
mized intralesional anti-CD40 FcγRII-binding antibody in com-
bination with CIV rhIL-15 (Li and Ravetch, 2011; Dahan et al.,
2016).

IL-15 in combination with anticancer monoclonal antibodies
rhIL-15 administration leads to increases in the number of acti-
vated NK cells. However, such increases alone were not sufficient
to produce antitumor efficacy, likely because most tumors ex-
press self-MHC class I molecules that inhibit NK effector func-
tions. Nevertheless, ex vivo cytokine (IL-12, -15, and -18)-induced
memory-like natural killer cells exhibited clinical responses in
five of nine evaluable patients with acute myeloid leukemia in-
cluding four complete remissions (Robak et al., 2002; Berrien-
Elliott et al., 2015; Romee et al., 2016). Furthermore, Cursons et al.
(2019) demonstrated that patients with metastatic cutaneous
melanoma have improved survival rates if their tumor shows
evidence of NK cell infiltration. Furthermore, these survival ef-
fects were enhanced in tumors that show higher expression of
genes that encode NK stimuli such as the cytokine IL-15. Their
results provide evidence that NK cells play a role in the regulation
of human tumors and highlight potential survival effects associ-
ated with increased NK cell activity.

IL-15 preparations have been reported to be of value in com-
bination with in vivo administered monoclonal antibodies (Moga
et al., 2011; Wrangle et al., 2018; Zhang et al., 2018; Chen, X., et al.
2015. 30th Annual Meeting and Associated Programs of the So-
ciety for Immunotherapy of Cancer. Abstr. P347). In particular, an
engineered fusion protein linking a soluble form of human IL-
15Rα sushi with an antibody demonstrated antitumor responses
(Liu et al., 2016). Furthermore, there was enhancement of ADCC
and anti-breast cancer efficacy of cetuximab by a chimeric protein
encompassing human interleukin-15 (Roberti et al., 2012; Ochoa
et al., 2017a, 2017b). In addition, IL-15 enhanced rituximab ADCC
against chronic lymphocytic leukemia cells (Moga et al., 2011).

We investigated combination therapy of IL-15 with rituximab
in a syngeneic mouse model of EL-4 lymphoma transfected with
human CD20 and with alemtuzumab (CAMPATH-1H) in a xen-
ograft model of human ATL (Zhang et al., 2018). IL-15 enhanced

Figure 3. Comparison of maximum fold increase in number of circu-
lating NK cells with different agents and dosing schedules. rhIL-15 ad-
ministered by bolus infusions at the MTD (0.3 μg/kg/d) yielded only a two to
threefold increase in NK cells (Conlon et al., 2015). rhIL-15 administered s.c. at
the expansion dose of 2 μg/kg/d on days 1–5 and 8–12 produced a 10.8-fold
increase in total NK cells and a 39.7-fold increase in CD56bright NK cells (Miller
et al., 2018). ALT-803 mutant (IL-15/IL-15Rα/IgFc) at 10 μg/kg/wk elicited an
eightfold increase in NK cells (Romee et al., 2018). rhIL-15 by CIV at 2 μg/kg/d
for 10 d resulted in the greatest increase, with a 38-fold increase in circulating
total NK cells and a 358-fold increase in CD56bright NK cells (Conlon et al.,
2019).
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therapeutic efficacy of both antibodies. Both NK cells and mac-
rophages were critical elements in the chain of interacting ef-
fectors involved in augmented ADCC and optimal therapeutic
responses. These results provided the scientific basis for a phase
I trial of IL-15 combined with alemtuzumab (anti-CD52) for pa-
tients with ATL (NCT02689453). Additional trials were initiated
with chronic lymphocytic leukemia with rhIL-15 in combination
with obinutuzumab (anti-CD20; NCT03759184) and avelumab
(anti-PD-L1; NCT03905135).

Ethics
All studies were performed under the conditions of the University
of Helsinki. All patients signed a written informed consent for
participation in clinical studies. Clinical studies were approved by
the Intramural Review Board of the National Cancer Institute.
Animal studies were approved by the National Cancer Institute
Animal Care and Use Committee.

Conclusions and future perspectives
Specific disorders of IL-15 play pathogenic roles in diverse
organ-specific autoimmune disorders. With the alternative goal,
IL-15 administration to patients with malignancy dramatically
increased circulating NK cells and increased CD8 T cell numbers.
However, with the exception of JAK inhibitors, none of the IL-
15–related study agents directed toward autoimmunity or cancer
has received US Food and Drug Administration approval.
Therefore, it will be critical to translate outstanding opportu-
nities suggested in animal models into clinical trials. In partic-
ular, many strategies to block IL-15 action for autoimmunity that
were effective in models or with ex vivo spontaneously prolif-
erating cytokine autocrine cells gave disappointing results
in clinical trials. When evaluating efficacy in inhibiting IL-15
action in in vivo approaches, a valuable biomarker of sustained

inhibition of IL-15 signaling is a dramatic reduction in the
number of circulating NK cells. It is critical for an effective
antibody to IL-15 that it inhibit IL-15 administered in vivo as well
as in vitro. Two of three antibodies to IL-2 studied by Boyman
et al. (2006) that functioned as inhibitors in vitro were super-
agonists in vivo. We propose that lack of a marked reduction of
NK cells and relative failure of an antibody to IL-15 in treatment
of celiac disease may reflect that this antibody was not effective
at inhibiting IL-15 in vivo.

In addition, the use of ruxolitinib to interrupt IL-15 signaling
through inhibition of JAK1 and JAK2 in patients with cytokine-
dependent ATL was not optimal. Due to the action of HTLV-
1–associated Tax transactivation of autocrine and paracrine
cytokine pathways in leukemic ATL cells, such cells proliferate
ex vivo in 6-d cultures. This proliferation was inhibited when
ruxolitinib with JAK1 and off-target JAK2 inhibition was added to
these cultures. However, ruxolitinib gave disappointing results
both in maintaining inhibition of STAT5 phosphorylation and in
clinical response when administered to ATL patients. Pharma-
cokinetic and pharmacodynamic factors contributed to this re-
sult in that when administered orally, ruxolitinib inhibited
phosphorylation of STAT5 of peripheral blood mononuclear cells
only at the 1-h time point andmodestly at 3 h but were relatively
ineffective in the remaining hours of the day. To address this
issue and the off-target JAK2 inhibition of ruxolitinib, present
studies are focusing on specific JAK3 and JAK1 inhibitors.

Alternative inhibitors of IL-15 receptor binding include
PEGylated BNZ-1, which blocks IL-2 and IL-15 binding when
administered to controls, had a survival t1/2 of ∼5 d, and led to
a 70–80% decline in the number of circulating NK cells and
an 80–93% decline in T reg cells. This agent is under clinical
trial in patients with T cell LGL and with CTCL (Nata et al.,
2015; Wang et al., 2019). A second trial of BNZ-2 that blocks

Figure 4. IL-15 agonists used in immuno-
therapy. IL-15 preparations in clinical use in-
clude rhIL-15 produced in Escherichia coli (Conlon
et al., 2015, 2019), an IL-15N72D mutein with a
four to fivefold increase in biological activity
(Zhu et al., 2009), and heterodimeric mammalian
IL-15 (Chertova et al., 2013; Bergamaschi et al.,
2008, 2012, 2018). Anti-CD20-RLI (Cytune
Pharma) is a fusion protein consisting of IL-15
linked to the cytokine-binding (sushi) domain of
IL-15Rα (Vincent et al., 2014). ALT-803 (Altor
Pharmaceutical) represents a mutated (N72D)
IL-15 (asparagine replacing aspartic residue)
linked to the sushi domain of IL-15Rα that is
fused to an IgG-Fc fragment to increase in vivo
survival (Liu et al., 2016; Furuya et al., 2019;
Chen, X., et al. 2015. 30th Annual Meeting and
Associated Programs of the Society for Immu-
notherapy of Cancer. Abstr. P347). Not shown,
ALT-803 scaffold has been fused to four single
chains of the tumor-targeting monoclonal anti-
body rituximab (Schmohl et al., 2016). This
ALT-803 monoclonal fusion protein prolonged
survival in murine models of cancer.
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IL-15 and IL-21 is being initiated in treatment of patients with
refractory celiac disease. Nevertheless, even in this case, it is
likely that inhibition of IL-15 receptor binding or signaling
pathway alone will not be optimal and that combinations will
be of value. To identify combinations, we employed a high-
throughput assay to define agent combinations that are ad-
ditive, including the Bcl-2/Bcl-xL inhibitor navitoclax
(Zhang et al., 2015). The combination of ruxolitinib with
navitoclax demonstrated synergy in murine models of ATL.
In addition, the combination manifested activation of caspase
3 and 7 and conversion of Mcl-1 from its 40-kD anti-apoptotic
form to a 24-kD pro-apoptotic form. In the future, such
combinations of effective IL-15 action inhibitors may be of
value in treatment of autoimmune diseases and select T cell
malignancies.

With the alternative goal of treating patients with cancer and
developing more effective vaccines, novel approaches with IL-15
are being developed to yield desired pharmacokinetics with one
dosing per week provided by IL-15/IL-15Rα combinations along
with maximal increases in NK and CD8 T cells provided by CIV
rhIL-15. ARMO BioSciences is developing a PEGylated IL-15 to
prolong survival. Furthermore, Tan and Waldmann are explor-
ing a long-acting rhIL-15 depot for enhanced cancer immuno-
therapy in which IL-15 is mixed with an aqueous solution of
polylactic-co-glycolic acid–PEG, a copolymer that is in solution
at room temperature but transitions into a hydrogel at body
temperature (Kim et al., 2001). In murine models, rhIL-15 hy-
drogel yielded immunotherapeutic IL-15 concentrations that
persisted for days.

Despite their augmentation of NK cells and CD8 T cells, all IL-
15 preparations administered as monotherapy of solid tumors
were ineffective due to action of immunological checkpoints
that prevented immune responses to self. In particular, there
was inhibition of NK cell action by interactions of KIRS and
NKG2A with self-class I MHC. There was parallel inhibition of
CD8 T cells stimulated by IL-15 due to induction of SOCS3 in CD4
helper T cells, thereby yielding “helpless” CD8 T cells. To cir-
cumvent those latter checkpoints, combination trials of IL-15
and multiple other agents are being initiated. These combina-
tions include IL-15with checkpoint inhibitors, with anti-CD40 to
yield tumor-specific CD8 T cells, and with cancer-directed
monoclonal antibodies to increase their ADCC and anticancer
efficacy.

In summary, our expanding understanding of the role of IL-
15 in the life and death of lymphoid cells in health and disease is
providing new perspectives for treatment of autoimmune dis-
orders and malignancies.
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