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Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light.
Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these
organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them
suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new
promoters have been discovered or engineered for cyanobacteria.Moreover, alternative tools and strategies for expression control such
as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the
different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
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Introduction

Cyanobacteria are a very diverse group of photosynthetic mi-
croorganisms. They colonise all light-exposed habitats on
Earth, including marine water, freshwater, soil, glaciers, de-
serts and hot springs (Whitton and Potts 2000). The phylum is
divided into five subsections and comprises unicellular and
filamentous strains (Rippka et al. 1979). Some of the latter
are capable to differentiate some vegetative cells into special-
ized cell types (i.e., heterocysts) (Stewart et al. 1969).

As photosynthetic microorganisms, cyanobacteria are appeal-
ing models for studying photosynthetic processes on a single-cell
level and aspired hosts for the large-scale production of high-
value molecules in industry (Abed et al. 2009). Despite their high
potential in these fields, strategies for genetic engineering and
tightly controlled gene expression still lag behind the tools

available for common heterologous hosts. Methods for classical
mutagenesis are well established in model cyanobacteria
(Grigorieva and Shestakov 1982;Marraccini et al. 1993) and also
the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-technology has successfully been applied in these or-
ganisms (Ungerer and Pakrasi 2016; Wendt et al. 2016).
However, the application of these methods is limited by the tox-
icity of Cas9 (Wendt et al. 2016), the high ploidy level of many
cyanobacteria (Griese et al. 2011) and the varying efficiency in
the diverse cyanobacterial strains. Another obstacle in genetic
engineering is the lack of regulatory elements and induction sys-
tems that can be precisely controlled. Several commonly used
heterologous promoters are substantially leaky or perform poorly
in cyanobacteria (Guerrero et al. 2012; Huang et al. 2010). As an
example, expression levels obtained from Ptrc (a hybrid of the trp
and lac promoters fromE. coli) are nearly equal in the presence or
absence of the inducer. Native promoter systems in contrast often
allow relatively tight induction control, but usually yield lower
expression levels and depend on inducers that regulate and thus
interfere with endogenous metabolic processes in cyanobacteria
(Guerrero et al. 2012; Huang et al. 2010). Reasons for the respec-
tive technical restrictions are the differences in gene expression
control in heterotrophic hosts compared to cyanobacteria and the
limited knowledge on the underlying mechanisms in the latter.
Anyway, in the last years research in this field has been intensi-
fied, some existing promoter systems could be improved and
novel promising promoters were engineered for the use in
cyanobacteria.Moreover, RNA-based tools such as riboswitches,
riboregulators or small RNAs (sRNAs) as well as genetic circuits
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emerged as highly promising strategies for gene expression con-
trol in cyanobacteria (Higo et al. 2017, 2018b; Ma et al. 2014;
Taton et al. 2017; Ueno et al. 2018). Furthermore, striking im-
provements of gene expression could be achieved by alteration of
regulatory elements such as the ribosome binding site (RBS)
(Englund et al. 2016; Thiel et al. 2018; Wang et al. 2018).
Different tools for RBS design are available, such as the
Ribosome Binding Site Calculator (Salis 2011), the RBS
Designer (Na and Lee 2010) or the UTR Designer (Seo et al.
2013). More details on the importance of RBS choice and engi-
neering are provided elsewhere (Immethun andMoon 2018; Sun
et al. 2018a). In this mini-review, we focus on promoters,
riboswitches, riboregulators and genetic circuits. The knowledge
on traditionally used systems is briefly summarised and current
findings and novel tools are more accurately discussed. Details
on all regulatory tools are provided in Online Resource 1.
Abbreviations of the discussed cyanobacterial strains and short
information about them are provided in Table 1.

Promoters

The traditionally used regulatory elements for the control of
gene expression are promoters. It can be distinguished be-
tween constitutive and inducible promoters. The latter are
needed when temporary expression of the target gene is

required, such as for the expression of gene products that are
lethal for the cell or for components that are sensitive to certain
conditions (e.g. O2 or light). Besides the regulatory mode, the
promoters applied in cyanobacteria can be distinguished based
on their origin. Commonly used heterologous promoters from
E. coli or bacteriophages, native/endogenous promoters and
synthetic or hybrid promoters have been employed. Crucial
characteristics of such promoters are the expression strength,
the induction control (i.e. baseline expression under non-
inducing conditions) and the dynamic range (ratio between
expression levels under inducing and non-inducing condi-
tions). A comprehensive list of the promoters used in
cyanobacteria and information on their properties are provided
in Online Resource 1. However, it has to be considered that a
comparison of the parameters derived from different studies
has to be treated with caution. The output reported for the
respective expression system depends on several factors, such
as the applied substrain (as reported for Sy_6803; Zavřel et al.
2017), the type of gene expressed, the quantification method,
the cultivation conditions, the reference value for calculations
and the interplay of different regulatory elements.

Constitutive promoters

Most constitutive promoters commonly used in cyanobacteria
are native promoters, such as Pcpc or PpsbA. Both promoters

Table 1 Cyanobacterial strains
Strain Abbreviation Notes

Anabaena sp. PCC 7120 A_7120 Model filamentous, heterocyst-forming
cyanobacterium

Anabaena variabilis ATCC 29413 Av_29413 Model filamentous, heterocyst-forming
cyanobacterium

Chroococcidiopsis – Ancient coccoidal cyanobacterium (Imre Friedmann
and Ocampo-Friedmann 1995)

Leptolyngbya sp. strain BL0902 L_BL0902 Filamentous, grows well in outdoor bioreactors

Nostoc punctiforme ATCC 29133 Np_29133 Filamentous, heterocyst-forming cyanobacterium

Spirulina platensis strain C1 Sp_C1 Planktonic filamentous cyanobacterium

Synechocystis sp. PCC 6803 Sy_6803 Model unicellular cyanobacterium

Synechocystis sp. strain PCC 6714 Sy_6714 Closely related to Sy_6803

Synechocystis sp. strain ATCC27184 Sy 27184 Glucose-tolerant Sy_6803

Synechocystis sp. strain WHSyn Sy_WHSyn Unicellular cyanobacterium, capable of grow in a
wide
range of salinities

Synechococcus sp. strain PCC 73109 Sc_73109 Closely related to Sce_7002

Synechococcus elongatus PCC 6301 Sce_6301 Freshwater unicellular cyanobacterium

Synechococcus elongatus PCC 7942 Sce_7942 Model freshwater unicellular cyanobacterium,
formerly
named Anacystis nidulans R2

Synechococcus elongatus PCC 7002 Sce_7002 Model marine unicellular cyanobacterium, fast
growing

Synechococcus elongatus UTEX
2973

Sce_UTEX Unicellular cyanobacterium, rapid autotrophic
growth
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control the expression of main components of the photosyn-
thetic apparatus and thus are strong and present in nearly all
cyanobacteria. PpsbA promotes transcription of the gene
encoding the D1 protein of photosystem II (Mohamed and
Jansson 1989). It actually is induced by light, but has been
widely used as a constitutive expression system under con-
stant light conditions. Pcpc controls the expression of the cpc
operon, which encodes phycocyanin, a pigment protein of the
light-harvesting complex (i.e. phycobilisome) (Johnson et al.
1988). The cpc operon encodes several subunits of the
phycobilisome as well as associated linker proteins. Often
the first gene in the operon is cpcB. Thus, the promoter is also
commonly referred to as PcpcB. Native and slightly modified
variants of Pcpc (e.g. PcpcB, Pcpc560, Pcpt, PCP) from
Sy_6803, Sy_6714 and Sp_C1 have been successfully applied
in Sce_7942, Sy_6803 and Sce_7002 (Imashimizu et al. 2003;
Jeamton et al. 2011; Markley et al. 2015; Xu et al. 2011; Zess
et al. 2016; Zhou et al. 2014). Particularly high product yields
(15% of total soluble protein) were achieved by the applica-
tion of a truncated version of PcpcB from Sy_6803, termed
Pcpc560 (Zhou et al. 2014). In contrast to this finding, Wang
and co-workers recently reported a very poor performance of
this promoter (14% activity of Ptrc) and other Pcpc variants
(Wang et al. 2018). They analysed the usability of 17 native
and heterologous hybrid promoters for the production of the
ethylene-forming enzyme (EFE) in Sy_6803. Besides Pcpc
variants, also different variants of PpsbA2 from Sy-6803 and
PpsbA from the flowering plant Amaranthus hybridus were
employed and yieldedmoderate to high expression levels. The
best results (up to 12.6% of total soluble protein) were obtain-
ed from PpsbA*, a hybrid version of PpsbA from Amaranthus
hybridus and the Cu2+ inducible promoter PpetE from
Sy_6803 (Wang et al. 2018). Good performance of PpsbA
has also been reported in other cyanobacterial strains such as
A_7120 (Elhai 1993), Sce_7942 (formerly Anacystis nidulans
R2) (Dzelzkalns et al. 1984), Sce_7002 (Jacobsen and
Frigaard 2014) and Chroococcidiopsis (Billi et al. 2001).
PpsbA2 from Sy_6803 has been widely used as a native sys-
tem in this strain. Recently, improvement of the strength of
this promoter was achieved by the application of a truncated
version, termed PpsbA2S (Englund et al. 2016). Lots of other
native promoters controlling the expression of photosystem II
such as PpsbA1 from Sce_7942 (Taton et al. 2014), PpsbA1
from A_7120 (Chaurasia and Apte 2011) or PpsbAIII from
S_7942 (Li and Golden 1993) as well as heterologous PpsbA
from the pea plant (Ungerer et al. 2012) have been applied in
synthetic biology approaches. However, most of these pro-
moters are not or only slightly induced in response to varying
light conditions. For details refer to the ‘Native, inducible
promoters’ section and Online Resource 1.

Another native promoter commonly used in cyanobacteria
is the RuBisCO promoter Prbc (or PrbcL). Variants of Prbc
originating from different cyanobacteria, i.e. A_7120 (Elhai

1993), Sce_6301 (Takeshima et al. 1994), Sce_7002 (Ruffing
et al. 2016), Sce_7942 (Deng and Coleman 1999) and
Sy_6803 (Huang et al. 2010), have been employed.
Comparative promoter studies revealed a low to moderate
expression strength of Prbc relative to other promoters such
as PpsbA and promoters of the J23-series described below
(Englund et al. 2016) or the heterologous hybrid promoter
Ptrc1O (Huang et al. 2010). Also, Ruffing and co-workers
reported a low activity of native Prbc in Sce_7002 relative
to other endogenous promoters (Ruffing et al. 2016). They
compared Ypet reporter gene production from 25
uncharacterised native promoter systems. The highest expres-
sion levels were obtained for PA2520 and PA2579 during the
stationary growth phase. Similarly, nine novel native pro-
moters have recently been characterised and compared to
well-known expression systems (Liu and Pakrasi 2018).
Psll1626 was identified as the most promising candidate,
yielding expression levels approximately 5-fold higher than
Prbc. Another well-studied, weakly constitutive promoter is
PrnpB from Sy_6803, which mediates transcription of the
gene encoding the RNA subunit of RNase P. Expression levels
are even lower than those obtained from Prbc (Englund et al.
2016; Huang et al. 2010). Such promoters are suitable for low-
level expression of repressors involved in regulatory circuits
such as LacI or TetR (see following sections), but are not
applicable for enzyme (over)production.

Besides native constitutive promoters, some strong synthetic
and hybrid promoter systems have been developed for applica-
tions in cyanobacteria. The most prominent systems are the
artificial BioBrick promoters from the J23-series
(BBa_J23100–BBa_J23119) from the iGEM Registry of
Standard Biological Parts (Camsund et al. 2014). In Sy_6803,
the J23119 promoter was found to be the strongest and has
successfully been applied in several cyanobacteria including
Sce_7002 (Markley et al. 2015), Sce_7942 (Huang et al.
2016), Sce_UTEX (Ungerer and Pakrasi 2016) and A_7120
(Higo et al. 2018a). But also the activity of several other J23-
promoters has been demonstrated in Sy_6803 and Sce_7942.

Semisynthetic PconII constitutes another strong promoter.
Like the J23119 promoter, PconII can be applied in a broad
range of cyanobacterial strains, including Sce_7942,
Sy_6803, Sy_WHSyn, A_7120 and L_BL0902 (Ma et al.
2014; Taton et al. 2014). High expression levels (higher than
from PpsbA1) were obtained for all tested strains except for
A_7120. Here, PconII showed only moderate performance.

Also, PR-PS was emphasised as a highly efficient expres-
sion system, producing yields of up to 15% of total protein in
Sce_7942 (Chungjatupornchai and Fa-aroonsawat 2014). The
promoter was created by fusion of a truncated variant of PR
from Sce_7942 and PS from E. coli and is one of the strongest
expression systems in cyanobacteria.

For any constitutive or inducible promoter, expression may
be improved via a coupling to the T7 RNA polymerase. For
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this purpose, the target gene is expressed under the control of
theT7 promoter fromE. coli phage λ, while the expression of
the T7 RNA polymerase is controlled by the desired constitu-
tive or inducible promoter. Using this system, a 10-fold higher
expression yield compared to direct expression from the con-
stitutive or inducible promoter was achieved in A_7120 (Wolk
et al. 1993).

Moreover, several, especially IPTG-regulated, heterolo-
gous expression systems such as Ptrc are poorly regulated in
cyanobacteria by their inducer. They, however, enable high
expression levels. Hence, these promoters have also been ap-
plied for constitutive expression in cyanobacteria (Xiao et al.
2018). These promoters will be discussed in more detail in the
next section. Anyway, the most efficient constitutive expres-
sion systems reported for cyanobacteria are PpsbA*, Pcpc560
and PR-PS, followed by J23119, PconII and other psbA pro-
moters. Studies on the performance of some of these pro-
moters, especially Pcpc560, however are inconsistent.

Heterologous, inducible promoters

Promoters commonly used in E. coli such as Plac, Ptrc, Ptet or
the temperature-dependent cI-repressed PR promoter from
E. coli phage λ do not perform well in cyanobacteria (Huang
et al. 2010). Their application results in poor or no transcrip-
tion or non-adequate induction.

Most of the heterologous, poor performing promoters orig-
inate from the E. coli induction systems of the lac operon
(based on Plac). The lac system is based on induction by
allolactose or its synthetic, metabolism-independent analogue
IPTG and suppression by the separately encoded Lac-
repressor LacI (Gilbert and Müller-Hill 1966). Plac-derived
promoters can contain either one or two lac operators and
encompass Plac itself and several hybrid versions, especially
Ptrp-Plac hybrids such as Ptac, Ptic, Ptrc (or Ptrc1O),
Ptrc2O and Ptrp-Plac (Brosius et al. 1985; Huang et al.
2010; Niederholtmeyer et al. 2010). Most of the Ptrp-Plac
hybrids show a high similarity. Ptac, Ptrc and Ptic only differ
in terms of the interspace length between the −35 and the −10
region (16, 17 and 18 bp, respectively) (Brosius et al. 1985).
The shorter versions were slightly more active than Ptic. In
contrast to this, in a more comprehensive study by Albers and
co-workers, the highest activities were observed for the longer
variants Ptrc and Ptic (Albers et al. 2015). This trend is well
consistent with recent findings for PpsbA*, thus indicating
that 17–18 bp is the optimal interspace length in cyanobacteria
(Wang et al. 2018). Another crucial aspect for the quality of
Plac-derived promoters is the number of lac operators. For
Ptrc and Ptac, which contain only one lac operator, usually a
moderate to high promoter strength was reported (even higher
than for PpsbA (Wang et al. 2018)). They, however, feature
dramatically high baseline expression (leakiness) in the ab-
sence of the inducer in Sy_6803, Sy_27,184, Sce_7942 and

A_7120 (Elhai 1993; Geerts et al. 1995; Guerrero et al. 2012;
Huang et al. 2010; Huang and Lindblad 2013). In contrast to
this, the variant Ptrc2O, which contains two operator se-
quences, is tightly repressed by LacI, but achieves only low
expression levels upon induction with IPTG (Huang et al.
2010). Similarly, efficient control was observed for a Ptic-
based promoter containing two lac-operators referred to as
Psca6-2. Besides Psca3-2 (a Ptac-based version), this promot-
er was reported as strong in relation to other investigated
Ptic/Ptac-derived variants, but it was not compared to other
promoter systems such as PpsbA (Albers et al. 2015).
Furthermore, the hybrid promoter PA1lacO-1 was reported
to be a promising candidate, but results regarding leakiness
are inconsistent (Camsund et al. 2014; Guerrero et al. 2012).
Finally, the problem of leakiness versus low activity of IPTG-
induced systems could not be solved. However, promoters
such as Ptrc or Ptrc2O might be useful tools as constitutive
expression systems as they are highly active in the absence of
the LacI repressor (Huang et al. 2010).

Similar to the IPTG/LacI-based system, the E. coli-derived
induction system of the tetracycline-resistance operon TN10
(i.e. Ptet) is controlled by a chemical inducer and a transcrip-
tion factor, i.e. anhydrotetracyline (aTc, a non-toxic analogue
of tetracycline) and TetR, respectively. Compared to IPTG-
induced systems, a good performance can be achieved using
Ptet-derived expression systems optimised for cyanobacteria.
However, applications are challenged by the photolability of
aTc (Huang and Lindblad 2013; Zess et al. 2016). For Ptet
itself, inconsistent results were achieved in different
cyanobacterial strains. In Sy_6803, the activity of Ptet was
low and insufficiently repressed in the absence of the inducer
(Huang et al. 2010; Immethun et al. 2016), whereas in
A_7120 recently a tight expression control was reported,
resulting in a 40-fold dynamic range (Xiao et al. 2018).
However, the promoter strength was very low in this strain
(i.e. 0.5% activity of Ptrc). High expression levels in contrast
were achieved in Sce_7942 (i.e. 50% activity of Ptrc), but
expression was also observed in the absence of aTc (Kim
et al. 2017). The performance of Ptet was strikingly improved
by mutation of the 5′-GGG-3′ located immediately down-
stream of the −10 element on the non-template strand to 5′-
GGC-3′, resulting in the L03 promoter (Huang and Lindblad
2013). In Sy_27,184 (i.e. glucose-tolerant Sy_6803), this pro-
moter achieved high expression levels, good repression in the
absence of aTc and a 290-fold dynamic range. Even strikingly
higher dynamic ranges (i.e. 1200-fold and 18,000-fold) for the
L03 promoter were obtained in A_7120 by the expression of
tetR under the control of the nitrate-specific PnirA promoter
(Higo et al. 2016, 2017). In Sy_6803, in contrast, Yao and co-
workers reported also a high activity for L03 promoter, but
leaky expression in the absence of the inducer (Yao et al.
2016). Differences in the dynamic range and leakiness of
aTc-induced systems might be explained by strain-specific

1980 Appl Microbiol Biotechnol (2020) 104:1977–1991



effects or by the promoter chosen for the expression of tetR.
An impact of repressor levels on the final output of the in-
duced promoter was also reported for lac-derived systems
(Camsund et al. 2014).

Both aTc- and IPTG-based induction systems were com-
bined with the strong constitutive cpcB promoter by synthetic
fusion of PcpcB variants with the lac or tet operators, with the
goal to produce strong, inducible expression systems. PEZtet,
the hybrid of PcpcB and two tet operators, showed moderate
expression and tight control of induction, resulting in a 32-
fold dynamic range (Zess et al. 2016). The performance of
Pcpt-lac operator hybrids was even better. Best results were
achieved for PcptOO-cLac143, which is featured by high
promoter strength, low background expression and a 48-fold
dynamic range (Markley et al. 2015). Further hybrids of either
of the two repression systems with the PL promoter from
E. coli phage λ, termed PLlacO1 and PLtetO-1, yielded rath-
er poor promoter strengths and induction control (Huang et al.
2010; Oliver et al. 2013).

Three heterologous, metabolite-based promoters which
have recently been engineered for the use in cyanobacteria
are PBAD, PrhaBAD and Pvan. All of them are controlled
by a separately expressed transcription factor. The E. coli-de-
rived PBAD is induced in the presence of arabinose and re-
pressed by the transcription factor AraC. It was first used and
further characterised in Sce_7942 (Cao et al. 2017; Huang et al.
2016) and subsequently optimised for applications in Sy_6803
(Immethun et al. 2017). In Sce_7942, PBAD yielded a relative-
ly high activity (approximately 50% of Ptrc) and low expres-
sion in the absence of the inducer, resulting in a 3500-fold
dynamic range (Cao et al. 2017). In contrast to Ptrc, a homo-
geneous and linear expression of the reporter gene in response
to arabinose was reported for this promoter. Tight repression of
PBAD in the absence of arabinose was also observed in
Sy_6803. However, expression levels in this strain were rather
low (Immethun et al. 2017). Similar results were obtained for
the rhamnose-induced and RhaS-regulated promoter
PrhaBAD from E. coli. Most recently, this expression system
was successfully used in Sy_6803, yielding moderate activity,
tight expression control and a 6000-fold dynamic range (Kelly
et al. 2018). Less efficient performance was observed for Pvan,
a vanillate-responsive and VanR-repressed promoter from
Corynebacterium glutamicum. Tight control but only low ex-
pression levels were achieved in Sce_7942, while expression
completely failed in Sy_6803, A_7120, L_BL0902 and
Sy_WHSyn (Taton et al. 2017). Moreover, the usability of a
3-oxo-hexanoyl homoserine lactone-responsive system (i.e. the
LuxRI system and the corresponding PluxRI from Vibro
fischeri) was tested in Sy_6803; however, only poor product
formation was observed (Guerrero et al. 2012).

Further, interesting environmental sensors such as light-
dependent and O2-responsive promoters are used as heterolo-
gous induction systems in cyanobacteria. Besides the

commonly used plant-derived light-inducible PpsbA pro-
moters described in the previous section, a novel, sophisticat-
ed, darkness-induced regulatory circuit is available for
cyanobacteria (Immethun et al. 2017). The system is based
on the artificial transmembrane protein Cph8, a hybrid of the
native light sensor protein Cph1 from Sy_6803 and the kinase
EnvZ from E. coli. In response to darkness, Cph1 phosphor-
ylates EnvZ. The latter then phosphorylates the E. coli-derived
transcription factor OmpR, which finally activates transcrip-
tion from the promoterPompC. The systemwas established in
E. coli (Levskaya et al. 2005) and engineered for the use in
Sy_6803 by Immethun and co-workers (Immethun et al.
2017). In Sy_6803, this system was demonstrated to drive
expression of the reporter gene eyfp in the dark, while fluores-
cence was completely absent under low light conditions (i.e.
50 μmol photons m−2 s−1). Product yields are conspicuously
low compared to other expression systems. However, the
PompC-based regulatory circuit might be a useful tool to con-
trol processes that require dark conditions, such as H2 produc-
tion (Immethun et al. 2017).

Furthermore, the rather newly established O2-responsive
promoter PO2 should be outlined (Immethun et al. 2016).
PO2 is activated by the fumarate and nitrate reduction protein
FNR under anaerobic conditions in the dark. The system orig-
inates from E. coli, where the FNR protein controls the ex-
pression of several genes during the transition between aero-
bic and anaerobic growth (Kang et al. 2005). In Sy_6803, PO2

yielded moderate expression levels of the flavin-binding fluo-
rescent protein (FbFP), an oxygen-independent reporter, un-
der low O2 conditions (Immethun et al. 2016). Only low ex-
pression was observed under aerobic conditions. A 28-fold
dynamic range of induction was achieved.

PO2 was further used to build up a more complex regula-
tory circuit, which allows tight control of transcription from
the Salmonella typhimurium-derived promoter PSicA
(Immethun et al. 2016). The concept of the so-called 2-input
AND gate is based on the idea to improve the control of target
gene expression by the simultaneous application of two dif-
ferent induction systems. PSicA is part of the type III secretion
system from Salmonella Pathogenicity Island 1 and naturally
activated by a complex of the chaperon SicA and the tran-
scription factor InvF (Darwin and Miller 2001). In Sy_6803,
SicA* (a mutant version of SicA) was expressed under the
control of PO2, while invF was transcribed from Ptet, thus
leading to formation of the SicA*–InvF complex and activa-
tion of transcription from PSicA only upon induction with aTc
and in the absence of O2 (Immethun et al. 2016). A strong
activity (higher expression levels than from PO2) and low
leakiness were observed for this AND gate in Sy_6803. An
approximately 37-fold dynamic range was achieved.
Consequently, this regulatory circuit is a suitable tool for ex-
pression in Sy_6803 and might also be used in other
cyanobacteria.
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In summary, the strongest inducible heterologous pro-
moters used in cyanobacteria are PpsbA and Ptrc, while good
induction control was achieved for PompC, PrhaBAD or
Ptrc2O. Promising promoters combining both properties are
L03, PsicA as well as PBAD and Ptet for applications in
Sce_7942. Anyway, expression levels are slightly lower than
for the constitutive expression systems.

Native, inducible promoters

Native, inducible promoters used for engineering of
cyanobacteria encompass metal-inducible promoters, envi-
ronmental sensor- or metabolic state-dependent promoters
and cell type-specific promoters. Metal-inducible promoters
often drive the expression of metal efflux pumps or other
systems involved in metal homeostasis (García-Domínguez
et al. 2000). Metal ions such as Cu2+, Ni2+, Fe2+ or Zn2+ are
essential for the cellular metabolism, but high concentrations
are toxic to the cell (Cavet et al. 2003). Thus, systems for
sensing, uptake, storage and excision of metal ions are tightly
regulated and highly sensitive to their inducers (Michel et al.
2001; Peca et al. 2008). Widely used cyanobacterial metal-
responsive promoters were extensively reviewed by Berla
and co-workers in 2013 (Berla et al. 2013). They include
systems responding to various metal ions, i.e. Ni2+, Zn2+,
Cu2+, Co2+, Cd2+, Fe2+, Fe3+, As3+ and As5+. Common pro-
moters induced by Ni2+, Co2+ and As3+/As5+ are PnrsB,
PcoaT (or Pcoa) and ParsB, respectively—all controlling
the expression of inducer-specific efflux pumps in Sy_6803
(Blasi et al. 2012; Peca et al. 2008, 2007). PnrsB was recently
found to be the most versatile and useful promoter among
several tested native promoters from Sy_6803 because it al-
lows quite good induction control and achieves high expres-
sion levels (nearly up to the activity to PpsbA2) (Englund et al.
2016). This is consistent with previous findings (Blasi et al.
2012). Another promoter controlling the expression of a metal
efflux pump is the Zn2+-transporting P-type ATPase promoter
Pzia from Sy_6803 (Blasi et al. 2012; Peca et al. 2007). A
second well-known Zn2+-responsive promoter is Psmt from
Sce_7942, which controls transcription of a metallothionein
gene (Erbe et al. 1996). Recently, this promoter was success-
fully applied for the expression of dCas9 for CRISPR inter-
ference (CRISPRi) in Sce_7942 (Huang et al. 2016).
Examples for Fe2+- and Fe3+-responsive promoters are
PidiA from Sce_7942 and PisiAB from Sce_7002 or
Sy_6803. All of them activate the expression of their target
genes in response to iron starvation in their native hosts
(Boyanapalli et al. 2007; Kunert et al. 2000; Michel et al.
2001). Moreover, PisiAB from Sy_6803 was shown to yield
moderate to high expression levels in A_7120, Sce_7942 and
L_BL0902, but induction control was rather low (Taton et al.
2014). Furthermore, Cu2+-induciblePpetE promoters natively
controlling the expression of plastocyanin in A_7120 and

Sy_6803 have been applied for engineering purposes in past
and recent studies (Buikema and Haselkorn 2001; Englund
et al. 2016; Guerrero et al. 2012; Higo et al. 2018a, 2016).
Another rather newly described Cu2+-responsive promoter is
PcopM from Sy_6803. It promotes transcription of a copper-
binding protein involved in copper resistance in the presence
of its inducer Cu2+ (Giner-Lamia et al. 2015). Recently,
PcopM was successfully applied to create a suicide switch in
Sy_6803 (Čelešnik et al. 2016). Furthermore, induction of
PcopM by metal ions other than Cu2+ was reported (i.e.
Zn2+, Cd2+, Ni2+). Such metal-ion cross-reactivity was also
described for other metal-inducible promoters (Blasi et al.
2012; Peca et al. 2007). However, induction control by the
original inducer metal is usually more efficient and expression
levels are higher. In general, induction ranges higher than 100-
fold were obtained for several native promoters due to good
induction control, but most of them yield relatively low ex-
pression levels compared to heterologous systems. The most
efficient native systems are PnrsB, ParsB, PisiAB and PidiA.
For more details on promoter strengths and expression con-
trol, refer to Online Resource 1.

Several native promoters respond to environmental condi-
tions and the metabolic state. Light-induced expression sys-
tems such as PpsbA2 are described in the ‘Constitutive pro-
moters’ section as they are commonly applied under constant
light exposure. Response behaviour to light was investigated
for PpsbA2 from Sy_6803, which was strongly induced by
high light and tightly controlled (Albers and Peebles 2017;
Lindberg et al. 2010). In contrast to this, PpsbA1 from
Sce_7942 showed slightly higher activity upon exposure to
low light compared to high light (Nair et al. 2001). Vice versa,
PpsbAIII from Sce_7942 was more strongly induced by ex-
posure to high light compared to low light. Interestingly, green
light-responsive expression control was reported for PcpcG2
in Sy_6803 (Abe et al. 2014). This promoter is regulated by
the green light-sensing histidine kinase CcaS and the cognate
response regulator CcaR. Expression from PcpcG2 was in-
duced under green light (or green and red light), but not under
red light illumination. The expression strength of this promot-
er was very low compared to Ptrc, yet it could be strikingly
improved (up to 30% of Ptrc) by insertion of a Shine–
Dalgarno-like sequence derived from the cpcB gene and over-
expression of CcaR. However, expression from this version
was leaky. The highest dynamic range (i.e. 15-fold induction
range) and relatively tight expression control was observed for
the modified version without overexpression of CcaR (i.e.
PcpcG2-SD), whereby the activity was slightly improved
compared to the native version (Abe et al. 2014). Native
PcpcG2 was successfully applied for the expression of T4
bacteriophage lysis genes (Miyake et al. 2014).

Further environment-sensing systems respond to CO2 lim-
itation, i.e. PcmpA and PsbtA from Sy_6803 (Liu et al. 2011;
McGinn et al. 2003). Both of them are tightly controlled and
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yield high dynamic ranges (1400-fold and 800-fold, respec-
tively). A more recent environment-responsive expression
system is PphoA from Sce_7942 (Taton et al. 2014). This
promoter is repressed by inorganic phosphorus and thus can
be induced by continuous phosphorus limitation. The activity
of PphoA was investigated in Sce_7942, Sy_6803, A_7120
and L_BL0902. Moderate to high expression levels were re-
ported for all strains, while satisfying induction control was
only observed in Sce_7942 and L_BL0902 (Taton et al.
2014).

Furthermore, cyanobacteria strictly respond to the avail-
ability of nitrogen sources. The nitrate reductase promoters
PnirA (or Pnir) from A_7120, Sce_7942 and Sy_6803 are
induced by nitrate and repressed by ammonium and have been
widely used for engineering purposes (Camsund et al. 2014;
Desplancq et al. 2005; Ivanikova et al. 2005). They usually
yield tight expression control and moderate to strong activi-
ties. Lately, also a promoter induced by nitrate-starvation was
characterised in Sy_6803, i.e. PsigE, the promoter for the
RNA polymerase group 2 sigma factor SigE (Immethun
et al. 2017). PsigE showed the strongest expression among
the five NtcA-regulated promoters tested in this study, yet
expression levels in the presence of nitrate were very high.
Anyway, a 30-fold dynamic range was achieved.

Further native promoters associated with the nitrogen me-
tabolism are cell type-specific promoters. Several filamentous
cyanobacteria such as A_7120 are capable of differentiating
some vegetative cells into heterocysts under nitrogen starvation
conditions (Stewart et al. 1969). These heterocysts are cell
types specialised for N2-fixation and provide a microaerobic
environment, which is essential to protect the O2-sensitive ni-
trogenase, i.e. the enzyme performing N2-fixation (Fay 1992).
Such cell type-specific promoters are useful tools to express
O2-sensitive target products in heterocyst-forming strains. The
most prominent examples of heterocyst-specific promoters are
the promoters PnifB and PnifB1 controlling expression of the
nitrogenase genes in A_7120 (Mulligan and Haselkorn 1989)
and Av_29413 (Haselkorn and Buikema 1992), respectively.
Another heterocyst-specific promoter from A_7120 is
PcoxBII, which drives the expression of subunit II of a cyto-
chrome c oxidase (Jones and Haselkorn 2002). Cell type-
specific expression control was demonstrated for all three pro-
moters via reporter gene analysis (Thiel et al. 1995; Ungerer
et al. 2010; Wang and Xu 2005). Moreover, PnifB and PcoxBII
were recently used to control the expression of O2-sensitive
enzymes of the 1-butanol synthetic pathway from the anaerobe
bacterium Clostridium acetobutylicum, thereby finally
allowing heterologous 1-butanol production in heterocysts of
A_7120 (Higo and Ehira 2019). The expression from PnifB and
PcoxBIIwas additionally regulated by exogenous riboswitches,
i.e. a theophylline- and a 2-aminopurine (2-AP)-responsive
riboswitch, respectively. Quantities of the 1-butanol produced
in the obtained strain were 5-fold higher than those produced

with O2-tolerant enzymes in Sce_7942 (Higo and Ehira 2019).
The usability of the riboswitches and further RNA-based tools
as control elements for cell type-specific expression in A_7120
was analysed in a preceding study (Higo et al. 2018b).
Heterocyst-specific and vegetative cell-specific expression
was demonstrated using the native promoters PnifB and
PrbcL, respectively. PrbcL from A_7120 had already been
demonstrated to promote vegetative cell-specific expression
in an earlier study (Wang and Xu 2005). Another vegetative
cell-specific promoter isPnifB2 fromAv_29413. It controls the
expression of a second nitrogenase in Av_29413, which, in
contrast to the above-described enzyme controlled by PnifB1,
is exclusively produced in vegetative cells during anaerobic
conditions (Thiel et al. 1995; Vernon et al. 2017). Moreover,
an expression system specific for prospective and immature
heterocysts was reported in A_7120 (Muro-Pastor 2014). The
promoter of the nitrogen stress inducible RNA1, namely
PnisR1, drives transcription only in early stages of heterocyst
formation, but not in mature heterocysts. It belongs to the fam-
ily of DIF+ class promoters and is the shortest native promoter
(70 nt long) controlling heterocyst-specific expression
(Mitschke et al. 2011). Most recently, an even shorter promoter
(48 nt long) specific for the expression in mature heterocysts
was synthetically generated based on regulatory elements of the
DIF+ class promoters (Wegelius et al. 2018). This promoter,
termed PsynDIF, allowed tight control of reporter gene expres-
sion in a cell type-specific manner in Np_29,133. Strong ex-
pression yields were observed and a 10-fold dynamic range
was achieved. Consequently, PsynDIF substantially increases
the set of tools for cell type-specific expression in heterocyst-
forming cyanobacteria.

Cell type-specific promoters and promoters based on inter-
esting induction systems such as PphoA, PcpcG2, PcmpA or
PsbtA should be kept in mind as promising systems for gene
expression control. Further important native, inducible pro-
moters are some metal-inducible promoters, PpetE and Pnir.
However, overall expression yields obtained from those sys-
tems lag behind those of heterologous, inducible and consti-
tutive expression systems.

Regulatory RNAs

Regulatory RNAs used for expression control in
cyanobacteria encompass riboswitches, riboregulators and
further sRNA-based tools. For details on the respective regu-
latory elements, refer to Online Resource 1.

Riboswitches

Riboswitches are cis-regulatory RNA elements on mRNAs,
usually located in the 5′ untranslated regions (UTR). In re-
sponse to binding of a specific ligand, i.e. metabolite or signal
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molecule, they undergo a conformational change, which final-
ly results in an ON/OFF switch of gene expression.
Riboswitches are composed of two domains: an aptamer and
an expression platform. The aptamer is responsible for specif-
ic ligand-binding, while the expression platform mediates in-
terference with the gene expression machinery (Garst et al.
2011). Riboswitches can modulate gene expression in a tran-
scriptional or translational manner. Translational riboswitches
provoke an ON/OFF switch of translation by altering the ac-
cessibility of the RBS, while transcriptional riboswitches al-
low or block the formation of a terminating hairpin structure.
Both transcriptional and translational riboswitches have either
an activating (i.e. ON) or repressing (i.e. OFF) effect in re-
sponse to ligand binding. The possible modes of regulation by
a riboswitch are illustrated in Fig. 1.

Most riboswitches used in cyanobacteria are induced by
theophylline. The best-characterised system is a translational
ON riboswitch termed Riboswitch F (also referred to as
Riboswitch E*). Riboswitch F is one of a set of six synthetic,
theophylline-responsive riboswitches, Riboswitch A, B, C,
D, E and F, developed for applications in various Gram-
positive and Gram-negative bacteria (Topp et al. 2010). All
six riboswitches were used for reporter gene studies in various
cyanobacterial strains, i.e. Sce_7942, A_7120, L_BL0902
and Sy_WHSyn (Ma et al. 2014; Nakahira et al. 2013).
Slightly leaky to tight induction control in response to theoph-
ylline was achieved for expression from the constitutive pro-
moter PconII in all strains (Ma et al. 2014). The dynamic
ranges differed between the riboswitches and strains, but over-
all they were higher in Sce_7942 and L_LB0902 than in
A_7120 and Sy_WHSyn. The highest expression levels after
induction were achieved with Riboswitch E, which however
also featured the highest expression in the absence of the in-
ducer. Tight expression control and the best induction

efficiency were observed for Riboswitch F, with a 25-fold
dynamic range in Sce_7942. An even higher dynamic range
(190-fold) was reported for Riboswitch F-regulated expres-
sion from Ptrc in Sce_7942 (Nakahira et al. 2013).
Consequently, Riboswitch F emerged as the most efficient
candidate of the investigated, synthetic theophylline
riboswitches and was applied for induction control in further
studies. Moreover, its functionality in Sy_6803 was demon-
strated by reporter gene analysis (Ohbayashi et al. 2016). In
this strain, Riboswitch F was recently used to convert a repres-
sive sRNA tool based on paired termini antisense RNAs
(PTRNAs, see ‘Riboregulators and small RNAs’ section) into

�Fig. 1 Operation mode of transcriptional and translational riboswitches.
Conformational changes of riboswitches in the absence (left) and
presence (right) of a specific ligand (yellow or cyan star) result in a
transcriptional or translational ON/OFF switch of gene expression. a
Translational ON riboswitch. In the absence of the ligand, the ribosome
binding site (RBS) is sequestered by the riboswitch. Upon binding of the
ligand, a conformation change makes the RBS accessible to ribosomes,
thus enabling translation. b Translational OFF riboswitch. In the absence
of the ligand, the RBS is accessible to ribosomes, consequently allowing
translation. Upon binding of the ligand and a conformational change, the
RBS becomes inaccessible for ribosomes and the translation is switched
off. c Transcriptional ON riboswitch. In the absence of the ligand,
transcription performed by the RNA polymerase (RNAP) is terminated
by a hairpin structure (terminator). Upon binding of the ligand and
conformational changes, the hairpin unravels, thereby allowing
progression of the RNAP and full-length transcription of the target
gene. d Transcriptional OFF riboswitch. In the absence of the ligand,
the riboswitch forms an anti-terminator hairpin, consequently allowing
full-length transcription of the target gene. Upon binding of the ligand and
conformational changes of the riboswitch, a terminator hairpin is formed
and the RNAP is dissociated, thus resulting in an offset of transcription
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an inducing system (Sun et al. 2018b). As another example,
Riboswitch F was applied as an additional control element for
dCas9 expression in order to improve the dynamic range of
glnA repression in a CRISPRi study (Higo et al. 2018a). The
goal of this study was to fine-tune intracellular glutamine syn-
thase A (GlnA) levels and to enhance ammonia production in
A_7120. Due to leaky expression from Ptrc, dCas9 was con-
tinuously produced in the absence of additional control ele-
ments, which resulted in constant repression of the essential
glnA gene and cell death in the absence of nitrogen sources.
Riboswitch-based regulation allowed tight control of dCas9
production and glnA repression (Higo et al. 2018a).

In the same study, also other RNA-based tools and
riboswitches were successfully applied for the regulation of
dCas9 expression (Higo et al. 2018a). Among them is another
theophylline-inducible riboswitch, namely the transcriptional
ON riboswitch theo/pbuE*. This riboswitch was created by
chimeric fusion of the engineered expression platform derived
from the adenine-responsive pbuE riboswitch from Bacillus
subtilis with a theophylline-responsive aptamer (Ceres et al.
2013). The artificial theophylline-responsive riboswitch theo/
pbuE* as well as the B. subtilis-derived, adenine-responsive
riboswitch pbuE/pbuE* were first tested for the control of
reporter gene expression and subsequently applied for cell
type-specific expression in A_7120 (Higo et al. 2018b).
Both riboswitches allowed specific induction control in re-
sponse to their inducers. For pbuE/pbuE*, the expression out-
put was higher for induction with 2-AP compared to its ana-
logue adenine, but in either case the expression was leaky. The
efficiency of induction control was conspicuously better for
theo/pbuE*. Relatively tight control and a 25-fold dynamic
range were achieved. Both riboswitches allowed spatio-
temporal gene induction in heterocysts and vegetative cells
(Higo et al. 2018b) and were successfully applied for the reg-
ulation of 1-butanol-production in A_7120, while expression
control using the above-described Riboswitch F was not suc-
cessful (Higo and Ehira 2019).

Two further transcriptional riboswitches used in
cyanobacteria are a native cobalamin riboswitch and the ade-
nine/2-AP-responsive xpt(C74U)/metW—both of them are
transcriptional OFF riboswitches. Just like pbuE/pbuE*,
xpt(C74U)/metW originates from B. subtilis and was recently
used for expression control in A_7120 (Higo et al. 2017). It
was applied as a regulatory switch for tetR expression, which
finally allowed tight control of the expression of a reporter
gene produced from the TetR-repressive L03 promoter.
Functionality of xpt(C74U)/metW in A_7120 was indirectly
proven. Notably, also the usability of a cyanobacteria-derived
riboswitch, namely the Cobalamin Riboswitch from
Sce_73,109, was tested (Pérez et al. 2016). The riboswitch
regulates the production of the cobalamin (i.e. vitamin B12)-
dependent version of the Methionine Synthase (MetH) in
Sce_73109 and was analysed in Sce_7002 via reporter gene

assay. Slightly leaky expression in response to cobalamin was
reported and a 6-fold dynamic range was achieved (Pérez et al.
2016). Overall, the dynamic ranges obtained from the appli-
cation of riboswitches are rather low. Nevertheless, the
reviewed studies clearly demonstrate that riboswitches can
be regulated independently from the promoter and thus are
promising tools for improving gene expression control in
cyanobacteria.

Trans-RNA-based tools

In addition to riboswitches, riboregulators acting in a trans-
mode can be applied for targeted gene expression control.
They function in a similar way as riboswitches. A cis-element
on the mRNA undergoes structural changes, in this case in
response to the binding of a trans-acting RNA. This results
in modulation of the accessibility of regulatory regions and
gene expression control. The common mode of such a
riboregulator is a translation ON mode (see Fig. 2). A typical
example was established in E. coli by Isaacs and co-workers
(Isaacs et al. 2004). The system is based on the action of two
RNAs: a cis-repressed RNA and a trans-activating (taRNA).
In the absence of the taRNA, the RBS is occluded by an
internal stem-loop structure formed by the cis-repressed
RNA (namely crR12), while conformational changes upon
binding of the taRNA (namely taR12) lead to exposure of
the RBS (Isaacs et al. 2004). In 2014, this riboregulator was
engineered for applications in Sy_6803 by introducing the
strong RBS* into crR12 (Abe et al. 2014). The obtained
riboregulator taR*2/crR*2 allowed low leaky expression
control when the taRNA was expressed from the arabinose-
inducible promoter PBAD; however, the product yield was
relatively low. Expression efficiency of this riboregulator
could be improved by fusion of the taRNA to E. coli scaffold

Fig. 2 Operation mode of a trans-acting, translational ON riboregulator.
Conformational change of a cis-repressed RNA (crRNA) in the presence
(right) compared to the absence (left) of a trans-activating RNA (taRNA)
results in a translational ON switch of gene expression. In the absence of
the taRNA, the 5′UTR of the mRNA forms a repressive cis-repressed
RNA hairpin structure, which sequesters the ribosome binding site
(RBS), thereby preventing translation initiation. Structural changes of
cis-repressed RNA upon binding of the taRNA lead to exposure of the
RBS and thus allow the onset of translation
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RNAs, which contain a binding site for the RNA chaperon
Hfq and a rho-independent transcription terminator sequence
(Sakai et al. 2015). The best result (a 19-fold dynamic range,
2.5-fold higher than for taR*2) was achieved for a slightly
modified version of taR*2/crR*2 fused to the scaffold RNA
MicF (termed taR*2-MicFM7.4) in a Sy_6803 strain express-
ing the E. coli-derived Hfq. An even higher ON–OFF ratio of
taR*2/crR*2 (up to 50-fold) was reported for the regulation of
the chromosomal gene encoding the Abr-like transcription
factor cyAbrB2 (Ueno et al. 2017). Moreover, in a recent
study the dynamic range was increased up to 78-fold by opti-
misation of the intra- and intermolecular riboswitch
hybridisation (Sakamoto et al. 2018). Highest expression
levels combined with very low baseline expression in the
uninduced state were obtained for a version termed taR*4/
cr*4-AA. These studies demonstrate that structural fine-
tuning and stabilisation of the taRNA are powerful strategies
to improve the performance of riboregulators.

Besides its application in Sy_6803, the riboregulator
taR*2/crR*2 was also used as a regulatory element for
heterocyst-specific expression in A_7120 (Higo et al.
2018b). The usability of taR*2/crR*2 was compared to three
similar trans-sRNA-based tools: the toehold switch (Green
et al. 2014), small-transcription activating RNAs (STARs)
(Chappell et al. 2015) and STARs (dual) (Westbrook and
Lucks 2017), which act as activators of transcription, transla-
tion or both, respectively. The cis-element was placed up-
stream of a lacZ reporter gene and fused with PnifB, while
the trans-acting RNAwas expressed under the control of the
aTc-inducible L03 promoter (Higo et al. 2018b). Leaky ex-
pression in heterocysts in the absence of aTc was observed for
STARs and STARs (dual), while rather tight induction control
was possible for toehold and taR*2/crR*2. Notably, tight con-
trol was achieved for the STARs (dual) system in another
study (Higo et al. 2018a).

Another trans-sRNA-based tool is the E. coli-derived IS10
(Kittle et al. 1989). Like a classical riboregulator, this system
consists of a cis-element on the 5′UTR of the mRNA, the
RNA-IN, and a separately expressed antisense RNA, the
RNA-OUT. The RNA-OUT folds into a hairpin, yet, upon
binding to the RNA-IN, it unfolds and base-pairs with the
RBS on the RNA-IN, thus preventing the onset of translation.
In Sce_7002, the IS10 system allowed tightly regulated induc-
tion and resulted in 70% attenuation of the target gene expres-
sion (Zess et al. 2016). Even 90% attenuation of target gene
expression was achieved in E. coli (Mutalik et al. 2012).

Two further sRNA regulatory tools have recently been
established in Sy_6803; both were originally developed in
E. coli (Sun et al. 2018b). One tool is based on paired termini
trans-sRNAs (PTRNAs) (Nakashima et al. 2006), which
works similar to the IS10 system. The PTRNA contains two
short inverted repeats, which base pair, thus resulting in the
formation of a hairpin. The loop region of the hairpin contains

a target-specific antisense sequence, which hybridises with the
target gene, resulting in inhibition of translation and post-
transcriptional mRNA degradation. The other tool, namely
Hfq/MicC, makes use of the scaffold RNA MicC, which is
fused to a target-specific antisense sequence and recognised
by the Hfq chaperon (Na et al. 2013). Via target-specific bind-
ing of MicC, Hfq is directed to the final location and causes
mRNA degradation by the recruitment of the major endo-
ribonuclease RNase E. Both tools allowed an approximately
90% repression of target gene expression (Sun et al. 2018b).
In both cases however, induction control was leaky.

Furthermore, the expression of target-specific antisense
RNAs (asRNAs) is a simple strategy for gene expression con-
trol. Higo and co-workers applied numerous artificial
TetR/tetR-specific RNAs to regulate gene expression in
A_7120, i.e. asRNAs specific for tetR-PpetE and tetR-PnirA,
a TetR-aptamer (with and without a tRNA scaffold) and a
TetR inducing peptide (i.e. Tip-TrxAss) (Higo et al. 2017).
An impact on the final expression output was observed for
the two gene-specific asRNAs and the protein-binding TetR-
aptamer stabilised by a tRNA scaffold. Moreover, expression
of the sigma factor SigJ was successfully down-regulated by
the expression of a sigJ-specific asRNA in A_7120
(Srivastava et al. 2017). However, all target-specific RNA-
based tools had a relatively low regulatory effect and need to
be improved for more sophisticated applications.

Like riboswitches, riboregulators and sRNA-based tools
can be applied as additional control elements, regulated inde-
pendently from the promoter of the target gene. They allow
even more efficient gene expression control compared to
riboswitches and are promising tools for future applications.

Multicomponent regulatory systems
and regulatory circuits

The application of multiple components for the regulation of
target gene expression proved to be a suitable strategy to im-
prove expression efficiency and induction control. For some
promoters, separately produced activators or repressors such
as LacI, TetR, AraC, RhaS, VanR or FNR are required for
regulation control. Fine-tuning of the levels of these transcrip-
tion factors might allow optimisation of target gene expres-
sion. This fine-tuning can be achieved by the application of
additional regulatory elements or by variation of the chosen
promoter. As an example, very divergent results were obtained
for the promoter L03 in studies using different promoters for
the expression of TetR (Higo et al. 2016, 2017; Huang and
Lindblad 2013).

Moreover, regulatory circuits depending on the action of
multiple regulatory proteins have been presented in the previ-
ous sections of this article. The chimeric dark-sensor Cph8
transfers the environmental signal to the transcription factor
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OmpR, which finally activates expression from PompC
(Immethun et al. 2017). Another example is the 2-input
AND gate based on the transcription factor InvF and the chap-
eron SicA*, which together act on the induction from PSicA
(Immethun et al. 2016). Both systems are described in more
detail in the ‘Heterologous, inducible promoters’ section.

Furthermore, riboswitches and riboregulators are powerful
tools for fine-tuning of expression levels and for improving
induction control, as both sorts of RNA tools can be regulated
independently of the target promoter (by the addition of the
ligand or expression of the taRNA, respectively). For both
tools, the dynamic range is relatively low compared to pro-
moters, yet it could be strikingly increased by slight alterations
of the sequence or structure. Advanced circuit systems includ-
ing riboswitches were created by Taton and co-workers (Taton
et al. 2017). The so called NOT gates are based on the idea to
produce an OFF output in response to an ON signal by the
application of an inducible riboswitch, which controls the ex-
pression of a transcription repressor such as LacI and VanR.
Similar systems and further complex multicomponent studies
including riboswitches or riboregulators have been published
(Higo and Ehira 2019; Higo et al. 2018b, 2017, 2016) and
were discussed in more detail in the previous sections.

Summary and conclusion

While constitutive expression works quite well in
cyanobacteria, several heterologous or native, inducible pro-
moter systems suffer either from leakiness or from a low ex-
pression output. Anyway, in recent years, existing systems
have been improved and new promoters have been discovered
or engineered for cyanobacteria. Parameters such as the pro-
moter length, slight variations of the sequence and promoter
elements (i.e. the −10 and −35 regions, the interspace between
them, operators and the RBS) were identified as crucial factors
for the promoter efficiency and hold the potential for further
optimisation of expression systems for enhanced applications
in cyanobacteria. Moreover, alternative strategies for expres-
sion control in cyanobacteria have been established.
Riboswitches and riboregulators can be regulated indepen-
dently of the target promoter and emerged as powerful tools
for fine-tuning of expression levels and enhancing induction
control. Further sRNA-based approaches and target-specific
sRNAs essentially increase the toolset of RNA-based regula-
tory systems. The technological progress on genome-wide
screening and transcriptome analysis will lead to the identifi-
cation of further promising candidates of native regulatory
RNAs. Another upcoming strategy for the regulation of gene
expression is the generation of genetic circuits via the combi-
nation of different regulatory modules. More work in this field
will be necessary to further advance efficient and tightly con-
trolled gene expression in cyanobacteria.
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