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Abstract

Background: Haematopoiesis is sustained by haematopoietic (HSC) and mesenchymal stem cells (MSC). HSC are the
precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The
generation of MSC from umbilical cord blood (UCB) is possible, but with low and unpredictable success. Here we describe a
novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC.

Methods and Findings: UCB-derived mononuclear cells (MNC) or selected CD34+ cells were grown in liquid culture in the
presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of
HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7)
which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB
units (5 MNC-derived and 3 CD34+ selected cells). Expanded MSC displayed a fibroblast-like morphology, expressed several
stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin) but were negative for haematopoietic cell
markers (CD45, CD34 and CD14). MSC stemness phenotype and their differentiation capacity in vitro before and after high
dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin+, CD133+ and .95% were
positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show
that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture
passages. Further, we generated MSC from peripheral blood (PB) MNC of 8 healthy volunteers. In all cases, the resulting
MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies.

Conclusions: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB
enabling so far unmet therapeutic applications, which might substantially affect clinical practice.
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Introduction

In recent years, mesenchymal stem cells (MSC) received

considerable attention as a potential source of cell-based therapies

and as a cell type that supports the engraftment of haematopoietic

stem cells (HSC) [1,2]. The usual source of MSC is the bone

marrow (BM), which is not easy to obtain from healthy donors as

well as umbilical cord blood (UCB). The advantages of UCB as the

source of MSC are the availability of units [3,4] and the primitive

nature of UCB-derived MSC [5,6,7].

BM- and UCB-derived MSC are presumably highly similar

precursors as they share the following features: (i) capacity of self-

renewal [8], (ii) multipotency, allowing in vitro differentiation into

mesenchymal tissues (bone, cartilage, tendon, muscle, adipose

tissue, stroma) and possibly non-mesenchymal tissues (neuronal,

endothelial and hepatic) [9,10,11], (iii) formation of colonies of

fibroblastic cells (CFU-F) [12], (iv) expression of MSC markers

(CD29, CD44, CD73, CD105) and lack of haematopoietic

markers (CD14, CD34, CD45) [4,13] and (v) migration to

inflammatory sites, stimulation of proliferation/differentiation of
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resident progenitor cells and promotion of recovery of injured cells

through growth factor secretion and matrix remodeling

[14,15,16].

Although the frequency of MSC referred here as undifferenti-

ated cells is much higher in BM (0.001–0.1%) than in UCB

(0.00003%) and some reports have even doubted the presence of

MSC in UCB [17,10,4,18,19], UCB-derived MSC have a better

potential to expand and can give rise to up to 1015 cells [17,4].

However, the scarcity of MSC in UCB and the lack of a robust

protocol to reproducibly expand MSC from UCB units have

hampered clinical applications [17,4,20,19]. It can not be

excluded that the low numbers of MSC in cord blood actually

derive from placental MSC that were released into cord blood due

to mechanical stress during UCB isolation procedure. Several

studies reported that MSC can be isolated and established from

only 20–63% of the cord blood units [3,8,21], questioning the

feasibility of MSC isolation and cultivation from UCB.

Here, we describe a novel, simple and reproducible method,

which is based on stroma-free liquid culture, to expand substantial

numbers of multipotent MSC from only a small number of UCB-

derived mononuclear cells (MNC). This method allows an

extensive expansion of non-adherent HSC plus a marked increase

in adherent MSC. MSC produced in vitro by this novel culture

method maintain their stem cell properties of self-renewal and

multi-lineage differentiation for a long-time (up to passage 24),

even following cryopreservation.

Methods

Ethics Statement
All experimental work presented in this study has been

approved by the local institutional review board.

Umbilical cord blood sample collection and cell
processing

UCB from full-term deliveries was obtained from the Depart-

ment of Gynaecology at the University Hospital of Zurich with the

approval of the local ethical committee (Beschlussmitteilung der

Ethikkommission, UniversitätsSpital Zürich, and StV 30/2006). A

written informed consent was obtained and the blood was processed

within 24 h. Briefly, UCB was diluted with an equal volume of PBS

layered onto LymphoprepTM (Axis-Shield, UK) and centrifuged for

30 min at room temperature at 19800 rpm. Mononuclear cells

(MNC) were collected and washed twice with PBS. Aliquots

containing 1.06107 cells were cryopreserved in FBS and 10%

DMSO at a fixed cooling rate (1uC/min) and stored at 280uC.

Cytokines
Recombinant human stem cell factor (SCF), interleukin 6 (IL-6),

FMS-like tyrosine kinase 3 (Flt-3) ligand, epidermal growth factor

(EGF), basic fibroblast growth factor (FGF-b), hepatocyte growth

factor (HGF) and Oncostatin M (OSM) were purchased from

R&D Systems (Europe). Megakaryocyte growth and development

factor (MGDF) was a gift from Kirin (Gunma, Japan).

Cell selection
UCB CD34+ cells were positively selected using autoMACS CD34+

magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). The

separation technique was performed according to the manufacturer’s

instructions. The purity of CD34+ cells selected from 3 UCB units

ranged between 90–92.7% as determined by flow cytometry.

Stroma-free long-term cultures
Cryopreserved MNC were thawed and cultured for the expansion

of HSC in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,

Europe) in the presence of 10% pooled human AB serum (Cat.

No. 100–512, SLI, UK) in 24-well plates. For expansion, freshly

thawed UCB-derived MNC were seeded at a concentration of 1–

36105/ml. SCF and Flt-3 were used at 25 ng/ml, MGDF at 10 ng/

ml and IL-6 at 20 ng/ml. Flt-3, SCF and MGDF were added on day

0 to initiate the cultures and IL-6 was added on day 7-10 (Table 1,

Table S 1). UCB cultures were grown at 37uC in humidified 5% CO2

in air. The cells were fed with fresh media every 3 days. For selected

CD34+ cells, 509000–2509000 cells/ml were obtained from 3 UCB

units and were cultured in condition D7 as described above.

Culture of UCB-derived MSC during HSC expansion
On day 14, expanded UCB-derived non-adherent cells, referred

to as HSC, were removed from the 24-well plates. The remaining

Table 1. Thirty two different culture conditions tested for the expansion of human umbilical cord blood (UCB) derived
hematopoietic precursor cells.

Cytokine Cocktail (CC) Plasma* 2% Plasma* 8% Serum* 10% FCS 10% Culture Type

CC1 RPMI RPMI RPMI RPMI A1-A4

CC1 DMEM DMEM DMEM DMEM A5-A8

CC2 RPMI RPMI RPMI RPMI B1-B4

CC2 DMEM DMEM DMEM N DMEM B5-B8

CC3 RPMI RPMI RPMI RPMI C1-C4

CC3 DMEM DMEM DMEM N DMEM C5-C8

CC4 RPMI RPMI RPMI RPMI N D1-D4

CC4 DMEM DMEM DMEM m DMEM D5-D8

*Plasma and serum are derived from human blood group AB. FCS: fetal calf serum.
CC1 = SCF (10 ng/ml) + IL-3 + IL-6 (100 ng/ml) + IL-1b (3 ng/ml) + EPO (1 U/ml), [25].
CC2 = Flt-3 (50 ng/ml) + MGDF (10 ng/ml), [26].
CC3 = Flt-3 (50 ng/ml) + MGDF (10 ng/ml) + IL-6 (10 ng/ml) + SCF (50 ng/ml), [27].
CC4 = Flt-3 (25 ng/ml) + SCF (25 ng/ml) + MGDF (10 ng/ml) + IL-6 (20 ng/ml), modification of [27].
mD7 (CC4 + DMEM + 10% serum) maintained long-term expansion of UCB HSC over 7 months.
NB7 (CC2 + DMEM + 10% serum), C7 (CC3 + DMEM + 10% serum) and D4 (CC4 + RPMI +10% FCS) maintained short- term expansion for 6 weeks.
doi:10.1371/journal.pone.0015689.t001
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adherent cells, referred to as stromal/MSC, were washed with

PBS and thereafter either enriched in culture medium containing

10% fetal bovine serum (FBS; Sera Laboratories International,

UK) in DMEM (Sigma-Aldrich Company Ltd, UK), supplement-

ed with 2 mmol/l L-glutamine, 50 IU/ml penicillin, 50 mg/ml

streptomycin (Gibco BRLR Life Technologies Ltd, UK), 10 ng/

ml FGF-b and 20 ng/ml EGF or in MesenCult and added

supplements (StemCell Technologies, Europe) in the presence of

5 ng/ml FGF-b (Table 1, Table S1, Fig. S1). The cultures were

maintained at 37uC in a humidified atmosphere containing 5%

CO2. The medium was changed twice weekly. When adherent

cells increased in number after 2 weeks, they were passaged,

counted and transferred to a 25 cm2 flask for further expansion.

The procedure until passage (P) 1 of stromal/MSC takes 28 days.

CFU-F assay
The colony forming unit fibroblast assay (CFU-F) was first

performed after the first passage at day 28 and also later during

expansion. MSC (109000/25 cm2 tissue flask) were either cultured

in 10% FBS in DMEM supplemented with 2 mmol/l L-

glutamine, 50 IU/ml penicillin, 50 mg/ml streptomycin and

10 ng/ml FGF-b and 20 ng/ml EGF or in MesenCult and added

supplements in the presence of 5 ng/ml FGF-b. CFU-F count was

determined at day 14 and a coherent group of $10 cells was

counted as one colony. After P10, CFU-F count was determined at

day 8 instead of day 11 to avoid the overlap between colonies due

to a rapid increase in cell division.

Differentiation of MSC
Cultured cells were harvested with 0.5% trypsin-EDTA

(Invitrogen AG, Switzerland). Cells at passages 4 or 5, or when

the expression of the haematopoietic markers CD45, CD34 and

CD14 was #1.5%, were seeded in 25 cm2 tissue culture flasks.

MSC were stimulated to differentiate into adipocytes (fat),

osteoblasts (bone) and hepatocytes (liver) as follows. At 80%

confluence, the cells were treated in adipogenic differentiation

medium (Stem Cell Technologies, Europe). The medium was

changed twice weekly for 3 weeks. For differentiation into

osteoblasts, 36104 cells were incubated in MACSR NH OsteoDiff

medium, according to the manufacturer’s instructions (Miltenyi

Biotec, Germany). The medium was changed every 3 days. To

induce hepatogenic differentiation, cells were treated at 80%

confluence with differentiation medium, containing DMEM

supplemented with 20 ng/ml HGF, 0.5 mM dexamethasone,

50 mg/ml ITS premix, 2 mmol/l L-glutamine and 50 IU/ml

penicillin and 50 mg/ml streptomycin for 14 days followed by

maturation thereafter. Maturation medium contained the same

reagents as differentiation medium except HGF, which was

replaced with OSM (20 ng/ml) (10). Medium changes were

carried out twice weekly and differentiation into hepatogenic,

adipogenic and osteogenic cells was assessed by flow cytometry

and real-time PCR at day 10 and 21 and by immunohistochem-

istry at day 28.

Isolation of adipocytes from human fat tissue
One g of tissue (obtained from a healthy volunteer following the

approval of the local ethical committee [Beschlussmitteilung der

Ethikkommission, UniversitätsSpital Zürich, EK 647]) was cut into

small pieces. The tissue was digested in 10 ml Krebs-Ringer

phosphate-HEPES buffer containing 4% fatty acid-free BSA and

1 mg/ml of type I collagenase (Worthington). Digestion was

performed in a gyratory water bath at 180 rpm for 45–50 min at

37uC. At the end of the incubation, contents of the vial were

filtered through a 250 mm nylon filter (Nitex) into a 50 ml

polypropylene conical tube. The filter was rinsed with 10 ml

Krebs-Ringer phosphate-HEPES buffer containing 1% BSA

(KRB 1%). The filtrate was centrifuged at room temperature at

19000 rpm for 2 min to float the white adipocytes. Adipocytes

were transferred into a 50 ml tube and washed by addition of

10 ml KRB 1% BSA followed by centrifugation for 2 min at

19000 rpm. Fluid and possible erythrocytes in the pellet were

aspirated, the same amount of buffer was added and the tube was

slightly shaken. Washing was repeated three times and cells were

suspended in 1.5 ml.

Phenotypic analysis
(I) Flow cytometry. To phenotypically characterize MSC, cells

were surface stained with monoclonal antibodies specific for CD45,

CD34, CD14, CD73, CD105, CD44, CD29, CD133, (HLA)-ABC

(MHC class I cell surface receptor), HLA-DR (MHC class II cell

surface receptor) and Nestin. Additionally, cells were stained

intracellularly for cytokeratin18 (CK18), PPARc and osteopontin

(OPN) after fixation and permeabilization (Perm Buffer II, BD

Phosflow, Europe), according to the manufacturer’s instructions. All

stainings were performed at 4uC for 30 min. The following cell lines

were used as positive controls for differentiated cells: Huh7 for

hepatocytes, CRL-11372 for osteoblasts and human adipose tissue for

adipocytes and undifferentiated MSC were used as negative control.

All antibodies were obtained from BD Biosciences (Europe) except

CD133 (Miltenyi Biotec GmbH, Germany), and PPARc and OPN

(Santa Cruz Biotechnology, Germany). Appropriate isotype-

matched, nonreactive fluorochrome-conjugated antibodies were

used as controls. Cells were stained and analyzed as described

previously [22,23,24] using a FACS Calibur flow cytometer (BD

Biosciences) and data were analyzed using CellQuest Pro software.

(II) Real-time PCR. Total RNA was isolated from 26106

MSC-derived cells using RNeasy kit (Qiagen), according to the

manufacturer’s instructions. The quantity and quality of the RNA

was determined spectroscopically using a nanodrop (Thermo

Scientific). Purified RNA was DNase treated and subsequently

reversely transcribed into cDNA using Quantitect Reverse

Transcription Kit (Qiagen) according to the manufacturer’s protocol.

For mRNA expression analysis real-time PCR was performed

using Fast Start SYBR Green Master Rox (Roche). Primers were

custom made by Microsynth (Switzerland). The following primers

were used for the evaluation of human cytokeratin 14, cytokeratin

18, albumin, osteopontin, alkaline phosphatase, igfbp2, pparc2,

lpl, nestin, oct3/4, nanog, sox2 and rex1 mRNA expression:

ck14 fwd: 59-GGG CGG CCT GTC TGT CTC-39; ck14 rev:

59-AGG CGG TCA TTG AGG TTC TG-39; ck18 fwd: 59-CCC

GCT ACG CCC TAC AGA-39; ck18 rev: 59-GCG GGT GGT

GGT CTT TTG-39; albumin fwd: 59-GCT GCC ATG GAG

ATC TGC TTG A-39; albumin rev: 59- GCA AGT CAG CAG

GCA TCT CAT C-39; osteopontin-fwd: 59-CTC CAT TGA

CTC GAA CGA CTC-39; osteopontin-rev: 59-CAG GTC TGC

GAA ACT TCT TAG AT-39, alpl-fwd: 59-CAC CCA CGT CGA

TTG CAT CT-39; alpl-rev: 59-TAG CCA CGT TGG TGT TGA

GC-39; pparc2-fwd: 59-CCT ATT GAC CCA GAA AGC GAT

T-39; pparc2-rev: 59-CAT TAC GGA GAG ATC CAC GGA-39;

igfbp2-fwd: 59-GAC AAT GGC GAT GAC CAC TCA-39;

igfbp2-rev: 59-GCT CCT TCA TAC CCG ACT TGA-39; lpl-

fwd: 59-TCA TTC CCG GAG TAG CAG AGT-39; lpl-rev: 59-

GGC CAC AAG TTT TGG CAC C-39; nestin-fwd: 59-GGC

GCA CCT CAA GAT GTC C-39; nestin-rev: 59-CTT GGG

GTC CTG AAA GCT G-39, oct3/4-fwd: 59-CCC TCG TGC

AGG CCC GAA AG-39; oct3/4-rev: 59-AAG CTG CTG GGC

GAT GTG GC-39; nanog-fwd: 59-CCT TGG CTG CCG TCT

CTG GCT-39; nanog-rev: 59-AGC AAA GCC TCC CAA TCC
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CAA-39; sox2-fwd: 59-AGG GGG AAA GTA GTT TGC TGC

CT-39; sox2-rev: 59-TGC CGC CGC CGA TGA TTG TT-39;

rex1-fwd: 59-AGG CCA GTC CAG AAT ACC AG-39; rex1-rev:

59-TAG GTA TCC GTC AGG GAA GC-39.

Real-time PCR was performed on an ABI PRISM 7700

Sequence Detection System (Applied Biosystems). The mRNA

expression level for each gene was normalized against 18S rRNA

(Applied Biosystems). Data was generated and analyzed using SDS

2.3 and RQ manager 1.2 software.

(III) Immunohistochemistry. Differentiation to adipocytes

was recognized by the accumulation of lipid-containing vacuoles

stained with Oil red O (Miltenyi Biotec GmbH). Differentiation

into osteoblasts is characterized by alkaline phosphatase activity,

which was demonstrated using Fast BCIP/NBT as a substrate

(Sigma, Europe).

(IV) Immunocytochemistry. Differentiation into hepatocyte-

like cells was confirmed by staining for intracellular albumin. For

this purpose, cytospin slides were prepared from the MSC cultures,

were fixed for 30 min in cold methanol at 4uC and were incubated

for one hr with FITC-conjugated polyclonal rabbit antibody against

human albumin. Before and after incubation, slides were washed

with PBS. Cytospins were prepared from expanded stromal/MSC

from one UCB at P7, P13 and P24. These were stained with

CD133, Nestin, CD45, and mouse isotype control antibodies at the

routine pathology laboratory. In addition, cytospins were prepared

from expanded UCB MNC at week 6 in stroma-free liquid culture

and from control cells obtained from BD Biosciences Europe, (Cat.

No. 340991) and were stained with CD34 monoclonal antibody.

Positive staining was demonstrated with peroxidase reaction and the

staining was repeated twice.

(V) Transmission electron microscopy. Adherent

stromal/MSC cultures were fixed with 3% glutaraldehyde in

PBS for 40 min. Subsequently, the culture was washed three times

with PBS prior to post fixation with 2% OsO4 in PBS for 30 min.

Cells were rinsed three times with nanopure water and dehydrated

in a sequence of increasing ethanol/water mixtures for 30 min

each, 70%, 96%, 100% and 100% water-free ethanol (twice).

Embedding was carried out with 33% and 50% Epon in ethanol

for 2 hrs each, 75% Epon in ethanol over night and 100% Epon

for 2 hrs before polymerization at 60uC for 48 hrs. Thin sections

were stained with aqueous uranyl acetate 2% and Reynolds lead

citrate and imaged in a Phillips CM 12 transmission electron

microscope (FEI, Eindhoven, Netherlands) using a Gatan CCD

camera (1k61k) and digital micrograph acquisition software

(Gatan GmbH, Munich, Germany).

(VI) Peripheral blood (PB) MNC preparation and stroma-

free liquid culture. PB-MNC were obtained from 8 healthy

volunteers. The expansion procedure was carried out as described

for UCB (see above). Freshly thawed PB-derived MNC were

seeded in culture condition D7 at a concentration of 16106/ml.

The stromal/adherent cells generated in D7 were either enriched

in culture medium containing DMEM, supplemented with 2

mmol/l L-glutamine, 50 IU/ml penicillin, 50 mg/ml streptomycin

+ different concentrations of FBS (10%, 15% and 20%) or + 10%

pooled human AB serum, in the presence of 5 or 10 ng/ml FGF-b
and 5, 10 or 20 ng/ml EGF or in MesenCult + supplements 65

and 10 ng/ml FGF-b. The cultures were maintained at 37uC in a

humidified atmosphere containing 5% CO2.

Results

Generation of UCB-derived MSC during HSC expansion
Unexpectedly, the stroma-free liquid culture, which was

initiated to establish culture conditions to expand HSC from

freshly thawed MNC, also generated fibroblast-like cells, which we

tentatively term UCB-derived MSC (UCB-MSC). Isolation of

MSC rested on their classic adhesion on tissue culture plastic. We

systematically tested 32 different culture conditions to expand

HSC from various independent UCB units. We used various

combinations of growth factors, cytokine cocktails [25,26,27],

protein sources (FBS, pooled human AB serum or plasma) at

different concentrations and basic culture media (Table 1, Fig. S1).

Only 4 out of 32 conditions supported the expansion of HSC and

3 of those 4 conditions maintained HSC expansion only

temporarily (up to 6 weeks), whereas only condition D7 (Table 1,

Fig. 1A) allowed long-term expansion of HSC (Fig S2). To our

surprise, condition D7 also allowed another population of

adherent fibroblast-like cells to expand at the same time during

HSC expansion (Fig. 1B, Table S1, Table S2). We confirmed this

for five independent UCB units. Condition D7 consists of DMEM

containing Flt-3 ligand, SCF, MGDF, IL-6 and 10% pooled

human AB serum. SCF, Flt-3 and MGDF were added on day 0

and IL-6 was added on day 7 or 10.

The total cell count as well as the number of HSC and colony

forming cells (CFC) increased in all 3 UCB units tested (Table S2).

In addition, after removing non-adherent cells (HSC) during d14

of culture, we reproducibly observed a population of adherent

stromal cells, which appeared to fulfill all criteria of MSC as

described below (Fig. 1B). Thus, two different stem cell

populations, HSC and MSC, can simultaneously expand from

UCB in this novel, stroma-free liquid cell culture (D7) (Fig. 1A,

1C).

At day 28 of culture, adherent spindle-shaped cells were further

amplified in MesenCult or in DMEM (Fig. 1B). Fourteen days

later, we removed expanded HSC and cultured stromal MSC in

MesenCult or in DMEM. Another 14 days later, the cultures that

were generated from three independent UCB contained 89000,

109000 and 79300 cells, some with MSC morphology. The cells

were passaged for the first time (P1) and were transferred to

25 cm2 flasks for expansion. A steady increase in total MSC counts

was observed following repeated passages with a higher expansion

capacity when a lower number of MSC were plated (80–400 cells/

cm2). Between P2 and P10, a range of 2.1–800 fold increase in

total cell count (mean 6 SD: 3006210) was obtained under

cultivation with MesenCult, whereas the increase was 6.7–96.4

fold under cultivation with DMEM (51.8631.4). When seeded at a

density of .800 cells/cm2, cells expanded 8–92 fold in MesenCult

and 6.7–70 fold in DMEM (Table S2). We therefore continued to

use MesenCult for in vitro expansion of UCB-derived MSC

(Fig. 1C). Between P11 and P18, the number of the adherent MSC

increased 260–1070 fold (6176206.3) and because of the

increased growth rate, cells reached confluency of .80% already

by 11 days (Fig. 1D). For this reason, we determined the CFU-F

count on day 8 instead of the usual day 11.

Furthermore, we validated condition D7 using HSC (CD34+)

isolated from 3 independent UCB units. Adherent stromal/MSC

were generated in cultures from all selected CD34+ samples. These

stromal cells were visible by d7 in culture condition D7 and

increased extensively by d14 and were thereafter expanded in

MesenCult + supplements +5 ng/ml FGF-b (Figs. 1E and 1F).

The expansion protocol proved successful in 8 out of 8

independent UCB units tested.

Electron microscopy of cultured cells showed ultrastructural

features of MSC. Mitochondria, vacuoles and filaments were

present and Weibel-Palade bodies, which are characteristic for

endothelial cells, were absent (Fig. 1G). The morphology of UCB-

derived MSC appeared to be similar to that of BM-derived MSC

[12].
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Phenotypic analysis of MSC and formation of CFU-F
colonies

We further determined the phenotype of UCB-derived MSC at

80% confluency by flow cytometry analysis. At P3-P4, possible

contamination with haematopoietic cells (CD45+CD34+CD14+)

was no longer detectable by flow cytometry analysis and 10% of all

cells expressed the stem-cell marker CD133. More than 95% of

UCB-derived MSC expressed typical MSC proteins CD44, CD29,

Figure 1. Umbilical cord blood stromal/adherent MSC generated during the expansion of haematopoietic stem cells in stroma-free
liquid culture. (A) Confluent growth of HSC from cultured UCB-derived MNC after 14 days expansion under stroma-free culture condition D7. Viable
cell count was determined weekly (scale bar: 150 mm). (B) Adherent stromal cells after removal of non-adherent haematopietic cells and further
cultivation in MesenCult with added supplements and 5 ng/ml FGF-b for an additional 14 days (scale bar: 150 mm). (C) Morphology of expanded UCB-
derived MSC after 165 days/P11 in culture. After passage 1, cells were transferred from 24-well plate to 25 cm2 culture flasks and plated at a density of
80–400 cells/cm2 in MesenCult with added supplements and 5 ng/ml FGF-b. At 80% confluency, the cells were passaged again (scale bar: 100 mm).
(D) Total MSC counts of 3 independent human cord blood units (CB3, CB133, CB159) performed from P2 through P18. Different colors depict different
passages (2–18). Fold increase was measured by dividing the total MSC count by the starting cell number, which was 109000 cells/25 cm2 tissue flask.
(E) Percentage CD34+ selected cells using autoMACS CD34+ magnetic beads as determined by flow cytometry. (F) Adherent stromal cells generated
from CD34+ selected cells expanded in D7 culture condition for 14 days. Non-adherent haematopoietic cells were removed and adherent cells were
cultivated in MesenCult with added supplements and 5 ng/ml FGF-b for an additional 14 days (scale bar: 150 mm). (G) Electron microscopy (EM;
vertical section) of a stromal/MSC at 198 days/P14 in culture. White arrowheads point to vacuoles and black arrowhead depicts the nucleus. Asterisks
show irregular mitochondria and black arrows point to various filaments (inset, black arrows) characteristic for stromal cells. Black dots within the
cytoplasm represent ribosomes (scale bar: 1 mm).
doi:10.1371/journal.pone.0015689.g001
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CD73, CD105 and were also positive for human leukocyte antigen

(HLA)-ABC (MHC class I cell surface receptor) but negative for

HLA-DR (MHC class II cell surface receptor). This profile

remained stable at P4, P7 and P11 (Fig. 2A, B, and C), even as late

as passages P13, P18 and P24 (Fig. 2D and E). In addition, the cell

population was positive for Nestin (.95%) as determined by flow

cytometry analysis (Fig. 2E). The stemness phenotype of UCB

stromal/MSC did not change at different confluences [28].

Figure 2D and E display the results of a side-by-side screen of

marker profiles of UCB-MSC that were grown in confluent

(.95%) vs. sub-confluent (50%) cultures analyzed at passage 24.

Immunocytochemistry staining of cytospins prepared from sub-

confluent (P7 and P13) and confluent cultures at P24 confirmed

the flow cytometry data. Expanded MSC were Nestin positive

(range, mean 6 SD: 95–98%, 96.361.24), CD133+ (6–11%,

9.062.16), CD452 (Fig. 2F) and mIgG2 (data not shown).

Stromal/MSC derived from CD34+ selected cells had a similar

phenotype; cells were negative for haematopoietic markers and

positive for MSC markers (Fig. 2G).

The capacity to form CFU-F colonies is a crucial feature of

MSC, and we found that the adherent, MSC-like cells generated

large and small CFU-F colonies in MesenCult that was

supplemented with 5 ng/ml FGF-b or in DMEM supplemented

with 2 mmol/l L-glutamine, 50 IU/ml penicillin, 50 mg/ml

streptomycin, 10 ng/ml FGF-b and 20 ng/ml EGF (Fig. 3A).

Plating of 1–36105 MNC/ml after P1 or during HSC expansion

resulted in 19–51 CFU-F colonies (mean: 36) in MesenCult and in

28–142 CFU-F colonies (mean: 79.3) in DMEM. With increasing

purity of MSC the number of CFU-F increased: we obtained 50–

859 (mean 6 SD: 3726212.4) CFU-F from a 104 MSC at P2–P10

and 380–788 (mean 6 SD: 569 SD 6135) at P11–P18. Also at

later passages, we obtained more CFU-F colonies in MesenCult

than in DMEM (Table S2). Plating of 509000–2509000 selected

CD34+ cells/ml (mean: 1369700) generated 8–19 CFU-F colonies

(mean: 12) during HSC expansion (d28) (Fig. 3B). In addition,

secondary colonies were formed when outgrowing cells were

harvested and replated following high dilution (,10 cells) at early

and late passages, P7 and P24, respectively (Fig. 3C and 3D).

Multilineage differentiation of UCB-derived MSC
To test whether multilineage differentiation of UCB-derived

MSC is possible, we induced differentiation of MSC into

osteoblast, adipocyte and hepatocytes (Fig. 3E to K, Fig. 4, Fig.

S3, Fig. S4,). Differentiation under osteogenic conditions at P4 and

P11 resulted in the generation of spindle shaped cells, which

progressively flattened and broadened (day 10 of differentiation is

shown in Fig. 4A, left panel). High levels of alkaline phosphatase

protein (ALPL) expression and increased cell spreading suggested

an osteogenic differentiation (Fig. 4B, left panel). Further, analysis

by real-time PCR was in line with flow cytometry analysis and

immunocytochemical protein expression data (Fig. 4B and D left

panel). MSC cultivated under osteogenic stimuli expressed

osteopontin (OPN) and ALPL which are characteristic for

osteoblasts (Fig. 4C left panel and Fig. S3A). OPN expression

was further confirmed by flow cytometry analysis (Fig. 4D, left

panel). Undifferentiated MSC were used as a negative control and

did not express significant levels of ALPL or OPN. In contrast, the

osteoblast cell line CRL-11372 expressed ALPL and OPN (Fig. 4C

left panel and Fig. S3A). When MSC were tested for their potential

to differentiate into adipocytes at P4 and P11, morphologic

changes in the cells as well as the formation of neutral lipid

vacuoles were noticeable as early as day 7 after induction (Fig. 4A,

right panel). At day 21, a reduction in nuclear size and

accumulation of lipid vacuoles within and around the cells was

visualized by staining with Oil red O (Fig. 4B, right panel). Real-

time PCR to quantify mRNA expression of genes characteristic for

adipocytes revealed that differentiated MSC indeed transcribed

adipogenic genes such as Igfbp2, LPL, and PPARc, similar to a

positive control (human adipose tissue) (Fig. 4C, right panel and

Fig. S3B and C). We confirmed the expression of PPARc at

protein level using flow cytometry (Fig. 4D, right panel).

Importantly, undifferentiated MSC expressed low level of Igfbp2

and LPL but did not express PPARc. These data confirm that

UCB-MSC can differentiate into adipocytes. UCB-derived

stromal/MSC passaged in sub-confluent and confluent culture

maintained their initial marker profile (see above) and their ability

to differentiate as well. At P24, UCB-derived stromal/MSC

obtained from confluent culture (Fig. 3E) generated after high

dilution could be induced towards osteogenic and adipogenic

lineages in vitro as demonstrated by ALPL expression (Fig. 3F) and

accumulation of lipid vacuoles, respectively (Fig. 3I). Further

analysis by real-time PCR confirmed osteogenic (Fig. 3G and H)

and adipogenic differentiation (Fig. 3J and K).

Expression of pluripotency markers in MSC
We have furthermore analyzed the expression of pluripotency

markers (e.g. found in embryonic stem cells) such as Nestin, Oct3/

4, Nanog, Rex1 and Sox2 in cultures of MSC (Fig. S5A). Nestin

was highly expressed in early MSC cultures and its expression

remained at high levels until passage 23. Oct3/4 and Nanog

showed an increase in the expression over time in sub-confluent

MSC cultures, however in confluent cultures both were weakly

expressed through all passages.

Rex1 and Sox2 showed strongly increasing expression levels in

sub-confluent cultures between P4 and P14, for confluent cultures

a slight increase in gene expression was found between P5 and

P23. Altogether, we observed increasing expression levels over

time for almost all genes tested with a stronger increase seen in

sub-confluent cultures compared to confluent cultures, which

appear to reach a steady expression level of pluripotency markers

around pP17/18.

In addition, we studied the expression of the osteoblast marker

osteopontin (Fig. S5B). We found a strong increase in osteopontin

expression in sub-confluent MSC cultures between P4 and P14

and a moderate increase of this marker in confluent cultures over

time.

Potential clinical use of UCB-derived MSC
We evaluated the practical implications of the novel method-

ology developed in the present study. This was conducted in

regards to reproducibility, costs, time for generation of MSC,

volume of UCB required and the proportion of UCB donations

(Fig. S6 and Table S3).

The results show that a small number of MNC or a small

volume of UCB can generate an adequate number of stromal/

MSC for transplantation of a 70 kg individual (.1006106) (Fig.

S5, [29]). Importantly, all cytokines needed to expand MSC from

UCB and PB with the culture condition D7 are commercially

available under ‘‘good manufacturing practice’’ (GMP) grade.

Generation of MSC from peripheral blood
Further, we tested the expansion potential of our novel culture

protocol using other sources than UCB. PB MNC were obtained

from 8 healthy volunteers. Unlike the expansion of UCB MSC,

MSC derived from PB MNC were expanded only when culture

condition D7 was replaced gradually at d14 by MesenCult and not

by DMEM. A volume of 250 ml out of the total 1 ml volume of

culture condition D7 was replaced twice weekly, by addition of
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MesenCult and MesenCult supplements plus 5 ng/ml FGF-b until

the first passage at d28. None of the culture conditions tested with

either DMEM plus different concentrations of serum and

cytokines or MesenCult plus MesenCult supplements alone or

with . FGF-b at higher concentration (10 ng/ml) allowed the

expansion of MSC derived PB MNC (data not shown). Confluent

growth of stromal/MSC bearing MSC immature phenotype and

the capacity to form CFU-F colonies were obtained from all PB

samples (Fig. 5A, B and C).

Discussion

In recent years, some successful attempts have been made to

expand MSC from UCB [4]. However, none of these attempts

provided a reproducible protocol to expand MSC, which are

rarely found in UCB. In this study, we developed a novel, simple

and reliable method which is based on stroma-free liquid culture

to expand extensive numbers of multipotent MSC from only a

small number of cryopreserved UCB- and PB-derived MNC or

CD34+ cells. The stroma-free liquid culture referred to as

condition D7 maintained the balance between an extensive

expansion of HSC and the simultaneous generation of stromal

adherent MSC. Therefore, D7 was adopted to establish MSC in

all the cultures obtained from UCB or PB. Maintenance of this

balance depended on the presence of serum (10% pooled human

AB serum), on the combination and the concentration of cytokines

(Flt-3, SCF, MGDF, IL-6), the timing of exposure to those and on

the culture medium (DMEM) used. Cultivation of MSC in the

presence of cytokines and serum found in D7 and in MesenCult

did not affect their stemness. Instead, adherent stromal cells were

viable and expanded extensively during d7 to d14 of HSC

expansion and continued after in MesenCult. In addition to MSC,

growth factors and serum maintained long-term expansion of

HSC for several months from fetal liver [24] and cord blood ([27];

Peters et al., 2010, unpublished observations). Similarly, cultures of

MSC reported using the classical plastic adherent technique

always included either serum [17] or serum plus cytokines (such as

FGF-b and FGF-a) [9].

In this regard, it is of interest that the use of commercial serum-

free media containing low serum (1%) resulted in fewer numbers

of stromal cells and/or rapid differentiation of stem cells with

lower numbers of HSC and stromal cells (Peters et al., 2010,

unpublished observation). The total cell count increased using

other culture conditions that were reported previously [25,26,27],

but the maintenance of HSC (CD34+) was only short-term and

there was no evidence for concomitant expansion of stromal/

MSC. The method developed in the present study to cultivate

MNC or CD34+ cells in culture condition D7 in stroma-free liquid

culture proved very effective. We confirmed the generation of

stromal/MSC in 8 out of 8 independent UCB units, 5 MNC-

derived and 3 from selected CD34+ cells (Table S3). Of note, the

success rate for isolating stromal/MSC during HSC expansion in

D7 was 100%.

It is also possible that MSC are derived from HSC when

selected CD34+ cells were cultured in D7. A more homogeneous

population of CD34+ cells might be obtained by cell sorting to

investigate whether those cells generate CD342 cells in vitro in D7

culture condition. Previously, we have observed the generation of

CD342 cells after 4 to 6 week during long-term culture of fetal

liver. Upon flow cytometry analysis these cells appeared as FSClow,

CD342 and lineage2 following the in vitro expansion of total cell

population (Peters et al., 2010, unpublished observations).

Stromal/MSC generated in D7 had a better expansion potential

and higher success rate in MesenCult medium (100%) than in

DMEM (75%) (Table S3). In MesenCult, expanded cells

continued to increase in numbers; showed remarkably little scatter

difference in their MSC profiles among samples and among

passages; maintained their identity in confluent cultures and their

phenotypic profile as well as their differentiation capacity up to the

highest passage number we tested in this study, passage 24. In

DMEM, the expansion of stromal/MSC after P1 continued in 3 of

4 samples. The expansion potential between P2–P6 was lower in

DMEM than MesenCult. After P6, cells increased in size, some

detached even when cultures were sub-confluent and cultures

needed longer time to reach confluency, .25 days compared to 14

days before P6 (data not shown). In the newly discovered D7

culture condition, a small number of adherent cells, accounting for

5–10% of total expanded cells, were generated every week during

UCB expansion. Interestingly, this was also achieved with human

PB-derived MNC. Although cultivating PB-derived MNC up to

d14 was efficient and reproducible, replacing condition D7 by

MesenCult or DMEM for additional 14 days was not. The

expansion of stromal adherent cells after d14 decreased and the

cultures detached within 48–72 hrs. Unlike UCB, MSC derived

from PB MNC were maintained and expanded only when

condition D7 was replaced gradually by MesenCult.

It is possible that PB MSC expansion requires the participation

of haematopoietic growth factors added as well as the growth

factors produced by accompanying haematopoietic cells present in

the MNC culture. To maintain their expansion potential PB MNC

have to be cultivated in culture condition D7, plus MesenCult and

5 ng/ml FGF-b [30]. In line with these findings, it has been shown

that PB-derived MNC and CFU-F differ from BM-derived ones.

Both PB-derived MNC as well as PB-derived CFU-F colonies have

different growth factors requirements from BM [31,30].

Adherent cells had the characteristics of stromal cells, the

capacity to form CFU-F colonies and were capable of growing into

a pure population of MSC when expanded under appropriate

culture condition (D7). Besides the generation of CFU-F colonies,

genuine MSC must be able to differentiate into different

mesenchymal (bone, cartilage, tendon, muscle, adipose tissue,

stroma) and possibly into non-mesenchymal tissues (neuronal,

endothelial and hepatic) [9,10,11] similar to what has been

described for MSC from UCB and bone marrow [32,33].

While exogenous IL-6 was not required for initiating UCB

cultures, in particular not for MSC culture, in which IL-6 is

Figure 2. Phenotype of UCB stromal/MSC during long-term culture as analyzed by flow cytometry and immunocytochemistry. Flow
cytometric analysis of UCB-derived stromal/MSC cultivated in MesenCult medium with added supplements and 5 ng/ml FGF-b. (A) FSC/SSC plot of
MSC at P7. Gate for live cells is indicated. (B) No expression of the haematopoietic markers CD34, CD45 or CD14 on UCB-derived MSC (open
histograms). The filled histogram represents the isotype control. (C) Expression of the stromal/MSC markers CD73, CD44, CD29 and CD105 (open
histograms). The filled histograms represent isotype controls. (D) FSC/SSC plot of MSC. Sub-confluent vs confluent cultures at P24. Gates for live cells
are indicated. (E) Expression of MSC markers (open histograms) at P24 by cells phenotyped at sub-confluent vs. confluent cultures. The filled
histograms represent isotype controls. (F) Immunocytochemistry of stromal/MSC prepared from P7 and from confluent culture at P24. Positive
peroxidase staining was seen with Nestin and CD133 but not with CD45. (G) Shows cell scatter and phenotype of stromal/MSC obtained from
selected CD34+ cells at P3. Stromal/MSC were positive for CD73, CD29, CD105 and CD44 (open histograms) and negative for haematopoietic cell
markers CD34, CD45 and CD14. The filled histograms represent isotype controls.
doi:10.1371/journal.pone.0015689.g002
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secreted by MSC themselves, the addition of IL-6 at 7 to 10 days

later was necessary to enhance long-term expansion of both HSC

and MSC [34,35,36]. The absence of IL-6 after d7 to d10 during

culture in D7 had no short-term effect on HSC expansion but was

detrimental for the growth, isolation and expansion of MSC

(Peters et al., 2010, unpublished observation). In the presence of

IL-6, adherent stromal cells increased and formed a confluent cell

layer by d14 (Figs. 1B and 1F). Removal of IL-6 for 24–48 hrs

from cultures of cord blood and PB resulted in cell death. Cells

detached quickly and MSC isolation and/or expansion were no

longer possible.

Consistent with these results, a recent study demonstrated that

IL-6 inhibited the expansion of white blood cells, but supported

the expansion of CD34+ cells [34]. We observed by flow cytometry

Figure 3. CFU-F colony formation and multilineage differentiation of expanded MSC during long-term culture and following high
dilution. (A) Formation of CFU-fibroblast colonies (CFU-F). CFU-F colonies generated from UCB MNC-derived MSC generated large and small CFU-F
colonies in MesenCult medium with added supplements and 5 ng/ml FGF-b (scale bar: 150 mm). (B) A CFU-F colony generated from selected CD34+

cells derived MSC (d28) (scale bar: 250 mm). (C) Formation of a CFU-F colony following high dilution of outgrowing colonies obtained from confluent
culture at P24. One cell adhered after 6 hrs then a small colony formed after 48 hrs and increased in size at 96 hrs stained with Crystal Violet. (D) A
CFU-F colony formed 48 hrs after high dilution of outgrowing colonies from sub-confluent culture at P7. (E) A light microscopy of the confluent
culture generated at high dilution of stromal/MSC from P24 (scale bar: 150 mm). (F) Osteogenic differentiation of stromal/MSC generated at high
dilution stained with alkaline phosphatase at d10 post differentiation (scale bar: 200 mm). (G–H) Real-time PCR for mRNA expression of tissue-specific
genes confirms the osteogenic differentiation of UCB-derived MSC as demonstrated by the expression of osteopontin mRNA (G) and ALPL (H). (I)
Adipogenic differentiation of stromal/MSC generated at high dilution following Oil red O staining of lipid vacuoles at d21 post differentiation (scale
bar: 200 mm). (J–K) Real-time PCR confirms adipogenic differentiation by the expression of Igfbp2 mRNA (J) and LPL mRNA (K). Human cell line CRL-
11372 for osteoblasts and human adipose tissue were used as positive controls. UCB-derived MNC and undifferentiated UCB-derived MSC were used
as negative controls. All values were normalized to 18S rRNA. Symbols represent individual samples. Horizontal bars depict the average value. DDCt

values are depicted in a log 2 scale.
doi:10.1371/journal.pone.0015689.g003
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and immunocytochemistry analyses that cultures from early

passages (P3 and P7) and late passages (P11, P13, P18 and P24)

expressed the CD133 antigen. CD133 has been found to be

restricted to stem cells in normal adult tissues [37] and is expressed

by non-committed early progenitors of blood cells and endothelial

cells [38], nonmalignant neural progenitors, but also by tumor-

initiating stem cells in the brain [39]. Recent studies by Tondreau

and colleagues showed that selected CD133+ cells from human PB

give rise to MSC [40]. In our report, cells expressing CD133,

which constitute approximately 10% of total cells in culture, were

most likely responsible for maintaining the integrity of MSC as

shown by the Nestin expression which characterizes the undiffer-

entiated stem cells state [41,42], the capacity to form colonies in

high dilution and the multi-differentiation capacity towards

mesodermal lineages. Similarly, CD133+ cells might have been

responsible for generating stromal/MSC in cultures initiated with

selected CD34+ cells, in line with published reports where a

subpopulation of CD34+ cells was characterized by flow cytometry

as CD34+/CD133+ [41,43,44]. Further studies will have to

indicate whether CD133+ cells are the responsible for MSC

formation in culture. If this is the case, selection of CD133+ could

provide an alternative to MSC selection by adherence to tissue

culture plastic.

Furthermore, it is highly unlikely that the herewith accom-

plished generation of stromal/MSC could be a consequence of a

possible contamination with MNC (,8–10%) during the selection

procedure of CD34+ cells (see also Table S3): The contaminant

MNC population (49000 to 259000 MNC) present during the

selection of CD34+ cells is very unlikely to form a confluent culture

of stromal adherent cells because this number is insufficient to

initiate mesenchymal stem cell culture. It was shown previously,

that MSC cultures were initiated from 509000 and 1–36106

MNC/ml [11,18] as well was investigated in the herewith

presented study: Here we show that at least 16105–36105/ml

MNC are required to initiate the stromal adherent cell cultures.

Unlike BM-derived MSC, the growth rate of UCB-derived

MSC increased with the time in culture indicating a primitive

nature [32,45]. After P11 there was an increase in proliferation

rate reaching 205% in total cell count and 153% in CFU-F count.

These cells displayed a stable phenotype and retained their

potential for differentiation. In the BM, it was reported that

senescence of MSC occurred as early as at P11 (47). That was not

the case with UCB when MSC were cultured in D7 and thereafter

in MesenCult + MesenCult supplements +5 ng/ml FGF-b. The

difference is most likely related to the primitive nature of UCB

MSC. Alternatively, this might simply be due to the isolation

technique which involves the plastic adherence of stromal cells in

DMEM + serum. In our hands, senescence of UCB MSC

occurred early when MSC were cultured in DMEM + serum 6

FGF-b, following 14 days culture in D7.

In the present study, we were able to amplify considerable

numbers of multipotent MSC from 1-36105 MNC in 5 out of 5

independent UCB samples during HSC expansion in stroma-free

liquid culture. We observed the presence of those adherent stromal

cells in additional 15 out of 15 UCB units during HSC expansion

cultures, but we did not process those any further. MSC frequency

increased during HSC expansion. This indicates that the

combination of elements of early growth factors, serum and

medium used to promote the expansion of HSC also promoted the

expansion of stromal/MSC. In the present study, no direct

Figure 4. In vitro multi-lineage differentiation of UCB-derived MSC into osteoblast- and adipocytes following appropriate induction
conditions. (A) Light microscopy of unstained MSC cultures differentiated into osteoblasts (left), adipocytes (right) at 10 and 21 days after
differentiation, respectively (scale bar: 200 mm). (B) Osteogenic differentiation was confirmed by alkaline phosphatase activity at d10 post
differentiation (left) and adipogenic differentiation by Oil red O staining of lipid vacuoles at d21 post differentiation (right) (scale bar: 200 mm). The
inset shows higher magnification of adipocytes stained with Oil red O. (C) Real-time PCR for the mRNA expression of tissue-specific genes confirms
the differentiation of UCB-derived MSC. Osteogenic differentiation is demonstrated by the expression of osteopontin mRNA (left) and adipogenic
differentiation by the expression of Igfbp2 (right). The osteoblast cell line CRL-11372 and human adipose tissue were used as positive controls. UCB-
derived MNC and undifferentiated UCB-derived MSC were used as negative controls. All values were normalized to 18S rRNA. Symbols represent
individual samples. Horizontal bars depict the average value. DDCt values are depicted in a log 2 scale. (D) Flow cytometry confirms the protein
expression of tissue-specific genes. Osteogenic differentiation was confirmed by staining at day 10 for osteopontin (left) and adipogenic
differentiation by staining at d21 for PPARc (right). Human cell lines (osteoblast: CRL-11372; hepatocyte: Huh7) and human adipose tissue were used
as positive controls. UCB MNC and undifferentiated UCB-derived MSC were used as negative controls.
doi:10.1371/journal.pone.0015689.g004

Figure 5. CFU-F colonies of MSC and surface expression of
various mesenchymal stem cell markers expressed by MSC
generated from steady state PB. Stromal/adherent MSC could be
generated from steady state peripheral blood (obtained from 8/8
healthy donors) during the expansion of haematopoietic stem cell in
stroma-free liquid culture at day 6 (A, left panel). A confluent growth of
stromal adherent cells was obtained at day 28 (A, right panel) (scale bar:
200 mm). (B) A CFU-F colony generated from PB stromal/MSC after P1
(day 28) (scale bar: 100 mm). (C) Flow cytometric analysis of PB-derived
stromal/MSC at d28 were positive for stromal/MSC markers CD29,
CD105, CD73, CD44 and negative for haematopoietic markers CD45,
CD34, CD14. The filled histograms represent isotype controls,
respectively.
doi:10.1371/journal.pone.0015689.g005
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comparison was made to evaluate the isolation/cultivation

efficiency of UCB MSC under the herewith described culture

condition D7 or the classical plastic adherence technique. During

the course of establishing MSC from cord blood, we tested 4

independent units of UCB using plastic adherence of MSC. We

established adherent MSC only from 1 out of 4 units tested (Peters

et al., 2010, unpublished observation), in line with previous reports

[3,8,21]. In addition to its efficiency and reproducibility, culture

condition D7 has additional advantages compared to the classical

plastic adherence method: (i) culture condition D7 is quicker in

initiating stromal/adherent cells; (ii) work with culture condition

D7 is less laborious, requires a small number of MNC and is less

time consuming; (iii) culture condition D7 allows many passages

and it initiates rare MSC from all UCB and furthermore, from all

PB samples.

UCB MSC expressed the pluripotency markers such as Nestin,

Sox2, Rex1, Oct3/4 and Nanog analyzed by real-time PCR in

confluent and sub-confluent cultures during early, intermediate

and late passages up to P23. Gene up-regulation detected for

Nestin, Sox2, and Rex1 was the highest in sub-confluent cultures

(P5 to P14). Upregulation of Oct3/4 and Nanog reached the

maximum level in sub-confluent cultures by P14 but remained

weak throughout late and confluent passages. These results are in

agreement with the data presented here demonstrating that UCB

derived MSC maintained: a) a stable phenotype, b) multi-

differential capacity and c) cell stemness despite differences in cell

confluency and culture passages. Similarly, cell confluence did not

alter the differentiation potential of the osteopointin gene during

long-term culture in sub-confluent vs confluent cultures as

determined by real-time PCR analysis.

Recently a growing interest in MSC has evolved due to their

ease of culture expansion, immunomodulatory activity and

differentiation potential. The clinical spectrum of potential

therapeutic application includes many diseases such as steroid

refractory graft versus host disease, multiple sclerosis, diabetes

mellitus, etc. [46,47]. UCB/MSC have already been used as a

potential stem cell therapy in many clinical trials, an ongoing area

of development in many clinical and biotechnology institutes

worldwide [48,4,49,50,51]. Despite the clinical need for UCB

MSC to treat different diseases, no reproducible method for in vitro

expansion has been published up to date [52]. The methodology

presented here provides the means to isolate the very rare

population of MSC from blood. Therefore, we recommend the use

of this culture strategy to initiate MSC from various tissues starting

with D7 culture condition. D7 promotes the expansion of rare

stromal adherent cells and potentially facilitate their successful

isolation and expansion, e.g. D7 could be used to isolate MSC

from other sources such as fetal MSC from maternal blood during

normal and abnormal pregnancy.

We evaluated the practical implications of the novel method-

ology developed in the present study. We show that at P4,

.1006106 MSC could be generated from only 0.56106 MNC or

23 ml UCB, for transplantation of a 70 kg individual (Fig. S6). The

benefits of using this novel technology are (a) to reduce time and

costs in preparing MNC, (b) to save a large volume of this valuable

source of stem cells (UCB) during MNC preparation and (c) to

increase the success rate in generating MSC, which we could show

to be 100% in our hands.

We have validated our novel culture protocol using other

sources. To our surprise, multipotent MSC were successfully

generated from human PB obtained from 8 out of 8 healthy

volunteers. This cell population may constitute a unique and

sufficiently easy, accessible source of autologous cells with future

clinical implications.

Supporting Information

Figure S1 A step by step procedure for the generation of
MSC during HSC expansion in stroma-free liquid
culture.

(DOC)

Figure S2 Immuno-peroxidase staining of expanded
UCB HSC (CD34+) at week 6 during stroma-free liquid
culture. (A) Control cells obtained from BD Biosciences, show a

mixture of stained CD34+ cells (3%) and unstained MNC (97%)

(scale bar: 150 mm). (B) Expanded MNC showing the increase in

CD34+ cell population at week 6 in D7 culture condition (scale

bar: 150 mm).

(DOC)

Figure S3 Real-time PCR analysis of MSC differentiat-
ed from UBC. mRNA expression analysis of genes characteristic

for particular cell types (e.g. osteoblasts, adipocytes and hepato-

cytes) was performed with UBC-derived MSC differentiated in

various culture conditions (e.g. osteogenic, adipogenic, hepato-

genic). (A) ALPL mRNA expression for osteoblasts, (B) LPL and

(C) PPAR mRNA expression for adipocytes and (D) CK14 and (E)

CK18 for hepatocytes was performed. All values were normalized

to 18S rRNA. Symbols represent individual samples. Horizontal

bars depict the average value. DDCt values are shown in a log 2

scale. CRL-11372: Human osteoblast cell line. Huh7: Human

hepatoma cell line. Adipose tissue: human adipose tissue.

(DOC)

Figure S4 Differentiation of UCB-derived stromal/MSC
into hepatocyte like cells following appropriate induc-
tion condition. Under hepatogenic culture conditions, MSC

developed the typical cuboidal morphology of hepatocyte-like cells

within 14 days and further matured by day 28 in the presence of

oncostatin M (A). Hepatocyte differentiation was further con-

firmed by immunofluorescence staining for albumin at day 28 (B)

and by real-time PCR that revealed expression of hepatocyte-

specific genes such as albumin, CK14 and CK18 (C, and

Supplementary Fig 3D and E). Further, the expression of

CK18 was confirmed by flow cytometry (D).

(DOC)

Figure S5 Expression of pluripotency markers in UCB
derived MSC. (A) Real-time PCR for the mRNA expression of

pluripotency markers confirms the undifferentiated state of MSC

in different passages of sub-confluent and confluent cultures. UCB-

derived MNC were used as a negative control. All values were

normalized to 18S rRNA. Symbols represent individual samples.

Horizontal bars depict the average value. DDCt values are

depicted in a log 2 scale. (B) Expression of the osteogenic marker

osteopontin is found in MSC in different passages of sub-confluent

and confluent cultures. UCB-derived MNC were used as a

negative control. All values were normalized to 18S rRNA.

Symbols represent individual samples. Horizontal bars depict the

average value. DDCt values are depicted in a log 2 scale.

(DOC)

Figure S6 Potential clinical use of UCB-derived stro-
mal/MSC.

(DOC)

Table S1 Appropriate culture conditions for expansion
of HSC and MSC.

(DOC)
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Table S2 Long-term expansion of MSC from 3 UCB
units tested.
(DOC)

Table S3 Percentage success rate obtained for generat-
ing stromal/MSC from UCB in D7 culture condition.
(DOC)
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