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A B S T R A C T   

5-methylcytosine modifications play a significant role in carcinogenesis; however, studies 
exploring 5-methylcytosine-related genes in diffuse large B-cell lymphoma patients are lacking. In 
this study, we aimed to understand the potential role and clinical prognostic impact of 5-methyl-
cytosine regulators in diffuse large B-cell lymphoma and identify a prognostic biomarker based on 
5-methylcytosine-associated genes. Gene expression profiles and corresponding clinical infor-
mation of diffuse large B-cell lymphoma patients and normal controls were obtained from The 
Cancer Genome Atlas, Gene Expression Omnibus, and Genotype-Tissue Expression databases. 
Diffuse large B-cell lymphoma was divided into three clusters according to the 5-methylcytosine 
regulators, and differentially expressed genes were screened among the three clusters. Univariate 
Cox and Lasso-Cox regression analyses were used to screen prognostic genes and construct a 
prognostic risk model. Kaplan-Meier curve analysis, univariate and multivariate Cox regression 
analyses, and time-dependent receiver operator characteristic curve analysis were used to eval-
uate prognostic factors. GSVA was used to enrich potential pathways associated with 5-methylcy-
tosine modification patterns. SsGSEA and CIBERSORT were used to assess immune cell 
infiltration. Six 5-methylcytosine-related genes (TUBB4A, CD3E, ZNF681, HAP1, IL22RA2, and 
POSTN) were used to construct a prognostic risk model, which was proved to have a good pre-
dictive effect. In addition, univariate and multivariate Cox regression risk scores were indepen-
dent prognostic factors for diffuse large B-cell lymphoma. Further analysis showed that the 5- 
methylcytosine risk score was significantly correlated with immune cell infiltration and im-
mune checkpoint of diffuse large B-cell lymphoma. Our study reveals for the first time a potential 
role for 5-methylcytosine modifications in diffuse large B-cell lymphoma, provides novel insights 
for future studies on diffuse large B-cell lymphoma, and offers potential prognostic biomarkers 
and therapeutic targets for patients with diffuse large B-cell lymphoma.  
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1. Introduction 

Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin’s lymphoma, is a heterogeneous disease with 
different clinical manifestations, genetic characteristics, treatment responses, and prognoses [1]. Rituximab has been a breakthrough 
in the treatment of DLBCL, with over half of patients with DLBCL receiving the R–CHOP regimen, which includes cyclophosphamide, 
doxorubicin, vincristine, and prednisone plus rituximab; however, 30–40 % of patients still relapse or even fail to respond to R–CHOP 
therapy [2]. Over 50 % of chemotherapy-sensitive patients with relapsed/refractory DLBCL who are administered high-dose 
chemotherapy followed by autologous stem cell transplantation eventually relapse [3]. The advent of anti-CD19 chimeric antigen 
receptor (CAR) T-cell therapy has solved the treatment dilemma for some relapsed/refractory DLBCL patients. Although CAR T-cell 
therapies have achieved response rates in relapsed/refractory DLBCL patients, they are associated with significant toxicities in the form 
of cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome [4–6]. Due to these toxicities, the appli-
cation of CAR T-cell therapies has been limited among elderly and unfit patients. Therefore, novel and more effective treatment 
strategies for patients with DLBCL are urgently required. 

The advent of high-throughput sequencing technology has helped researchers gain a comprehensive understanding of the gene 
expression profile of DLBCL and identify many diagnostic, prognostic, and therapeutic biomarkers for DLBCL [7–9]. RNA modifica-
tions, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and pseudouridine (Ψ), play 
important roles in carcinogenesis [10,11]. Recently, the less studied m5C modification has received increasing attention, and growing 
evidence suggests that m5C regulates RNA stabilization, splicing, nuclear export, transcription, and translation, thereby mediating 
biological functions, such as cell proliferation, differentiation, apoptosis, and senescence [12,13]. Similar to m6A modifications, m5C 
RNA methylation is dynamically regulated by the corresponding m5C regulators and can be functionally classified into three isoforms 
-"writers”, “erasers”, and " readers”. The RNA C5-cytosine methyltransferase NSUN2 is upregulated in several types of cancer including 
pancreatic cancer, nasopharyngeal carcinoma, uveal melanoma, and gastric cancer [14–16]. In gastric cancer, NSUN2 has been found 
to promote cancer cell proliferation, migration, and invasion [17]. Similarly, the enzymes NSUN4, NSUN5, NSUN6, and NSUN7 have 
been associated with the development of colorectal cancer, hepatocellular carcinoma, pancreatic cancer, and glioma [18–21]. 
Abnormal expression and mutations of the TET family and ALKBH1 ″erasers” are also associated with several malignancies [22–25]. In 
renal cell carcinoma, high expression of ALKBH1 is correlated with malignant features of the tumor [26]. Furthermore, the m5C 
binding protein YBX1 has been found to maintain the stability of m5C-containing oncogenes and promote bladder cancer progression 
[27]. YBX1 has also been found to promote tumor progression in breast, pancreatic, and non-small cell lung cancers [28–30], and 
mediate resistance to the first-line chemotherapy drug sorafenib in hepatocellular carcinoma [31]. 

As far as we are aware, no studies have specifically investigated the potential of RNA m5C modification as a combined prognostic 
factor in DLBCL. The purpose of this research was to explore the clinical value of m5C regulators in DLBCL and to establish a prognostic 
biomarker for this condition based on m5C regulators, which has not been done before. Additionally, we examined the relationship 
between the risk of m5C modification and the distribution of immune cells, and found evidence indicating a potential correlation with 
immunotherapy. Our findings offer new insights for further research on m5C modifications and personalized treatment of DLBCL. 

2. Materials and methods 

2.1. Data collection 

RNA sequencing data and clinical information (FPKM values) of patients with DLBCL and normal subjects were obtained from the 
Genotype-Tissue Expression (GTEx), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases. We gathered 
48 DLBCL sample datasets from TCGA database and 444 normal control datasets from the GTEx database, removed batch effects, 
merged the data, and normalized the data using log2(FPKM+1) values. The GSE10846 and GSE181063 datasets were extracted from 
the GEO database, and log2 transformation was performed to normalize mRNA expression to eliminate batch effects for subsequent 
analyses. Finally, the training cohort (n = 228) and internal validation cohort (n = 152) were randomly (5:2) stratified from the 380 
DLBCL samples in GSE10846. The external validation cohort consisted of 1310 DLBCL samples from the GSE181063 dataset to validate 
the prognostic value of m5C regulator signatures. The RCircos package in R was used to analyze and visualize the copy number variants 
(CNVs) derived from the TCGA database [32]. 

2.2. Collection and gene expression analysis of m5C regulators 

Based on the relevant literature [10,33–37], we selected 22 m5C regulators for further analysis, excluding those that are not 
expressed in DLBCL, including eight “writers” (DNMT3B, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, and NOP2), four “erasers” 
(TET1, TET2, TET3, and TDG), and ten “readers” (MBD1, MBD2, MBD3, MBD4, MECP2, NEIL1, NTHL1, SMUG1, UHRF1, and UHRF2). 
We removed m5C regulators with very low expression (mean expression <0.5) in DLBCL samples and used the “limma” R package to 
compare the expression of the m5C regulators between different groups. Spearman correlation analysis of DLBCL samples from TCGA 
database was performed for differentially expressed m5C regulators using “corrplot” R package, and statistical significance was 
defined as p value < 0.05. 
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2.3. Consensus clustering analysis based on m5C regulators 

According to the different expression patterns of 22 m5C regulators, DLBCL samples in the GSE10846 dataset were clustered into 
several subgroups by the “ConsensusClusterPlus” R package [38]. The “pca3d” and “rgl” R packages were used for principal 
component analysis (PCA) to evaluate sample clustering [39]. The association of different m5C subgroups with clinical information, 
such as age, gender, stage, molecular subtype, Eastern Cooperative Oncology Group (ECOG) performance status, and lactate dehy-
drogenase (LDH) ratio, was assessed using chi-square test. In addition, the Kaplan-Meier (K-M) overall survival curves for different 
subgroups were plotted by the R package “survival”. The “GSEABase”, “GSVA”, and “pheatmap” R packages were used for gene 
differential analysis to evaluate the enriched m5C-related pathways [40]. The gene set “c2. cp.kegg.v7.4. symbs” was retrieved from 
the MSigDB database as the background, and statistical significance was defined as |log Fold change (FC)| >1 and FDR value < 0.05. 

2.4. Construction and validation of a m5C prognostic risk score model in DLBCL 

Differentially expressed genes (DEGs) between different clusters were screened with the empirical Bayesian approach using the 
“limma” R package (|log FC| > 1, FDR <0.05) [41]. Moreover, we performed univariate Cox regression analysis to screen out candidate 
genes with independent prognostic value. Further, relevant genes were filtered again to construct an m5C risk prediction model with 
minimal risk of overfitting using the “glmnet” and “survival” R packages, together with Lasso-Cox regression analysis [42]. Finally, a 
risk score based on m5C modification features was constructed using the formula: Risk score =

∑n
i=1Coefficienti ∗ Expressioni. The 

formula was applied to calculate risk scores for the training cohort, internal validation cohort, and external validation cohort and to 
divide DLBCL patients into low-risk and high-risk groups depending on their median m5C risk score. The survival difference between 
the two subgroups was compared using the “survivor” and “survminer” R packages. To confirm the predictive reliability of the model, 
receiver operating characteristic (ROC) curve analysis at 1-, 3-, and 5-years was performed using the “time-ROC ″R package [43]. 

2.5. Establishment of the predictive nomogram 

Data on clinical and pathological characteristics of patients, with respect to age, subtype, ECOG status, staging, LDH ratio, and risk 
score, were obtained from the GEO database. Univariate and multivariate Cox regression analyses were conducted to determine in-
dependent prognostic factors in patients with DLBCL. Using the ’rms’ R package, a nomogram was constructed based on risk scores and 
clinical variables significantly correlated with DLBCL prognosis, and the predictive prognostic ability for the nomogram was assessed 
using a calibration plot and ROC curve. 

2.6. Immune analyses 

Using the R packages “GSEABase” and “GSVA”, we performed single-sample gene set enrichment analysis (ssGSEA) [40] to 
evaluate the enrichment scores for 16 different classes of immune cells and 13 different immune-related pathway activities in the three 
m5C clusters of DLBCL. Further, the Cell Type Identification by Estimation of Relative Subtypes of RNA Transcripts (CIBERSORT) [44] 
algorithm was used to assess the relative proportions of 22 types of infiltrating immune cells to examine differences in immune cell 
subtypes among the m5C high-risk and low-risk groups. Subsequently, we calculated the correlation between risk scores and the 
enrichment fraction of immune cells, as well as the activity of immune-related pathways. Differences in the expression of potential 
immune checkpoint genes between the high-risk and low-risk groups were compared using the software package “ggpubr” R. 

2.7. GSEA and functional enrichment analysis 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis was applied to determine the 
potential molecular mechanisms associated with m5C risk [45]. Subsequently, GSEA was performed to screen for the most prominent 
enrichment pathways in the high-risk and low-risk groups (|log FC| > 1 and FDR< 0.05) [46]. 

2.8. RNA extraction and RT-PCR 

Total RNA from DLBCL tissues and normal tissues was extracted by TRIzol reagent (TaKaRa, Shiga, Japan). Immediately after-
wards, the Evo M-MLV RT Mixing Kit (Accurate Biotechnology (Hunan) Co., Ltd., China) was employed for cDNA synthesis, followed 
by the qRT-PCR analysis using the SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate Biotechnology (Hunan) Co, Ltd., China). The 
mRNA levels between the experimental and control groups were normalized using β-actin. The sequences of the primers used are 
presented in Table S1. 

2.9. Statistical analysis 

All statistical analyses performed in our study were carried out using R software. Differences with p < 0.05 (*), 0.01 (**), and 0.001 
(***) were considered to be statistically significant unless otherwise stated. 
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3. Results 

3.1. Landscape and multi-omics analysis of m5C regulators in DLBCL 

Apart from DNMT3A, NSUN1, DNMT1, DNMT2, YBX1, ALYREF, and UNG, which are genes with very low expression levels in 
DLBCL, a comparison of mRNA expression levels for 22 m5C regulators between DLBCL samples and normal tissues was performed 
using datasets obtained from TCGA and GTEx databases. Compared to normal controls, 19 of the 22 m5C regulators were differentially 
expressed in DLBCL samples. Among these genes, 13 m5C regulators (DNMT3B, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, TET3, TDG, 
MBD2, MBD4, NTHL1, UHRF1, and NOP2) were upregulated and six (NSUN7, TET2, MBD1, MECP2, NEIL1, and UHRF2) were 
downregulated (Fig. 1A). The 22 m5C regulators were significantly correlated with each other (Fig. 1B). Further CNV analysis revealed 
that alterations in CNV of genes were very frequent; among the m5C regulators, MBD2, SMUG1, MECP2, NSUN5, UHRF2, NTHL1, 
MBD1, NSUN3, NSUN2, NSUN6, and DNMT3B showed increased copy numbers, whereas the copy numbers of TET3, TDG, NEIL1, 
NSUN4, MBD4, TET2, TET1, NOP2, and UHRF1 were reduced (Fig. 1C). Fig. 1D summarizes the categories, correlations, and prognosis 
of m5C regulators in TCGA-DLBCL cohort. 

3.2. Depicting m5C clusters and clinical implications 

Based on the expression levels of these m5C regulators, a consensus clustering analysis was conducted with the GSE10846 dataset. 
The clustering algorithm performed the best when k = 3, and the different clusters had significant prognostic values (Fig. 2A–C). PCA 
(Fig. 2D) indicated that the samples in clusters 1, 2, and 3 were significantly clustered, further demonstrating that the m5C-based 
DLBCL clusters were reliable. M5C regulators and their associated clinical and pathological features were correlated, as shown in 

Fig. 1. Expression of 22 m5C regulators in DLBCL tissues and normal tissues. (A) Gene expression of m5C regulators in DLBCL tissues and normal 
tissues. ***p < 0.001; **p < 0.01; *p < 0.05. (B) Correlation between the expression levels of m5C regulators in DLBCL. Darker shades of blue 
indicate a stronger negative correlation, and darker shades of red indicate a stronger positive correlation. * indicates p＜0.05. (C) CNV frequency of 
m5C regulators in TCGA-DLBCL cohort. Red dots: increased copy number; green dots: decreased copy number. (D) Gene network of m5C regulators. 
M5C, 5-methylcytosine; DLBCL, diffuse large B-cell lymphoma; CNV, copy number variation. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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the heat map, and the m5C regulators were clearly differentially expressed in the three clusters (Fig. 2F). Moreover, the difference in 
survival rates between DLBCL patients in clusters 1, 2, and 3 was found to be statistically significant using the K-M analysis, with 
patients in cluster 3 demonstrating a markedly better prognosis than those in clusters 1 and 2 (p < 0.001) (Fig. 2E). 

Subsequently, we conducted a gene set variation enrichment analysis to determine the different biological processes and potential 
pathways of enrichment among the three types of m5C modification patterns (Fig. 3A–B, Fig. S1). Cluster 1 was significantly enriched 
in mismatch repair and DNA replication and homologous recombination; cluster 2 was enriched in glycosaminoglycan biosynthesis, 
glycosphingolipid biosynthesis, and glycerophospholipid metabolism; and cluster 3 was markedly enriched in limonene and pinene 
degradation, ascorbate and aldarate metabolism, and the interconversion of pentose and glucuronate. Furthermore, the immune status 
between the three m5C clusters in DLBCL was analyzed. SsGSEA revealed apparent differences in the enrichment fractions for most 
types of infiltrating immune cells (15 of the 16 groups) and 13 immune-related pathways between m5C clusters 1–3 (Fig. 3C–D). 
According to our research, it appears that the patterns associated with m5C could potentially have an impact on various biosynthetic 
and metabolic processes in DLBCL cells, as well as the immune microenvironment of DLBCL. 

We analyzed DEGs among clusters 1, 2, and 3. Further studies found that a total of 116 DEGs were identified for the three clusters 
(FDR <0.05 and |log FC| > 1) (Fig. S2). Using GO analysis, we found that the DEGs were significantly enriched in interferon- 
γ-mediated signaling pathways, positive T cell selection, cell-cell junctions, adherens junctions, heart development, and dopamine- 
related pathways (Fig. 3E). In addition, the KEGG pathway enrichment analysis (Fig. 3F) revealed that these DEGs were involved 
in hematopoietic cell lineage, longevity regulating pathways, Th17 cell differentiation, systemic lupus erythematosus, pyrimidine 
metabolism, and acute myeloid leukemia. Overall, DEGs were associated with hematopoietic development, immune response, and 
tumor development and metastasis, and the associated dysfunction of m5C may affect the development of DLBCL and the immune 
microenvironment. 

3.3. Identification of m5C regulator signatures in DLBCL 

Using univariate Cox regression analysis, we identified 76 genes correlated with prognostic value from a total of 116 DEGs. 
Subsequently, as shown in Fig. 4A, LASSO regression analysis was performed on these genes to further define candidate genes with 

Fig. 2. Consensus clustering of m5C regulators. (A, B) Relative change in the area under the consensus clustering CDF and CDF curve when k = 2–9. 
(C) The consensus clustering matrix for k = 3. (D) Principal component analysis of three m5C clusters. (E) Heat map and clinical features of m5C 
regulator expression levels. Gender, age, LDH ratio, stage, ECOG status, and subtype were clinical parameters with statistically significant differ-
ences between the groups classified by m5C. (F) K-M survival analysis of the three m5C clusters. CDF, cumulative distribution function; m5C, 5- 
methylcytosine; DLBCL, diffuse large B-cell lymphoma; LDH, lactate dehydrogenase; ECOG, eastern cooperative oncology group; K-M, 
Kaplan-Meier. 
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independent prognostic value. Finally, we carried out a multivariate Cox regression analysis to construct a model of prognostic risk 
using six m5C-related genes (TUBB4A, CD3E, ZNF681, HAP1, IL22RA2, and POSTN). Patients from the GEO database were then 
randomly separated into a training cohort and an internal validation cohort (3:2). Depending on gene expression levels and regression 
coefficients, a specific risk score was calculated for each individual with DLBCL in the training cohort: risk score =

0.357438413056158 × Expression of TUBB4A - 0.420001557858442 × Expression of CD3E - 0.177316474524244 × Expression of 

Fig. 3. Interactions and associations among clusters. (A, B) Gene set variation analysis of the different biological processes and potential pathways 
between C1 and C3 and between C2 and C3. Red: activated pathways; blue: inhibited pathways. (C, D) Sixteen infiltrating immune cell types (C) and 
13 immune-related pathways (D) were assessed with ssGSEA in three m5C modification patterns. ***p < 0.001; **p < 0.01; *p < 0.05; ns, no 
significant difference. (E, F) Functional annotation of overlapping m5C phenotype-associated genes using Gene Ontology analysis (E) and KEGG 
enrichment methods (F). SsGSEA, gene set enrichment analysis; m5C, 5-methylcytosine; DLBCL, diffuse large B-cell lymphoma; KEGG, kyoto 
encyclopedia of genes andgenomes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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ZNF681 + 0.185246234028066 × Expression of HAP1 - 0.371417012273356 × Expression of IL22RA2 - 0.161281821509798 ×
Expression of POSTN. As illustrated in Fig. 4C, we divided the DLBCL patients from the training cohort equally into a low-risk group 
and a high-risk group based on their risk scores. Patients in the low-risk group had fewer deaths and longer survival than those in the 
high-risk group (Fig. 4D). The alluvial diagram revealed that the majority of DLBCL patients in cluster 3, who had the best prognosis, 

Fig. 4. Risk models for m5C-associated genes. (A) Lasso-Cox regression analysis. (B) Alluvial diagram illustrating the relationship between the three 
clusters, m5C risk, and patient survival status. (C) The model divides the patients in the training set into low-risk and high-risk groups. (D) Number 
of survivors and deaths in these high-risk and low-risk groups. (E) K-M curve of the high- and low-risk groups. The survival rate of patients in the 
low-risk group was higher than that in the high-risk group (p < 0.001). (F) ROC curves for 1-, 3-, and 5-year survival for the training set, with AUC 
values of 0.722, 0.759, and 0.776, respectively. M5C, 5-methylcytosine; K-M, Kaplan-Meier; ROC, receiver operator characteristic; AUC, area under 
the ROC curve. 
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were in the low-risk group, and the majority of patients in cluster 2, who had the worst prognosis, were in the high-risk group (Fig. 4B). 
Further, the K-M survival curve indicated that the survival probability of patients in the high-risk group was significantly lower than 
that of patients in the low-risk group (p < 0.001) (Fig. 4E). In the training cohort, the results showed that the areas under the ROC 
curves (AUC) were 0.722, 0.759, and 0.776 for the 1-year, 3-year, and 5-year survival, respectively (Fig. 4F). Prognostic analyses of 
subgroups with different clinical characteristics also indicated poor prognoses in the high-risk group (Fig. 5A–E). The above findings 
indicate that the m5C signatures in the training cohort exhibit a certain predictive power. 

Next, the prognostic signatures of m5C were further validated in a training cohort using the internal validation cohort as well as 
another GEO dataset as an external validation cohort. Fig. 6A, D and 6B, E present the m5C risk scores and survival data for patients in 
the validation cohorts. Analysis of the K-M survival curve showed that the survival rate was higher in the low-risk patients than in the 
high-risk group, with a statistically significant difference (p = 0.026, p < 0.001) (Fig. 6C, F). In the internal validation cohort, the AUC 
values were 0.667 and 0.640 for the predicted 1-year and 3-year survival curves, respectively (Fig. 6G). Meanwhile, we found that the 
external validation cohort also exhibited superior reproducibility, with AUC values of 0.670, 0.662, and 0.648 for the predicted 1-, 3-, 
and 5-year survival rates, respectively (Fig. 6H); these findings indicated good prognosis prediction in both validation cohorts. 
Collectively, these findings confirm that the risk model can robustly and accurately predict the prognosis of DLBCL. 

3.4. Pathological features and independent prognostic analysis of risk scores 

To further assess whether the m5C signature is an independent prognostic factor for DLBCL, univariate and multivariate Cox 
regression analyses were performed on the GEO cohort. The univariate Cox regression analysis revealed that age (hazard ratio (HR) =
1.025, p < 0.001), subtype (HR = 0.558, p < 0.001), ECOG status (HR = 1.576, p < 0.001), stage (HR = 1.534, p < 0.001), LDH ratio 
(HR = 1.210, p < 0.001), and risk score (HR = 1.105, p < 0.001) were all strongly associated with the prognosis of DLBCL (Fig. 7A). 
Multivariate Cox regression analysis showed that age (HR = 1.030, p < 0.001), subtype (HR = 0.668, p = 0.007), ECOG status (HR =
1.310, p < 0.013), stage (HR = 1.408, p < 0.001), LDH ratio (HR = 1.117, p = 0.016), and risk score (HR = 1.100, p < 0.001) were all 
independent prognostic factors of DLBCL (Fig. 7B). 

Subsequently, we established a prognostic nomogram by combining the risk score with all important clinical indicators. The 
predictive nomogram was constructed by selecting gender, ECOG status, LDH ratio, stage, subtype, age, and risk score from the GEO 
cohort (Fig. 7C). However, the calibration curve of the nomogram showed moderate agreement between the predicted and actual 

Fig. 5. K-M curves showing age (>65, ≤65) (A), gender (female, male) (B), ECOG status (0, 1, 2, 3) (C), extranodal involvement (absence, presence) 
(D), and stage (stage 1–2, 3–4) (E) for the high- and low-risk groups. K-M, Kaplan-Meier; ECOG, eastern cooperative oncology group. 
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survival (Fig. S3). Decision curve analysis and ROC curve with acceptable accuracy (Fig. 7D–E) indicated good predictive efficacy. 

3.5. Estimation of m5C risk and tumor immune microenvironment characteristics 

Immune cell infiltration was investigated in the two groups. CIBERSORT analysis indicated that the proportions of immunosup-
pressive cells, such as regulatory T cells, M2 macrophages, and resting natural killer cells, were increased in the high-risk group, 
whereas those of gamma delta T cells and resting mast cells were significantly decreased in the high-risk group (Fig. 8A). In addition, 
ssGSEA results indicated that the m5C risk score was negatively related to most immune cell types, including aDCs, CD8+ T cells, 
macrophages, natural killer cells, and tumor-infiltrating lymphocytes. Except APC co-inhibition, 12 immune-related pathways were 

Fig. 6. Validation of the prognostic model. (A-C) Risk scores, survival, and K-M curves for the internal validation set. (D-F) Risk scores, survival, and 
K-M curves for the external validation set. (G, H) ROC curves of the internal and external validation sets. K-M, Kaplan-Meier; ROC, receiver operator 
characteristic. 
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negatively correlated with the m5C risk score (Fig. 8B). These findings suggest that changes in immune cell infiltration induced by m5C 
risk may significantly affect the production of specific immune cell types, thereby affecting the response to immunotherapy. 

Immune checkpoints are a major mechanism of tumor immune escape and a potential target for tumor immunotherapy. Conse-
quently, we analyzed the expression levels of immune checkpoint genes in the two risk groups and identified 22 DEGs. The expression 
levels of CD40, TNFRSF14, CD274, LGALS9, CD70, CD200R1, TNFSF9, TNFRSF18, PDCD1, TNFSF14, IDO2, TNFSF18, and HHLA2 in 
the high-risk group were obviously higher than those in the low-risk group, whereas the expression levels of CD86, TIGIT, NRP1, CD28, 
ICOS, TNFRSF8, CD160, CD40LG, and PDCD1LG2 were the opposite (Fig. 8C). In addition, we observed that the risk score and 
expression levels of CD274, LGALS9, CD70, and TNFSF9 were positively correlated (R = 0.18, p = 0.00029; R = 0.29, p = 1.3e− 8; R =

Fig. 7. (A) Univariate Cox regression analysis of the risk scores versus clinical factors. (B) Multivariate Cox regression analysis of risk scores and 
clinical factors. (C) Nomogram combining gender, ECOG status, LDH ratio, stage, subtype, age, and risk score to predict overall survival at 1, 3, and 
5 years. (D, E) Decision curve analysis and ROC curves show good accuracy. LDH, lactate dehydrogenase; ECOG, eastern cooperative oncology 
group; ROC, receiver operator characteristic. 
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0.23, p = 9e− 6; R = 0.27, p = 5.1e− 8) and negatively correlated with TNFRSF8 and NRP1 (R = − 0.15, p = 0.0045; R = − 0.32, p =
1.7e− 10) (Fig. 8D). 

3.6. Pathways enriched in the low- and high-risk groups 

GSEA was performed to reveal potential differences in biological functions between the two risk groups of DLBCL. The top five 

Fig. 8. Immune characteristics of different risk groups. (A) CIBERSORT analysis of the proportions of 22 immune-infiltrating cells in the high- and 
low-risk groups. (***p < 0.001; **p < 0.01; *p < 0.05). (B) Correlation of m5C risk with 16 types of immune cells and 13 immune-related pathways. 
Solid lines represent positive correlations, and dashed lines represent negative correlations. (C) Differential expression levels of immune checkpoints 
in different risk groups. ***p < 0.001; **p < 0.01; *p < 0.05. (D) Correlation between risk scores and expression levels of CD274, LGALS9, CD70, 
TNFSF9, TNFRSF8, and NRP1. CIBERSORT, cell-type identification by estimating relative subsets of RNA transcripts; m5C, 5-methylcytosine. 

Fig. 9. Enrichment analysis of different risk subgroups. (A) Top five KEGG enriched pathways in the high-risk group. (B) Top five KEGG enriched 
pathways in the low-risk group. KEGG, kyoto encyclopedia of genes andgenomes. 
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pathways significantly enriched in the low- and high-risk groups, respectively, were selected. The top five enriched pathways in the 
high-risk group included olfactory transduction, taste transduction, DNA replication, homologous recombination, and amyotrophic 
lateral sclerosis (Fig. 9A). The top five enriched pathways in the low-risk group included ECM receptor interaction, arrhythmogenic 
right ventricular cardiomyopathy, cell adhesion molecules, cytokine-cytokine receptor interaction, and focal adhesion (Fig. 9B). 

3.7. Validation of signature-related genes in clinical samples 

To further evaluate the expression of m5C-related genes, their mRNA expression levels were examined in DLBCL tissues and normal 
tissues. As shown in Fig. S4, TUBB4A expression in tumor tissue was obviously higher than that in normal tissue. In contrast, CD3E, 
ZNF681, and POSTN expression levels in tumor tissue were lower than those in normal tissue. Due to the large heterogeneity of DLBCL 
patients, HAP1 and IL22RA2 expression did not show significant statistical differences between tumor and normal tissues; however, the 
expression trends of HAP1 and IL22RA2 in tumor and normal tissues tended to be consistent with our predictions. Taken together, the 
expression of the six m5C-related genes in clinical tissue samples was basically consistent with that in public databases. 

4. Discussion 

Considering the complex phenotypes and genetic heterogeneity of DLBCL, subtype classification, prognosis prediction, and pre-
cision treatment are challenging tasks. With the advent of high-throughput sequencing, more than 170 RNA modifications have been 
discovered, particularly m6A, m5C, and m1A modifications [47]. Recently, more and more studies have found that m5C modifications 
are implicated in various biological processes, including DNA damage repair [48], nuclear-cytoplasmic shuttling, mRNA stability [49, 
50], tumor development and progression, and metastasis [12,14,16]. Despite the rapid pace of research on the role of m5C in cancer, 
few studies have investigated the clinical significance of m5C regulators in DLBCL. In the present study, we assessed the prognostic 
value of 22 m5C regulators by dividing patients with DLBCL into three clusters and screening for candidate genes between the clusters. 
Then, a prognostic prediction model of m5C-related genes in patients with DLBCL was constructed and validated. The model could 
satisfactorily distinguish the prognosis of high- and low-risk patients with DLBCL. It is understood that this study is the first to use the 
m5C signature to predict the prognosis of DLBCL patients. Furthermore, we systematically explored the influence of m5C risk on the 
immune microenvironment. 

We identified 22 m5C regulators expressed in patients with DLBCL. Most m5C regulators were differentially expressed in DLBCL 
and had complex regulatory networks. First, we performed a clustering consensus analysis based on m5C features and identified three 
molecular subtypes associated with m5C that exhibited significantly different prognoses, with cluster 3 presenting a significantly 
better prognosis than clusters 1 and 2. The DEGs among the three clusters were primarily enriched in hematopoietic development, 
immune response, and tumor development and metastatic pathways. This finding suggests that m5C may influence the development of 
DLBCL and the immune microenvironment. Interestingly, these DEGs are also highly enriched in cardiac development and dopamine- 
related pathways [51–54]. We thus hypothesized that m5C may have important effects on the development and progression of car-
diovascular and neuropsychiatric diseases. 

Our prognostic model involved six genes associated with m5C. According to the risk values of each gene, TUBB4A and HAP1 were 
positively associated with the m5C risk in DLBCL patients, and CD3E, ZNF681, IL22RA2, and POSTN were negatively associated with 
the m5C risk. TUBB4A is a member of the β-microtubulin family; previous studies have shown it is oncogenic, with a high expression 
associated with aggressive prostate cancer development and metastasis [55]. In addition, TUBB4A mutations can lead to various 
diseases [56,57]. CD3E is associated with severe immunodeficiency [58], and the risk of head and neck squamous cell carcinoma 
recurrence is higher in patients with low CD3E expression levels [59]. CD3E is also associated with squamous cell carcinoma of the 
cervix, where high expression is associated with better prognosis [60]. Similarly, a bioinformatics study of patients with bladder cancer 
showed that patients with high expression levels of CD3E present a better prognosis [61]. Few studies have focused on the role of 
ZNF681; however, as a member of the zinc finger protein family, it has been speculated to be crucial in tumor development. Never-
theless, its exact role needs to be further elucidated. IL22RA2 is an anti-tumor factor that induces the anti-tumor effects of lymphotoxin. 
It is expressed at reduced levels in colorectal tumors [62]. HAP1 is primarily expressed in the nervous system, which is important to 
maintain neuronal survival [63]. Recently, HAP1 was found to be associated with the regulation of gene transcription and vesicular 
transport [64]. In an in vitro study of breast cancer, HAP1 was found to act as an oncogene, and overexpression of HAP1 increased the 
radiosensitivity of breast cancer cells [65] and promoted apoptosis of tumor cells [66]. In addition, studies on the role of HAP1 in acute 
lymphoblastic leukemia found that HAP1 knockdown significantly reduced L-asparaginase-induced apoptosis [67]; this finding pro-
vides new avenues for developing more effective individualized therapies for patients with L-asparaginase-resistant acute lympho-
blastic leukemia. However, the role of HAP1 in DLBCL has not been reported. Furthermore, whether its role in DLBCL is a risk factor as 
we predicted needs further investigation. POSTN has been proven to stimulate tumor progression in various tumor cells [68,69]. 
Interestingly, POSTN was found to promote tumor invasiveness in prostate cancer, while it inhibited it in bladder cancer [70]; 
downregulation of POSTN was found to be significantly associated with high-grade bladder cancer [71]. Another research [72] 
demonstrated a biphasic effect of POSTN in pancreatic cancer development. POSTN role in tumor development and progression may be 
associated with tissue specificity. Gene expression profiling of the CD5 DLBCL subtype associated with poor prognosis revealed 
downregulation of POSTN expression [73]; these findings are similar to the prediction of the present study that POSTN expression may 
be associated with good prognosis in DLBCL. However, the mechanism underlying POSTN expression requires further investigation. In 
conclusion, the role of these six m5C-related genes in patients with DLBCL remains unclear, and more clinical data and experimental 
studies are required. 
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Surprisingly, our prognostic risk model based on m5C features could well predict the prognosis of DLBCL patients. The survival rate 
of DLBCL patients was significantly different between high-risk and low-risk groups. The model exhibited good prognostic prediction 
performance in the training as well as the internal and external validation sets. Notably, the risk score was identified as an independent 
prognostic factor. Importantly, we successfully constructed a model by combining m5C features and the prognostic nomogram of 
clinical parameters. ROC analysis further confirmed that the model had moderate accuracy in prognostic prediction, suggesting that 
the prognostic model based on m5C features has some clinical applicability. 

Furthermore, the risk scores were negatively correlated with the abundances of most immune cells and immune-related pathways. 
In the high-risk group, there was an increase in immunosuppressive cells, such as regulatory T cells, M2 macrophages, and resting 
natural killer cells. The expression of most immune checkpoint-related genes (CD40, TNFRSF14, CD274, LGALS9, CD70, CD200R1, 
TNFSF9, TNFRSF18, PDCD1, TNFSF14, IDO2, TNFSF18, and HHLA2) was also upregulated in the high-risk group, suggesting that 
immunotherapy might be more effective in DLBCL patients at high risk of m5C features. 

Although the present study provides new avenues for elucidating the pathogenesis of DLBCL and identifying prospective thera-
peutic targets for individualized therapy of patients, there are also some limitations. First, an m5C signature model was constructed to 
predict the prognosis of DLBCL, but more scientific studies are needed to evaluate the accuracy of the model. Second, our results are 
mainly derived from bioinformatics analysis, and more evidence is needed to demonstrate the exact molecular mechanisms underlying 
the role of the six m5C-related genes used to construct this model in the relationship between DLBCL development and the charac-
teristics of the immune microenvironment. 

In conclusion, we revealed the role of m5C modifications in DLBCL. A prognostic risk score model based on m5C-related genes was 
constructed to identify potential prognostic biomarkers for DLBCL. The m5C risk score has strong independent predictive power and 
can reliably forecast the prognosis of DLBCL. Our comprehensive analysis of m5C modifications provides new research directions for 
the study of DLBCL and contributes to the investigation of targets for the individualized treatment of DLBCL. 
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