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Japanese Encephalitis virus (JEV) is a neurotropic ssRNA virus, belonging to the

Flaviviridae family. JEV is one of the leading causes of the viral encephalitis in

Southeast-Asian countries. JEV primarily infects neurons however, the microglial

activation has been reported to further enhance the neuroinflammation and promote

neuronal death. The PI3K/AKT pathway has been reported to play an important role

in type-I interferon response via IRF3. Phosphatase and tensin homolog (PTEN), a

negative regulator of PI3K/AKT pathway, participates in microglial polarization and

neuroinflammation. The microRNAs are small non-coding endogenously expressed

RNAs, which regulate the gene expression by binding at 3′ UTR of target gene. The

human microglial cells were infected with JEV (JaOArS982 strain) and up-regulation

of microRNA; hsa-miR-374b-5p was confirmed by qRT-PCR. The genes in PI3K/AKT

pathway, over-expression and knock-down studies of hsa-miR-374b-5p with and

without JEV infection were analyzed through immuno blotting. The regulatory role of

hsa-miR-374b-5p on the expression of type-I interferon was determined by luciferase

assays. JEV infection modulated the expression of hsa-miR-374b-5p and PI3K/AKT

pathway via PTEN. The over-expression of hsa-miR-374b-5p suppressed the PTEN

while up-regulated the AKT and IRF3 proteins, whereas, the knockdown rescued

the PTEN expression and suppressed the AKT and IRF3 proteins. The modulation

of hsa-miR-374b-5p regulated the type-I interferon response during JEV infection. In

present study, we have shown the modulation of PTEN by hsa-miR-374b-5p, which

regulated the PI3K/AKT/IRF3 axis in JEV infected microglial cells.

Keywords: JEV, human microglial cells, hsa-miR-374b-5p, type-I interferon response, viral immune evasion

INTRODUCTION

The Japanese Encephalitis virus (JEV) is amosquito-borne Flavivirus belongs to Flaviviridae family.
The Flaviviridae family also includes Dengue virus (DENV),West Nile Virus (WNV), Yellow Fever
Virus (YFV), Tick Borne Encephalitis Virus (TBEV), and ZIKAVirus (ZIKV) (Gould and Solomon,
2008). JEV is one of the leading causes of viral encephalitis in Southeast-Asian countries, with an
annual incidence of 70,000 and case fatality rate of 30–50%, predominantly affecting children and
elderly people (Campbell et al., 2011). JEV has devised several molecular strategies to evade the
hosts immune response in order to establish itself successfully inside the host (Aleyas et al., 2010;
Yang et al., 2011).
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Microglial cells are the resident macrophages in the central
nervous system (CNS) and play roles in phagocytosis, immune
surveillance, and antigen presentation (Colonna and Butovsky,
2017; Salter and Stevens, 2017). JEV has been reported to persist
in microglial cells, which could be a plausible reservoir for
infection (Thongtan et al., 2010). The JEV primarily infects and
kills neurons and further enhances the neuroinflammatory events
by producing chemokines and cytokines, which in turn activates
microglial cells and leads to neuronal death in a bystander fashion
(Ghoshal et al., 2007; Chen et al., 2010, 2012a). The microglial
activation is regarded as one of the signs of neuroinflammation
during viral infections (Conrady et al., 2013; Drokhlyansky et al.,
2017; Mathur et al., 2017; Dello Russo et al., 2018). MicroRNAs
are the endogenously expressed small non-coding RNAs, which
regulate the gene expression by binding to the 3′ UTR of target
mRNA (Ambros, 2004; Singh et al., 2008). We and others
have previously reported the perturbation in cellular microRNA
expression patterns during JEV infection for the purpose of
replication and immune evasion (Cullen, 2013; Sharma et al.,
2015, 2016; Rastogi et al., 2018).

The viral infection to microglial cells activates multiple
signaling cascades, where the first-line-of-defense, type-I
interferon response, plays a major role in orchestrating the
anti-viral signaling by producing the IFN-α/β (Samuel, 2001;
Randall and Goodbourn, 2008). The binding of these pleiotropic
cytokines to their receptor IFNAR (IFNαR1/R2) stimulates the
ISGs (IFN-stimulated genes) by binding to the IFN-stimulated
response cis-elements (ISREs) inside the nucleus (Aaronson
and Horvath, 2002). The type-I interferon responses have
been reported to be transcriptionally regulated by RIG-I/Mda5
pathway, TLR3 and TLR4 mediated TRIF (Jiang et al., 2014)
and TLR7/8 and TLR9 pathways. TRIF pathway leads to the
activation of interferon regulatory factor 3 (IRF3), whereas the
TLR7/8 and TLR9 pathway leads to the activation of interferon
regulatory factor 7 (IRF7) (Daffis et al., 2008). We and others
have reported the type I interferon promotes neuroinflammation
in activated microglial cells (Furr and Marriot, 2012; Main et al.,
2016) as well as in the JEV infected microglial cells (Manocha
et al., 2014; Sharma et al., 2015; Lannes et al., 2017).

The involvement of the PI3K/AKT signaling has been
reported in various cellular functions; however its dysregulation
has been reported in neuroinflammation (Tang et al., 2017;
Yang et al., 2017). In addition, the AKT/IRF3 axis has been
studied in Traumatic Brain Injury (TBI) (Wang et al., 2015) and
auto-inflammatory disorders (Oh et al., 2018). The activation of
PI3K/AKT pathway during viral infection has been correlated to
viral replication, viral entry (Esfandiarei et al., 2004; Lee et al.,

Abbreviations: BSA, bovine serum albumin; DENV, Dengue virus; DMEM,

Dulbecco’s modified eagle medium; IFN-β, interferon β; IRF3 and 7, interferon

regulatory factor 3 and 7; ISGs, interferon stimulated genes; ISRE, IFN-

stimulated response elements; JEV, Japanese Encephalitis Virus; Mda5, Melanoma

differentiation-associated protein 5; MOI, multiplicity of infection; p-PTEN,

phosphorylated phosphatase and tensin homolog; PS, porcine kidney cells; PTEN,

phosphatase and tensin homolog; PVDF, polyvinylidene fluoride; RIGI, retinoic

acid inducible gene-I; TBEV, Tick Borne Encephalitis Virus; TLR3 and 4, Toll-like

receptor 3 and 4; TRIF, TIR-domain-containing adapter-inducing interferon-β;

WNV, West Nile Virus; YFV, Yellow Fever Virus; ZIKV, ZIKA virus.

2005) and virus-induced apoptosis (Esfandiarei et al., 2004; Lee
et al., 2005; Schabbauer et al., 2008). In addition, the activation of
IRF3 via PI3K/AKT pathway has been reported in the production
of IFN-β response (Joung et al., 2011; Lu et al., 2011; Tarassishin
et al., 2011a; Cianciulli et al., 2016; Wang et al., 2017).

The PTEN (phosphatase and tensin homolog) is a tumor
suppressor protein and a negative regulator for PI3K/AKT
pathway, where the phosphorylation of PTEN negatively
regulates PI3K/AKT pathway (Vazquez et al., 2000, 2001). The
PTEN protein has been reported for its role in neuropathic pain,
neuroinflammation, and modulating the microglial polarization
through PTEN/AKT axis (Zhao et al., 2014; Huang et al., 2015;
Wang et al., 2015; Cao et al., 2017). Although, PTEN has been
studied in various tumors (Cheng et al., 2015; Yu et al., 2016),
oncolytic viruses (Wu et al., 2017) but its role in microbial innate
immunity has been recently identified, where it induces the
interferon responses. The type-I interferon inducing capability of
PTEN rely on its phosphatase activity, where the phosphorylation
of PTEN activates the type-I interferon response (Li et al., 2016).
The microRNA, hsa-miR-374b-5p has been identified in various
cancers, neurodegeneration like Alzheimer’s, hypoxic-ischemic
encephalopathy and epilepsy etc. (Bian et al., 2019).

This is the first report where the role of PTEN has been
highlighted in the modulation of type-I interferon response
during JEV infection.We demonstrated the suppression of PTEN
by microRNA, hsa-miR-374b-5p at 24 h of JEV infection in
human microglial cells. The suppression of a negative regulator
induced the PI3K/AKT pathway and promoted the type-I anti-
viral response via IRF3. The suppression of type-I anti-viral
response during later stages of the infection process might be the
strategy of JEV to subvert the anti-viral response.

MATERIALS AND METHODS

Cell Culture
The human microglial cells (Dello Russo et al., 2018), PS
(porcine kidney cells) and Vero cells were cultured in DMEM
(GIBCO) supplemented with heat inactivated 10% FBS (GIBCO)
and 100 U/ml of penicillin, 100 mg/ml streptomycin and 29.2
mg/ML. L-Glutamine (GIBCO) in humidified CO2 incubator at
37◦C. The human microglial cell line was the kind gift from
Prof. Anirban Basu, National Brain Research Centre (NBRC),
Manesar, Haryana.

The Virus Propagation, Titration, and
Infection
The JaOArS982 strain of JEV was propagated in suckling BALB/c
mice at NBRC, Manesar. The in-vitro propagation was done
in the Vero cells at the MOI of 0.1 in the incomplete DMEM
medium. The incomplete DMEM cell culture media was replaced
by complete DMEM post infection (2 h) and left in CO2

incubator for 5 days or until 80% cell death was observed. The
virus were titrated in PS cells by using plaque assay as described
elsewhere (Sharma et al., 2015).

All of the JEV infection experiments were conducted in
humanmicroglial cells at theMOI of 5 in 6 well cell culture plates
at the cell density of 0.3 × 106 cells/well in incomplete DMEM
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for 2 h. The incomplete DMEMwas changed to complete DMEM
and the cells were harvested at 12, 24, and 48 h post JEV infection
and stored at−80◦C until further use.

RNA Isolation, Micro RNA Expression and
Real-Time PCR
TheQiagenmiRNeasy kit (#217004; Qiagen, Venlo, Netherlands)
was used for the isolation of total RNA from the microglial
cells harvested at different time points. The complementary
DNA (cDNA) was prepared by using Superscript II reverse
transcriptase system (#11904-018, Invitrogen, CS, USA) using
the manufacturer’s protocol. The thermal cycles for synthesizing
cDNA were: 65◦C-5min, 25◦C-10min, 42◦C-50min, and 70◦C-
10min, then, RNase H treatment-20min at 37◦C. The JEV
infection in the human microglial cells was confirmed by q-
PCR against the JEV NS3 gene, normalized to GAPDH by using
Agilent Brilliant III ultrafast SYBR green master mix (#600882,
Agilent Technologies, California, US) (Table 1).

To study the microRNA expression, the cDNA was
synthesized by using MultiScribe TaqMan Reverse Transcriptase
(#4366596; Applied Biosystems, Waltham, MA, USA) along with
hsa-miR-374b-5p specific primers according to manufacturer’s
protocol. The microRNA expression was analyzed using a
real time PCR machine (Agilent AriaMx) by using a hsa-
miR-374b-5p-specific TaqMan probe and universal PCR
master mix (#4324018; Applied Biosystems). The expression
of hsa-miR-374b-5p was normalized by endogenous control
RNU6b expression.

Protein Isolation, Estimation, and
Immuno-Blotting
The microglial cells harvested at different time points were used
for protein isolation by using complete RIPA buffer (#89900
Pierce, Thermo Fischer Scientific) and protease inhibitor cocktail
(#80650123 GE Biosciences). Briefly, the pellets were dissolved
in RIPA buffer, sonicated for 5min and centrifuged at 10,000
× g for 20min at 4◦C. The supernatant was collected, and the
protein was estimated by BCA assay (#23227 Pierce, Thermo
Fischer Scientific). The protein was run on 10% SDS-PAGE and
then transferred to PVDF membrane (#IPVH00010 Immobilon,
Merck, Millipore). The blocking was done in 5% skimmed milk
(#sc-2324 Santa Cruz) for an hour and the specific primary
antibody was incubated in 5% skimmed milk at 4◦C overnight.
The anti-PTEN antibody (# 9559S CST), anti-AKT antibody
(#2920S CST), anti-p-AKT antibody (#9271), anti-IRF3 antibody

TABLE 1 | List of primers, microRNA oligos, and scramble sequence.

Viral NS3 Forward 5′ AGAGCGGGGAAAAAGGTCAT 3′

Viral NS3 Reverse 5′ TTTCACGCTCTTTCTACAGT 3′

GAPDH Forward 5′ ATGGGGGAAGGTGAAGGTCG 3′

GAPDH Reverse 5′ GGGGTCATTGATGGCAACAATA 3′

Mimics of hsa-miR-374b-5p 5′ AAAUGGCAUUAUAUAUAUUAUA 3′

Scramble of hsa-miR-374b-5p 5′ CAGAUUCUAUUUGCCCAAGAA 3′

(#4302S CST), and anti-β-tubulin antibody (# 250904 ABBiotec)
were given in a 1:1000 dilution while anti-p-PTEN (#9549P
CST) and anti-p-IRF3 (#4947S CST) were blocked and incubated
in 5% BSA, in 1:1000 dilutions overnight. The goat-anti-rabbit
and mouse anti-goat secondary antibody were given at 1:50,000
for 2–3 h at room temperature in 5% skimmed milk and 5%
BSA. The blots were developed in ChemiDoc (Azure Biosystems)
by using west femto ECL substrate (#34095 Super Signal West
Femto Thermo Fischer Scientific) at different exposures. The
Image J (ver: 1.42q) software has been used for densitometry
of immunoblots.

Over-expression and Inhibition Studies
The human microglial cells were seeded in 6 well plate at the
density of 0.4× 106 cells/well, one day prior to transfection. The
cells were transfected with 200 pmol of hsa-miR-374-5p mimics
(Bioserve, Hyderabad, India) and 200 pmol of hsa-miR-374b-
5p scramble (ILS) at the confluence of 70% by using chemical
method, Lipofectamine 2000 (#11668-019; Invitrogen, Carlsbad,
CA, USA). The scramble sequence and mock transfected cells
were used as controls. The overexpression study was confirmed
by quantitative real-time PCR using TaqMan microRNA assay
after 48 h post-transfection. The gene targets were confirmed
by Immuno-blotting. The microRNA Inhibitor studies were
performed by transfecting the anti-miR against (200 pmol) hsa-
miR-374b-5p (#AM11339, Invitrogen, Carlsbad, CS, USA) and
anti-miR scramble cy3 negative control (#AM17011, Invitrogen,
Carlsbad, CS, USA) by using Lipofectamine 2000 (#11668-
019; Invitrogen, Carlsbad, CA, USA) and cells were harvested
48 h post transfection. The inhibitor studies were confirmed
by quantitative real-time PCR using TaqMan microRNA assay.
The gene targets were confirmed by Immuno-blotting. The
transfected cells were infected post 24 h at the MOI of 5 for
another 24 h. The cells were harvested 48 h post-transfection.

Luciferase Assay
The human microglial cells were seeded in 6 well plates at the
density of 0.4× 106 cells/well and were co-transfected with IFN-
β-luciferase plasmid (1 µg) and normalized by β-gal (700 ng)
vector. For over-expression and inhibitor studies, 200 pmol of
hsa-miR-374b-5p mimics, scramble, anti-miR and cy3 negative
control were co-transfected in human microglial cells and the
luciferase activity was measured post 48 h. The cells were infected
after 24 h post transfection at MOI 5.

The luminescence was measured by using a Luciferase
assay kit (#E4030; Promega, Madison, WI, USA) as per
the manufacturer’s protocol and the luminescence activity
was measured on multimode reader (Synergy HTX, Bio-
Tek). The luminescence values were normalized by using β-
gal plasmid vector. The β-galactosidase activity was measured
at the absorbance of 420 nm by plate reader (imark plate
reader, Bio-Rad).

Statistical Analysis
All experiments were conducted in triplicate (n = 3) and one-
tailed, paired Student’s t-test was used to make comparison
between data sets. The data are shown as mean ± S.E from three
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independent experiments and data was considered significant
when P < 0.05; ∗ denotes P < 0.05, ∗∗ denotes P < 0.01,
∗∗∗ denotes P < 0.001.

RESULTS

JEV Infection Modulates the PI3K/AKT
Pathway in Human Microglial Cells
We and others have previously reported the JEV infection in the
brain resident macrophages (microglial cells) (Thongtan et al.,
2010; Manocha et al., 2014; Sharma et al., 2015; Lannes et al.,
2017). The modulation of several cell signaling pathways leading
to various neuroinflammatory events during JEV infection has
been reported (Manocha et al., 2014; Sharma et al., 2015).
The recent reports have highlighted the induction of immune
responses through PI3K/AKT pathways (Sarkar et al., 2004;
Hazeki et al., 2007; Polumuri et al., 2007; Radler et al., 2017)
involving the AKT and IRF3 genes (Tarassishin et al., 2011b).
PTEN is a negative regulator of PI3K/AKT pathway, and we
observed the suppression of p-PTEN/PTEN at 12 and 24 h (60
and 70% respectively) post JEV infection, whereas the expression
of PTEN increased at 48 h compared to un-infected human
microglial cells (Figures 1A,B). In addition, we demonstrated the
modulation of AKT and IRF3 proteins at different time points by
immunoblotting (Figures 1C–F). At early time point, 12 and 24 h
post JEV infection, the p-AKT/AKT and p-IRF3/IRF3 proteins
were shown to be up-regulated, whereas at later stages of the
infection progress (at 48 h), the expression of p-AKT/AKT and
p-IRF3/IRF3 have shown the decreasing trend (Figures 1C–F).
Therefore, the JEV infection in humanmicroglial cells modulates
the PI3K/AKT pathway via PTEN during early and late courses
of infection.

JEV Infection in Human Microglial Cells
Modulates the Micro RNA-374b-5p
Expression
The microRNAs have been reported to modulate the interferon
response during viral infections (Buggele et al., 2013). In
addition, hsa-miR-374b-5p has been reported to increase PTEN
expression in various types of cancers (Li et al., 2015; Long et al.,
2018). In our results, we demonstrated the gradual increase of
microRNA hsa-miR-374b-5p expression levels from 24 to 48 h
post JEV infection with the fold change of 2.5 to 5 (Figure 2).
The up-regulation of microRNA hsa-miR-374b-5p at 24 h and
suppression of PTEN at 24 h during JEV infection may be co-
related (Figures 1A,B).

The hsa-miR-374b-5p Targets PTEN and
Modulates the Expression of AKT and IRF3
To confirm the targeting of microRNA with PTEN, the hsa-
miR-374b-5p mimics and scrambled (hsa-miR-374b-5p) were
transfected in human microglial cells and incubated for 48 h
(Table 1). The up-regulation of mimics was confirmed by
TaqManmicroRNA assay, while no changes were observed in the
samples transfected with scrambled sequences (Figure 3A). The
expression of PTEN protein was reduced by 70% (Figures 3B,C),

whereas the other proteins, AKT and IRF3 were up regulated
by 1.5 and 1.2-fold post transfection (Figures 3D–G). The
microRNA, hsa-miR-374b-5p targeted to PTEN and modulated
the genes involve in activation of interferon response via
PI3K/AKT pathway.

The anti-miR-374b-5p Rescues the
Expression of PTEN and Suppresses the
Expression of AKT and IRF3
To further validate the targeting of microRNA, hsa-miR-374b-
5p on its target PTEN, the hsa-miR-374b-5p was silenced
by using microRNA inhibitors (200 pM) and cy3 anti-miR
negative control (200 pM) in human microglial cells for 48 h
utilizing transfection approaches. The suppression of microRNA
was confirmed by TaqMan microRNA assay with around 60%
suppression, while no changes were observed in the cy3 anti-
miR control (Figure 4A). The immunoblot analysis during the
anti-miR treatment rescued the expression of PTEN by 1.1-
fold (Figures 4B,C) and the expressions of AKT and IRF3 were
suppressed by 20 and 60% post transfection (Figures 4D–G).
Therefore, we concluded the hsa-miR-374b-5p alone can
specifically modulate the expression of PI3K/AKT pathway.

The Effect of hsa-miR-374b-5p
Over-expression and Knockdown During
JEV Infection
The hsa-miR-374b-5p was overexpressed and knocked down
in the microglial cells during the JEV infection to illustrate
the role of microRNA. Since, the hsa-miR-374b-5p expression
increased at 24 h, the JEV infection was given 24 h post
transfection at MOI 5 in human microglial cells. The infection
was confirmed by NS3 q-PCR post 48 h of transfection
(Figures 5A, 6A). The viral replication, as measured by the
expression levels of NS3, increased during the over-expression
of microRNA mimics, while it suppressed by inhibitors
(Figures 5A, 6A). The effect of the hsa-miR-374b-5p mimics
suppressed the p-PTEN/PTEN levels (Figures 5B,C) and up-
regulated the p-AKT/AKT and p-IRF3/IRF3 levels (Figures 5D–
G), whereas as a result of the suppression by anti-miR
inhibitors, the expression levels were rescued for p-PTEN/PTEN
(Figures 6B,C) and suppressed the expression of p-AKT/AKT
and p-IRF3/IRF3 levels (Figures 6D–G).

The Activation of type-I Interferon
Response During JEV Infection in Human
Microglial Cells
The phosphorylated form of AKT (p-AKT) activates IRF3 (Joung
et al., 2011; Lu et al., 2011). The p-IRF3 in turn promote
the type-I interferon response (Chang et al., 2006; Tarassishin
et al., 2011a,b). To study the effect of hsa-miR-374b-5p on type-
I interferon response during JEV infection, IFN-β luciferase
plasmid were co-transfected with microRNA mimics, scramble,
anti-miR and cy3 anti-miR negative control in human microglial
cells for 48 h. After, 24 h of transfection, JEV infection at MOI
5 was given for 24 h. The result shows a 2-fold up-regulation
of IFN-β response upon over-expression of the mimic (200
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FIGURE 1 | JEV infection suppresses the negative regulator, PTEN and modulates PI3K/AKT pathway in human microglial cells. (A) Immunoblot of p-PTEN/PTEN at

12, 24, and 48 h post JEV infection compared to control (B) densitometry. (C) Immunoblot of p-AKT/AKT 12, 24, and 48 h post JEV infection compared to control (D)

densitometry. (E) Immunoblot of p-IRF3/IRF3 12, 24, and 48 h post JEV infection compared to control (F) densitometry. All experiments were performed in triplicate

(n = 3). The data are shown as mean ± S.E from three independent experiments. The fold change is significant where * denotes P < 0.05, ** denotes P < 0.01,

*** denotes P < 0.001.

pM) during JEV infection, while the inhibition of hsa-miR-
374b-5p using anti-miR, during JEV infection results in the
90% suppression. In addition, the type-I interferon response
is mediated via hsa-miR-374b-5p, no JEV infection was given
during over-expression and knock-down experiments (48 h). The
IFN-β levels increase 1.1-fold duringmimic (200 pM) conditions.
Similarly, the inhibition (anti-miR 200 pM) experiments suppress
40% of IFN-β level which is less than the combination of JEV and
inhibitor together (Figure 7).

DISCUSSION

The viral infection initiates an early innate anti-viral immune
response by type-I interferon (IFN-α/β) during the early phases
of infection (Samuel, 2001; Randall and Goodbourn, 2008). The
viral sensors in the cells induce the anti-viral responses through
different pathways, such as the RIG-I and TLR3 pathways (Jiang

et al., 2014), resulting in the production of type-I interferon.
We and others earlier reported the modulation of interferon
response during JEV infection (Manocha et al., 2014; Sharma
et al., 2015; Ye et al., 2017). The JEV have devised several
strategies to subvert the innate immune response in order to
establish in host (Lee et al., 2005; Sharma et al., 2016). The
PI3K/AKT pathway has been reported to play important roles
in generation of immune responses either by positively or
negatively regulating the downstream factors like, GSK3β, AP-
1, NF-κB, NF-AT, CREB and JAK-STAT (Sarkar et al., 2004;
Hazeki et al., 2007; Polumuri et al., 2007; Radler et al., 2017).
In addition, the involvement of the PI3K/AKT pathway has also
been reported in the expression of type I and type III interferon
responses (Nguyen et al., 2001; Rani et al., 2002; Cianciulli
et al., 2016). The activation of PI3K/AKT pathway results in the
production of interferon response via IRF3 transcription factor
(Tarassishin et al., 2011b; Cianciulli et al., 2016; Tang et al., 2017;
Yang et al., 2017).
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FIGURE 2 | The differential expression of hsa-miR-374b-5p after JEV (JaOARs982 strain) infection in human microglial cells. The change in hsa-miR-374b-5p after

JEV (JaOARs982 strain) infection at different time points. The qRT-PCR by using TaqMan microRNA assay shows the up-regulation from 24h to 48 h by 2.5–5-folds

compared to control. The data are shown as mean ± S.E from three independent experiments (n = 3). The fold change is significant where * denotes P < 0.05,

** denotes P < 0.01, *** denotes P < 0.001.

FIGURE 3 | The hsa-miR-374b-5p targets PTEN and activates the expression of AKT and IRF3. (A) qRT-PCR of hsa-miR-374b-5p overexpressed in human microglial

cells by using RNA oligos at 200 pmol conc. (B) The immunoblots showing the suppression of PTEN by 70%, 48 h post transfection. (C) The densitometry of PTEN.

(D) The immunoblots showing up-regulation of AKT by 1.5-fold. (E) Densitometry of AKT. (F) The immunoblots showing up-regulation of IRF3 by 1.2-fold upon

overexpression. (G) Densitometry of IRF3. The data are shown as mean ± S.E from three independent experiments (n = 3). The fold change is significant where

* denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001.

The PTEN (Phosphatase and tensin homolog) is a dual
phosphatase and a negative regulator for PI3K/AKT pathway.
The PTEN protein is involved in myriad of cellular functions and
its dysregulation has been reported in various types of cancers
(Xiao et al., 2016; Khalid et al., 2017; Shen et al., 2019). However,
many reports highlighted the aberrant expression of PTEN in
neurodegenerative disorders, neuroinflammation, neuropathic
pain, and microglial polarization (Ning et al., 2004; Choi et al.,
2005; Griffin et al., 2005; Zhao et al., 2014; Wang et al., 2015; Cao

et al., 2017). In addition, the microbes mediated-innate immune
responses via PTEN have been recently reported (Li et al., 2016).
The present study demonstrated the modulation of PTEN at
different time points during JEV infection in human microglial
cells. The dephosphorylated PTEN is an active form of PTEN,
which suppressed the p-PTEN levels and led to the activation
of PI3K/AKT pathway (Vazquez et al., 2001; Chen et al., 2012b;
Zhao et al., 2014). The phosphorylation of AKT at ser473 led
to the activation of interferon regulatory factor 3 (IRF3) by
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FIGURE 4 | The anti-miR-374b-5p rescues the expression of PTEN and suppresses the expression of AKT and IRF3. The knock down studies of hsa-miR-374b-5p

(A) qRT-PCR knockdown of miR-374b-5p in human microglial cells by using inhibitors at 200 pmol conc. (B) The immuno blots showing the rescue of PTEN

expression 48 h post transfection. (C) The densitometry of PTEN. (D) The immuno blots shows the suppression of AKT by 20% during transfection. (E) Densitometry

of AKT. (F) The immuno blots shows the suppression of IRF3 by 60% during transfection. (G) Densitometry of IRF3. The data are shown as mean ± S.E from three

independent experiments (n = 3). The fold change is significant where * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001.

FIGURE 5 | The over-expression of hsa-miR-374b-5p during JEV infection. (A) qRT-PCR to confirm the JEV infection post transfection by quantifying the JEV NS3

levels. (B) Expression levels of p-PTEN/PTEN suppress by 50% during over-expression of microRNA mimics post JEV infection. (C) Densitometry of p-PTEN/PTEN.

(D) The p-AKT/AKT expression up-regulates by 1.4-folds during over-expressing the microRNA mimics and JEV infection. (E) Densitometry plot of p-AKT/AKT.

(F) The p-IRF3/IRF3 expression up-regulates up to 1.3-fold during over-expressing the microRNA mimics and JEV infection. (G) Densitometry plot of p-IRF3/IRF3. The

data are shown as mean ± S.E from three independent experiments (n = 3). The fold change is significant where * denotes P < 0.05, ** denotes P < 0.01,

*** denotes P < 0.001.

phosphorylating the IRF3 at ser396 (Tarassishin et al., 2011a,b).
We earlier reported the generation of innate-antiviral immune
response by a negative regulator, TRIM21 which resulted in

the induction of type-I interferon via IRF3 activation (Manocha
et al., 2014). A similar response has been shown by PTEN
during JEV infection, where the suppression of PTEN resulted
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FIGURE 6 | The knockdown of hsa-miR-374b-5p during JEV infection. (A) The qRT-PCR to confirm the JEV infection post transfection. (B) Expression levels of

p-PTEN/PTEN rescues up to 1.2-fold during anti-miR transfection post JEV infection. (C) The densitometry plot of p-PTEN/PTEN. (D) The p-AKT/AKT expression

suppresses by 20% during anti-miR transfection post JEV infection. (E) The densitometry plot of p-AKT/AKT. (F) The p-IRF3/IRF3 expression suppresses by 20%

during knockdown of hsa-miR-374b-5p post JEV infection. (G) Densitometry plot of p-IRF3/IRF3 proteins. The data are shown as mean ± S.E from three

independent experiments (n = 3). The fold change is significant where * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001.

FIGURE 7 | The hsa-miR-374b-5p activates type-I interferon in JEV infected human microglial cells. The graph shows the up-regulation of IFN-β level by 2-fold during

microRNA over-expression and JEV infection while the anti-miR during JEV infection suppresses the IFN-β level by 90%. The scramble and cy3 anti-miR has been

used as a control to further prove the specificity of microRNA, hsa-miR-374b-5p during JEV infection. In addition, the over-expression alone did increases the IFN-β

level by 1.1-fold but it was comparatively lower than both the over-expression and JEV infection. The data are shown as mean ± S.E from three independent

experiments (n = 3). The fold change is significant where * denotes P < 0.05, ** denotes P < 0.01, *** denotes P < 0.001.

in the activation of AKT proteins. The activated AKT, (p-AKT)
phosphorylated the IRF3 expression (p-IRF3) at early time points
during JE infection. The PI3K/AKT signaling pathway has been
reported to be exploited by Flaviviruses in promoting viral
entry, replication and blocking the apoptotic pathway (Lee et al.,
2005; Das et al., 2010; Chen et al., 2017) in order to establish
inside the host. On the other hand, the robust production of
type-I interferon responses through the activation of PI3K/AKT
pathway has been reported at early time point during microbial

infections (Nguyen et al., 2001; Rani et al., 2002; Hazeki et al.,
2007). The same has been observed in our previous study,
where we have shown the increased levels of type-I interferon
expression at the early time points of 12 h and 24 h during JEV
infection (Manocha et al., 2014). Hence, the JEV modulated the
p-PTEN/PTEN at an early time point to enter and replicate,
while at the later stages of the infection’s progression, the virus
suppressed the PTEN and shut down the PI3K/AKT/IRF3 axis to
suppress the type-I interferon response.
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MicroRNAs have been reported to be involved in the
immune suppression during viral infections (Sharma et al.,
2016; Rastogi et al., 2018). The hsa-miR-374b-5p has been
extensively reviewed in various disorders, neurodegenerative
disorders, encephalopathy, amyotrophic lateral sclerosis (ALS),
and cardiovascular disorders (Bian et al., 2019). In this study
we demonstrated the novel role of hsa-miR-374b-5p in immune
activation during JEV infection. We demonstrated the up-
regulation of microRNA, hsa-miR-374b-5p during JEV infection
(24 h). Further, the target prediction databases (TargetScan,
miRdb, and miRWalk) identified PTEN as one of the putative
targets. We demonstrated the targeting of the PTEN by
microRNA, hsa-miR-374b-5p during JEV infection (24 h) by
utilizing over-expression and knock-down approaches. To
further validate the involvement of AKT and IRF3 in type-I
interferon activation, the expression levels of p-AKT/AKT and
p-IRF3/IRF3 proteins were confirmed by immunoblotting. We
observed the activation of the IFN-β promoter during over-
expression and suppression studies by using microRNA mimics
and inhibitors, respectively, during the JEV infection (Figure 7).
In addition, to delineate the effects of over-expression and knock-
down, the IFN-β levels were studied without JEV infection, where
there was a comparatively lower expression of IFN-β levels. Our
findings have been complemented by the previously published
reports, where the p-AKT was reported to activate IRF3,
which resulted in the activation of type-I interferon responses
(Rani et al., 2002; Randall and Goodbourn, 2008; Tarassishin
et al., 2011b). In summary, we reported the modulation of
PI3K/AKT/IRF3 axis by the negative regulator, PTEN via
microRNA hsa-miR-374b-5p mediated pathway during JEV
infection. However, the single microRNA can target multiple
genes and the multiples genes can be targeted by multiple
miRNAs or single miRNA. So, this PI3K/AKT/IRF3 axis might
also get modulated by other microRNAs either by targeting the

same or other genes. Therefore, further studies are required

to understand the involvement of other microRNAs in the
modulation of PI3K/AKT/IRF3 axis during JEV infection. The
activation of PI3K/AKT at early stages of the infection might be
helpful for JEV internalization and the suppression at the later
stages indicated the ability of JEV inmodulating the host’s cellular
anti-viral response as a part of immune evasion during the course
of infection.
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