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Abstract
Since organisms develop and thrive in the face of constant perturbations due to environmental and genetic variation,
species may evolve resilient genetic architectures. We sought evidence for this process, known as canalization,
through a comparison of the prevalence of phenotypes as a function of the polygenic score (PGS) across environ-
ments in the UK Biobank cohort study. Contrasting seven diseases and three categorical phenotypes with respect
to 151 exposures in 408,925 people, the deviation between the prevalence–risk curves was observed to increase
monotonically with the PGS percentile in one-fifth of the comparisons, suggesting extensive PGS-by-Environment
(PGS×××××E) interaction. After adjustment for the dependency of allelic effect sizes on increased prevalence in the per-
turbing environment, cases where polygenic influences are greater or lesser than expected are seen to be particularly
pervasive for educational attainment, obesity, and metabolic condition type-2 diabetes. Inflammatory bowel disease
analysis shows fewer interactions but confirms that smoking and some aspects of diet influence risk. Notably, body
mass index has more evidence for decanalization (increased genetic influence at the extremes of polygenic risk),
whereas the waist-to-hip ratio shows canalization, reflecting different evolutionary pressures on the architectures
of these weight-related traits. An additional 10 % of comparisons showed evidence for an additive shift of prevalence
independent of PGS between exposures. These results provide the first widespread evidence for canalization protect-
ing against disease in humans and have implications for personalized medicine as well as understanding the evolu-
tion of complex traits. The findings can be explored through an R shiny app at https://canalization-gibsonlab.
shinyapps.io/rshiny/.

Key words: polygenic score, PGS×××××E interaction, epistasis, metabolic disease, inflammatory bowel disease, educational
attainment.

Introduction
Organisms evolve and develop in fluctuating environ-
ments. From the species’ perspective, it makes sense that
genetic architectures should ensure that as many indivi-
duals resist these fluctuations and are as close to maximal
fitness as possible. Yet individuals must cope with the vicis-
situdes of life—the slings and arrows of outrageous fortune
—while facing the challenges of staying fit. Thus, the con-
cept of the optimum trait is a useful abstraction that belies
the reality that genetics must also support both flexibility
and robustness. The evolution of robustness is known as
canalization (Gibson and Wagner 2000; Flatt 2005), but
this phenomenon remains relatively understudied, and
there is little global evidence pertaining to the prevalence
and its importance.

The individuals in a population who are at the highest
risk of abnormality are those who have the greatest genetic
liability to deviate from the mean. They are the ones least
likely to be able to absorb the effects of pathogenic de
novo mutations or inherited rare variants; they are the

ones most at risk in unhealthy environments. In light of
genome-wide association studies (GWASs), the identifica-
tion of such individuals has become straightforward for
dozens of human diseases since polygenic scores (PGSs,
also known as polygenic risk scores, PRSs, in the context
of disease) allow the ranking of individuals with respect
to the likelihood of having the condition (Dudbridge
2013; Duncan et al. 2019). Each of us is in the top few per-
centiles of the PRS for some disease, typically being 3- to
5-fold more likely to have it than the average person
(Khera et al. 2018). The question arises as to how
great the relative risk is for those in the top percentiles
who also have unhealthy environmental exposures.
Technically speaking, are there PGS-by-Environment
(PGS×E) interactions that moderate the genetic liability
at the extremes of the distribution?

Two possibilities with respect to the presence of canal-
ization can be envisaged. The first is decanalization
(Gibson 2009), namely exacerbated prevalence in indivi-
duals with high polygenic risk. A mechanism for this would
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be an inability to compensate for the combined effects of
genetic and environmental perturbation, essentially a loss
of titration capacity of the genetic architecture (Rice
1998). The converse possibility is that genetic systems
are, in fact, sufficiently well canalized that they are able
to buffer environmental effects (Wagner et al. 1997), en-
suring that fewer individuals have the pathogenic state
than expected given the environmental deviation.
Comparative analysis of prevalence–risk curves across en-
vironments in large cohort studies provides an opportun-
ity to evaluate the presence of either or both scenarios in
human populations.

Either canalization or decanalization would be revealed
as a departure from the null expectation that the two
curves are similar in two subsets of a cohort defined by dif-
ferent exposures. However, there are actually two models
for the null, which complicates the comparison. A preva-
lence–risk curve plot observed prevalence against percent-
ile of risk. It typically has an inverted S distribution seen in
many figures in this study, being concave in the bottom
half and convex in the top half. Most individuals have ap-
proximately the same prevalence, but those with low risk
are well protected, and those at high risk appear to have
much-elevated prevalence. The simplest conception of
the effect of an unhealthy environment would be that it
increases the prevalence by a similar amount for all percen-
tiles: this would imply an additive effect of environment
plus PGS, and the two curves are just shifted along the
y-axis with respect to one another. However, that null is
not compatible with the conception of the PGS as a sum
of the logarithms of the odds ratios of individual SNPs,
in which case the score multiplies the average risk (i.e.,
multiplicative allelic effects are assumed to be additive
on the log scale, but their effect is relative to the popula-
tion mean). If the environment increases average risk,
then two prevalence–risk curves would be expected to de-
viate from each other to an ever-increasing extent as the
risk increases. Consequently, allelic substitution effects ap-
pear to get larger in the poor environment as the PGS in-
creases, implying that the genetic variance is greater at the
extreme—which paradoxically is the expectation under
decanalization. Furthermore, odds ratios are a function
of the overall prevalence, which is elevated in a harsher en-
vironment, further complicating the direct comparison of
the deviation between the curves in two environments.

Here we report on the prevalence of PGS×E interac-
tions for ten complex traits in the UK Biobank (UKB) co-
hort study of over 400,000 White British persons with
data on 151 exposures (Sudlow et al. 2015). He et al.
(2019), expanding on Rask-Andersen et al. (2017), showed
that exposure effects are often at least as predictive of dis-
ease as a polygenic risk in this cohort but did not examine
their interaction with genetics. Conversely, a sophisticated
likelihood modeling approach recently found evidence
that PGS×E interactions explain several percent of
BMI-associated traits (Sulc et al. 2020) without actually
identifying the specific environmental factors. We develop
a more empirical modeling approach that allows

decomposition of the additive and log-additive contribu-
tions to the deviance between prevalence–risk curves in
different environments. Increasing deviation with polygen-
ic risk is pervasive and has a marked impact on individual
predictions, with implications for predictive health. Across
the data set, although, we find that in general that the de-
gree of robustness of polygenic risk to environmental dif-
ferences is very much trait-specific. These data imply
that the human genome sometimes exhibits canalization
that buffers the impact of unhealthy environments, re-
stricting the impact of modern lifestyles that promote de-
canalization but also identifies situations where lifestyle
exacerbates genetic risk synergistically.

Results
Prevalence–Risk Relationships in the UKB
We begin by asking whether there is a difference in the
shape of the prevalence–risk curve for each of the ten
traits considered in two subsets of the UKB cohort differ-
entiated with respect to exposure. Figure 1 illustrates four
classes of results for the prevalence of obesity (BMI .30)
as a function of the PGSBMI built from 11,445 LD-pruned
SNPs significant for BMI at P, 0.001. No difference is
seen when the cohort is divided into two halves with re-
spect to self-reported left-or-right handedness in fig.
1(A). The two curves overlay almost perfectly, showing
that � 20% of people with intermediate polygenic risk
for BMI are obese, whereas the prevalence of the condition
is at least 3-fold lower (,5%) or higher (.60%) in the bot-
tom and top percentiles, respectively. Next, individuals
who report high beef intake are uniformly 2–3%more like-
ly to be obese in fig. 1(B), largely irrespective of their poly-
genic risk since the high beef intake curve is essentially
displaced upward relative to the low one. This is an ex-
ample of an additive PGS+ E effect. In contrast, in fig.
1(C) shows an instance where the effect of walking pace
has an increasingly large impact on the prevalence of obes-
ity across the PGS spectrum. This measure of physical fit-
ness has little impact on obesity for those with very low
polygenic risk who are unlikely to be obese, but as the
PGS percentile increases, so does the deviation between
the curves, with the consequence that there is a 20% dif-
ference in prevalence for intermediate PGS and as much
as 30% increase for slow walkers. This is an example of
PGS×E interaction, on the face of it explained by
log-additive effects of genotype modifying different base-
line risks in the low- and high-activity subsets. The fourth
type of result shown in fig. 1(D) for body size at age 10 (self-
reported as plumper or thinner) involves a nonmonotonic
change in the slopes of the curves, which are most diver-
gent for intermediate risk. In this case, plumper kids appear
to have an elevated risk of developing adult obesity in the
midrange of genetic risk, as the two curves converge at the
two extremes. Examples of this mode of canalization, and
other noncanonical deviations, are rare in the total data
set.
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To qualify provisionally as an instance of PGS×E, we re-
quired that two conditions be met: the first is that the first
derivative of the difference in the prevalence of the two
curves along with the PGS percentile be consistently either
greater or lesser than zero, and the second is that the linear
deviation in slope be greater than that seen in 100 permu-
tations of the labels for the two exposures (see Materials
and Methods). The first requirement ensures that the
polygenic effect is always increasing in one of the two en-
vironments as the PGS percentile increases, and the se-
cond ensures that the effect is greater than expected by
chance. The ten traits are binary categorical evaluations
of obesity as a function of body mass index (BMI) and
waist-to-hip ratio (WHR), coronary artery disease (CAD),
type 2 diabetes (T2D), depression (DEP), college attain-
ment (CA), and inflammatory bowel disease (IBD), as
well as three continuous trait evaluations of BMI, WHR,
and educational attainment (EA) in years. The 151 expo-
sures were considered in seven categories, namely

socioeconomic, early life, psychosocial, familial factors,
diet, lifestyle, and general health. Within these categories,
there is often good agreement for similar measurements:
walking pace, duration of exercise, and the number of
stairs climbed per day typically give the same conclusion,
implying that they capture some underlying lifestyle risk
factor. On the other hand, there are also some notable ex-
ceptions, such as differences in outcome with respect to
beer, wine, and spirit consumption as measures of alcohol
intake. Supplementary table S1, Supplementary Material
online lists the complete matrix of results, and we have
generated a Shiny app for exploration of the results, in-
cluding an additional explanation of the methods:
https://canalization-gibsonlab.shinyapps.io/rshiny/

The extent of PGS×E across the study is summarized in
fig. 2, which displays the percentage of instances for each
trait by category combination after additional filtering to
more robustly define cases of canalization and decanaliza-
tion as described in subsequent sections. Overall, one-fifth
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FIG. 1. Four classes of prevalence versus polygenic risk relationships. Each panel shows two curves where the dots represent the observed preva-
lence of obesity for the percentile of PGS score for BMI in the high-risk or low-risk environment. (A) No effect (left vs. right-handed). (B) Constant
shift (high vs. low beef intake). (C ) Decanalization as defined in text (walk pace, slow/average vs. brisk). (D) Nonmonotonic change (body size at
age 10, plumper vs. thinner).
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of all tests yield suggestive evidence for these PGS×E inter-
actions, with particular enrichment for lifestyle (e.g., exer-
cise, smoking, and drinking) and familial (parental and
sibling health) factors. Among the binary conditions, obes-
ity, and T2D have more instances of polygenic risk being
modified by the environment than CAD or IBD. The con-
tinuous traits have substantial evidence for PGS×E, al-
though this may be due to different definitions. Notably,
PGSWHR has more instances of apparent canalization
than PGSBMI, consistent with evidence that different gen-
etic risk factors influence obesity through WHR and BMI
(Nettleton et al. 2015; Loos 2018). An additional 12% of
cases show evidence for an additive shift of the curve irre-
spective of environment, most notably for WHR for which
almost half of the exposures have an effect with little evi-
dence for PGS×E.

Notable Environmental Interactions with Disease
and EA
Certain results pertaining to the prevalence of IBD, as
well as the subtypes ulcerative colitis (UC) and Crohn’s
disease (CD) illustrate environmental exposures that
have been implicated in the disease (Carbonnel et al.
2009) but not before shown to interact with genetic risk

(supplementary fig. S1, Supplementary Material online).
Regarding dietary factors, bread type (but not bread in-
take) shows a strong effect for both UC and CD, where
preference for whole grain over white bread is associated
with dampening of the PGS effect. Intriguingly, this prefer-
ence was found to be the major driver of PC1 of dietary
habits in the UKB (Cole et al. 2020). Similarly, reduced
salt intake seems to be protective only for individuals at
high genetic risk, as is fresh fruit consumption for CD—
but not for UC. Past tobacco smoking is confirmed as an
important environmental risk factor for all IBD (Jones
et al. 2020), whereas intake of alcohol mildly interacts pref-
erentially with CD risk (Jones et al. 2020; Di Narzo et al.
2021). Most of these results were confirmed with two dif-
ferent sets of GWAS effect sizes reported at different stages
of IBD GWAS studies and with SNP inclusion thresholds of
5×10−8 or 10−3. Otherwise, PGS×E are much less fre-
quent than those observed for chronic metabolic diseases,
CAD, T2D, and obesity.

CA (Lee et al. 2018) is notable for the very strong inter-
action of sociodemographic factors with polygenic risk
(supplementary fig. S2, Supplementary Material online).
The Townsend deprivation index shows a particularly in-
teresting interaction, whereby the frequency of partici-
pants who obtain a college degree is �35% irrespective
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of the index but shows a strong apparent buffering effect
at both extremes: individuals in the bottom quintile of the
EA PGS are actually consistently 3% less likely to attain a
college degree if they are in the top third of Townsend de-
privation, whereas those in the upper quintile are consist-
ently 3% more likely to attain one. This is a classic example
of decanalization, where worsened socioeconomic condi-
tions (high Townsend scores) are the perturbation leading
to more variance in EA. A similar result has been described
for adoption, where adopted children with low PGSEA have
an elevated prevalence of college education (Cheesman
et al. 2020). Maternal smoking at birth has a mild tendency
to suppress the advantage of polygenic propensity across
the range of scores, preference for whole grain bread,
and high cheese consumption associated with enhanced
genetic effects, but both poultry and beef intake also ap-
pear to suppress them. Larger families also show increased
prevalence at the upper extreme, although this and the
dietary results may be consequential rather than causal,
namely elevated PGSEA increase the likelihood of higher
education which then increases the resources that facili-
tate changes in the environmental factors. Indirect genetic
effects are well recognized to influence GWAS estimates
but are rarely acknowledged for their contribution
(Young et al. 2019). College-educated UKB participants
are more likely to consume wine or use a computer but
less likely to consume beer or cider or to report watching
a lot of TV, in each case showing extensive PGS×E interac-
tions. A number of factors interact with PGSEA only over
the bottom half of the score, whereas the curves are simply
parallel in the top half, including smoking.

It is also striking that several familial factors influence
more than half of the traits, generally exacerbating the
polygenic risk. Mother, father, or sibling having any illness,
for example, tends to interact with PGS for T2D (with or
without obesity), CAD, BMI, and EA, and as shown in
fig. 3, the familial incidence of diabetes dramatically influ-
ences the relationship. This might be explained by excess
sharing of diabetes risk within families (both genetic and
environmental) that is not captured by the PRS derived
from analysis of unrelated individuals (Muñoz et al. 2016;
Kong et al. 2018). Intriguingly, the impact of a severe illness
is inverted for DEP as, for example, having a mother who
has suffered a stroke or a sibling with diabetes tends to
suppress the impact of genetics. Such a result warrants fur-
ther exploration but might be explained by the act of care-
giving providing meaning to life that offsets otherwise
present tendencies toward experiencing major DEP.

It is important to note that a simple comparison of
prevalence–risk curve differences does not establish caus-
ality. For certain traits where the exposure precedes the
onset of the condition, such as breastfeeding as a baby de-
creasing the polygenic contribution to T2D and CAD,
causality is likely. For others, such as “time spent outdoors
in summer” or “daytime dozing,” it seems more likely that
the onset of disease increases the likelihood of a switch in
the exposure, contributing to steeper prevalence–risk
curves. For some, if not most, traits, the specific

exposure—aspect of diet or exercise, for example—should
be regarded as a proxy that captures an unmeasured liabil-
ity, often related to socioeconomic status, which may have
been present before the onset of disease.

Modeling the Deviation between Prevalence–Risk
Curves
Under the threshold liability model of disease, an indivi-
dual’s likelihood of being a case increases as their PGS in-
creases, and the observed prevalence in each percentile
of the PGS defines the likelihood of being a case. As the
heritability explained by SNPs increases, so does the slope
of the prevalence–risk curve. PRSs follow a normal distri-
bution under the genetic liability model, and the charac-
teristic S-shape is expected for a normally distributed
score. The precise degree of curvature at either end is a
function of the relationship between the PGS and risk
and of the variance of the PGS distribution, but there is
surprisingly little theory relating the prevalence of disease
to PRSs (Slatkin 2008; Wray and Goddard 2010; Agarwala
et al. 2013).

On the assumption that the PGS accurately represents
the summation of the log of odds ratios (Dudbridge 2013),
prevalence should simply be the mean risk multiplied by
the PGS for the percentile. However, modeling the devia-
tions between the curves observed between environments
allows for quantification of whether there is attenuation of
risk, as calibration of the PGS is needed to produce a good
fit between observed and predicted data. We model the
likelihood that an individual has a condition as a function
of three parameters: a modifiable baseline (MBL) probabil-
ity that is acted upon by the PGS, a calibration factor (CF)
that scales the variance of the PGS to the environment,
and a setpoint (SP) that adjusts for risk independent of
genetics. In addition, a random environmental deviation
adjusts for the proportion of variance explained by geno-
types:

Overall Risk = SP+MBL× exp(PGS/CF)+ Env

Here, the nonmodifiable (SP) and modifiable baselines
(MBL) sum to yield the median risk, and the calibration
factor (CF), by modifying the PGS, effectively shapes the
curvature of the prevalence–risk curve. The environmental
term is assumed to be normally distributed with a mean of
zero. The PGS has an observed standard deviation (SD),
and after scaling to a median of zero, the exponential
term is unity at the 50th percentile of risk, and the SP pro-
vides a linear adjustment that ensures the overall risk is as
observed. More details are provided in Materials and
Methods.

If genetic effects are the same across environments with
similar prevalence (Duncan et al. 2019), the CF should be
the same, whereas a reduction in the CF will generally in-
crease the curvature, enhancing the monotonic increase in
the deviation between the curves. Under some circum-
stances, the deviation may be explained simply by a shift
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in the SP; for example, adding kindergarten as a year of
education may increase EA for everyone regardless of gen-
etics. In such cases, there is no expectation that genetics
would modify the baseline risk, and the curves with and
without kindergarten in the computation would show a
simple shift similar to the one in fig. 1B. However, environ-
mental changes are more generally expected to change the
baseline that is modified by genetics; for example, opening
a new technical college in a district is likely to raise attain-
ment only for a subset of individuals. The increased devi-
ation between the risk–prevalence curves is expected as
MBL increases. The question is, although, whether this in-
crease is greater or lesser than expected without modifying
the CF.

For most of the traits considered here, this analysis is
complicated by the fact that prevalence is higher in one
of the two environments. Since under the threshold liabil-
ity model, odds ratios are expected to become smaller as
the prevalence increases, assuming the same effect sizes
in the two environments actually overestimates the cumu-
lative polygenic risk. In fig. 4A, we confirm this expectation
for CAD effect sizes computed in low (healthy) versus high
(unhealthy) exposures: the estimated odds ratios are high-
ly correlated but consistently �25–40% smaller for the
more sedentary lifestyle in which obesity is more common.
Correspondingly, the CF required to produce an optimal
fit of the prevalence–PGS curve in the high-risk environ-
ment is also 26% larger than that in the low-risk one, given

the elevated MBL (fig. 4C). Similar results were observed
for the majority of binary (disease, obesity, or CA) traits,
implying that the observed high-risk curve is consistently
below what it would be without calibration.

In fact, CF increase is also required to attain appropriate
overall model calibration, without which combining the
high- and low-risk curves consistently overestimates the
number of cases, as shown in supplementary fig. S3,
Supplementary Material online. Our approach produces
almost identical calibration to that proposed by Wei
et al. (2020) in their study using Platt scaling to provide ap-
propriate calibration for clinical implementation of cancer
PGS. Prima facie, these results imply widespread canaliza-
tion, but they are actually an artifact of the effect of preva-
lence on PGS estimation under the liability threshold
model.

Evidence for Canalization–Binary Traits
We instead sought evidence for the decanalization in de-
viations between observed and expected data mostly at
the extremes of the prevalence–risk curves. For each envir-
onment and PGS percentile, we observe both the preva-
lence and the mean PGS, and we assume that the
liability threshold is constant in each percentile bin and
equivalent to that defined by the overall prevalence. This
allows computation of least-squares regression that yields
the expected prevalence for each bin, as explained in more
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FIG. 3. Prevalence–risk curves for familial influences on complex disease risk. (A and B) Paternal and sibling diabetes shows PGS×E, which sug-
gests decanalization of T2D prevalence but likely reflects an effect of shared genetics not captured by the PGS. (C and D) Severe maternal or
sibling disease influences the prevalence of major DEP in an apparently protective manner. In each panel, the left-hand plot shows the preva-
lence–risk curve in the exposure group with the indicated numbers of individuals. The right panel shows the difference between the two curves
in blue relative to computations based on 100 permutations of exposure labels.
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detail in Materials and Methods. The deviation at the ex-
tremes between the expected curves in the two environ-
ments, which typically diverge in a monotonically
increasing manner, can be compared with the deviations
between the two observed curves. Figure 5 shows the ex-
ample of past tobacco smoking and CAD risk, where
never-smokers have the known significant reduction in
overall prevalence relative to frequent smokers (blue vs.
red curves in fig. 5A), but the difference is actually greater
than expected under the null of no PGS×E interaction
(gray vs. yellow curves), as shown in fig. 5B, which plots
the deviations as a function of the PGS percentile. When
a PGS×E interaction term is included in the regression
model, the observed and expected curves overlay almost

perfectly, confirming that smoking interacts with genetic
risk for CAD to increase prevalence nonadditively. There
is, in fact, decanalization of disease in the high-risk expos-
ure. Although we have not directly modeled the depend-
ency of the PGS on prevalence in this framework, we note
that the analysis is conservative in so far as the threshold
liability model actually predicts that the two expected
curves should, if environment-specific weights were used,
be closer together than they are in these models, mitigat-
ing against seeing decanalization.

To quantify the degree of G×E, for each trait, we generated
a rank order of the magnitude of the observed deviations at
the extremes (see bar graphs in supplementary fig. S4,
Supplementary Material online with a side-by-side estimate
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of the expected deviations). Deviations at the extremes are
quantified by a metric called delta, which is computed as
the difference in the right tail deviation versus left tail
deviation, where the deviation of the tail is computed as
the difference in prevalence between high- and low-risk envir-
onments at PGS above or below 2 SD from the mean. Any
cases where the difference between these two estimates
was more than 2 SDs greater than the mean SD of all of
the expected differences is regarded as a candidate instance
of decanalization or canalization because the tails are more
or less divergent than expected by chance. Suggestive cases
were defined where the departure of observed deviations
from expected deviations was .+1.3 SDs (top 10%). Given
that �100 exposures were considered for each trait, only
two or three instances are expected to survive this strict
criterion, but it should also be noted that for some traits, there
appears to be an excess of weak but nonsignificant differences.
In supplementary fig. S5, Supplementary Material online, we
plot the magnitude of the left-versus-right tail deviation for
each trait and exposure, highlighting significant instances of
excess.

For CAD, almost all of the deviations are greater at the
right tail than the left tail, most being within a few percent-
age points of the null expectation, but four conditions
stand out as instances of decanalization since the worse ex-
posure has an excess of cases at the right tail. These are
male gender, smoking status (past and current), father
no longer alive, and high average beer consumption.
Conversely, having satisfying family relationships, or sur-
prisingly having experienced a long period of DEP, trends
toward being protective. For T2D, observed deviations

are also almost universally greater than those predicted
by the null models but only having family relatives with
diabetes approaches significance, possibly implying en-
hanced risk due to excess familial segregation of genetic
risk factors. The IBD analysis confirms significant decanaliz-
ing effects for the dietary indicators white versus whole
grain bread and adding salt to food while hinting that
smoking also exacerbates the genetic risk. All of these in-
stances can be visualized in supplementary fig. S6,
Supplementary Material online in the format of fig. 5, as
well as through our shiny app, and a full table of significant
deviations is provided in table 1 and all other traits in
supplementary table S2, Supplementary Material online.

Major DEP is noteworthy for a bimodal distribution of
differences between the observed and expected devia-
tions. Various measures of poor exercise habits appear to
exacerbate risk, as may not have been breastfed as a
baby, but some psychosocial measures such as perceived
loneliness, being particularly sensitive to having hurt feel-
ings, and tension may actually be slightly protective des-
pite being risk factors overall. Power for these estimates
is undoubtedly reduced due to the relatively low variance
explained by PGSDEP and heterogeneity in self-reported
DEP. For CA, most of the instances resembling decanaliza-
tion have to do with the type of work, mode of transpor-
tation, and time spent outside and likely indicated
responses rather than causality: for example, people with
very high EA PGS and who went to college are much
more likely to walk to work. On the other hand, this ana-
lysis revealed numerous instances of possible canalization,
notably for Townsend deprivation index, consistent with
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observations when considering EA as a continuous trait in
the next section (supplementary figs S4–S6 and fig. 7,
Supplementary Material online).

Evidence for Canalization—Continuous Traits
The continuous traits BMI, WHR, and EA present oppor-
tunities to document G×E without the complication of
the dependence of PGS on differences in prevalence un-
der the liability threshold model. We took four ap-
proaches. (1) Modeling each trait categorically as
above but adjusting the threshold of obesity or higher
education to ensure the same prevalence in the high
and low exposures. (2) Regressing the observed trait va-
lue for each person on their PGS and comparing the
slopes between the two exposures—this analysis is noisy
but yields conclusions comparable with those of the
next two approaches. (3) Computing the trait mean in
each percentile bin of the PGS and evaluating the devia-
tions at the left and right tails, in this case taking the dif-
ference between the exposures as the measure of G×E

without the need to generate expected curves. (4)
Performing inverse normalization of the cumulative dis-
tribution function of the percentile means, which is
more conservative and focuses on deviations at the ex-
tremes. In each case, we adjusted the trait mean for
age, gender, and the first five genotypic principal com-
ponents. Figure 6 shows the example of the influence
of Townsend deprivation on BMI, which overwhelming-
ly provides evidence for decanalization, namely genetic
risk combines with low socioeconomic status (high
Townsend deprivation, red) to increase the likelihood
of weight gain synergistically.

The model fits for the trait mean–PGS curves as a func-
tion of the SP, MBL, and CF were computed using non-
linear least-square regression (see Materials and
Methods). Typically, the CF is larger in the trait-increasing
environment, which might imply canalization as noted
above, but offsetting this observation was a general de-
crease in the SP (supplementary fig. S7, Supplementary
Material online), which implies an increased deviation be-
tween the left tail and midpoint. Although there is no

Table 1. Canalization versus decanalization model based on the departure of delta observed from delta expected in SD units, for CAD, T2D, obesity, DEP,
and IBD.

Trait Description Category DeltaObs DeltaExpect Obs-Exp Departure Model

CAD Gender Early life factors 0.276 0.149 3.884 Decanalization
CAD Father still alive Familial 0.276 0.192 2.572 Decanalization
CAD Avg weekly beer and cider Lifestyle 0.167 0.087 2.450 Decanalization
T2D Father has diabetes Familial 0.150 0.081 3.006 Decanalization
T2D Alcohol intake frequency Lifestyle 0.149 0.089 2.639 Decanalization
T2D Nap during the day Lifestyle 0.199 0.142 2.477 Decanalization
T2D No. of days vigorous act Lifestyle 0.102 0.053 2.107 Decanalization
T2D No. of hours of work in a week Lifestyle 0.042 −0.006 2.068 Decanalization
T2D Walk pace Lifestyle 0.177 0.131 2.002 Decanalization
BMIObesity Walk pace Lifestyle 0.290 0.238 2.988 Decanalization
BMIObesity Duration of walks Lifestyle 0.061 0.012 2.823 Decanalization
BMIObesity Mothers age Familial 0.045 0.002 2.446 Decanalization
BMIObesity Birth weight Early life factors 0.082 0.044 2.168 Decanalization
BMIObesity Maternal smoking at birth Early life factors 0.100 0.063 2.131 Decanalization
BMIObesity Mother has diabetes Familial 0.107 0.070 2.090 Decanalization
BMIObesity Father still alive Familial 0.016 0.054 −2.207 Canalization
BMIObesity Cheese intake Diet 0.003 0.042 −2.259 Canalization
BMIObesity Body size at age 10 Early life factors 0.115 0.155 −2.328 Canalization
BMIObesity Age asthma diagnosed General health 0.044 0.088 −2.538 Canalization
BMIObesity Jobs w/heavy physical work Lifestyle −0.030 0.033 −3.615 Canalization
WHRObesity Body size at age 10 Early life factors 0.072 0.005 3.459 Decanalization
WHRObesity Father has diabetes Familial 0.064 0.008 2.925 Decanalization
WHRObesity Loneliness Psychosocial 0.037 −0.011 2.530 Decanalization
WHRObesity Seen psychiatrist nerves Psychosocial 0.031 −0.011 2.203 Decanalization
WHRObesity Type of accommodation Socioeconomic 0.042 0.001 2.149 Decanalization
WHRObesity Number of children fathered Familial 0.020 −0.020 2.120 Decanalization
WHRObesity No. of vehicles in household Socioeconomic 0.028 −0.011 2.064 Decanalization
WHRObesity Length of mobile phone use Lifestyle −0.044 −0.001 −2.267 Canalization
WHRObesity Time spent driving Lifestyle −0.041 0.011 −2.699 Canalization
WHRObesity Alcohol intake frequency Lifestyle −0.061 0.011 −3.767 Canalization
Depression Duration of vigorous act Lifestyle 0.034 −0.002 2.426 Decanalization
Depression Mothers age Familial 0.037 0.004 2.249 Decanalization
Depression Tension Psychosocial 0.006 0.044 −2.532 Canalization
Depression Avg total household income Socioeconomic −0.034 0.003 −2.540 Canalization
IBD Sibling blood pressure Familial 0.014 −0.007 2.596 Decanalization
IBD Bread type Diet 0.037 0.016 2.554 Decanalization
IBD Seen psychiatrist nerves Psychosocial 0.014 −0.006 2.427 Decanalization
IBD Birth weight of first child Familial 0.016 –0.0005 2.064 Decanalization
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reason to expect the nonmodifiable component of risk to
reduce in the increasing environment, the model fitting in-
dicates that all three parameters covary. Consequently, we
used the inverse-normalized trait values to contrast the
two curves, ensuring that the MBL is set to be the same
in the two environments. This both smooths skew in the
curves (fig. 6E) and ensures that differences in the shapes
of the curves are due to the SP and CF and independent
of the MBL. It yields two highly correlated estimates of
(de)canalization: the delta between the upper and lower
tails, which we require to be greater than that observed
in 100 permutations of the environmental labels, and the
variance of the inverse-normalized trait values, which are
plotted against one another in supplementary fig. S8,
Supplementary Material online (see Materials and
Methods for details). These criteria were used to define in-
stances of greater or lesser than expected deviation

between the high and low curves (decanalization and
canalization, respectively) for all available exposures,
which are then highlighted in the rank order for the
three traits in fig. 7, along with right versus left tail devia-
tions in supplementary fig. S9, Supplementary Material
online.

For BMI, the evidence for decanalization is pervasive: 82
of the 126 contrasts have positive deviations, 32 of which
are significantly larger than expected after inverse normal
transformation. The top three exposures are slow walking
pace, taking daytime snoozes, and (low) alcohol consump-
tion. Multiple different measures of activity, mood, and
socioeconomic status all seem to combine with genetic
risk to increase BMI more than additively. Only two pos-
sible instances of canalization characterized by a reduction
of the deviation at the right tail are self-reported, which are
spending a lot of time outside, and gender: although men
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tend to have higher BMI, the elevation is only seen in the
bottom three-quarters of the PGSBMI range.

For WHR, the deltas are an order of magnitude lower
than for BMI, implying a modest impact of most exposures
on this measure of body shape, but intriguingly there is
more evidence for canalization than decanalization: 20 ver-
sus eight exposures. The most convincing instance of the
latter is body size at age 10, in direct contrast with the
data shown in fig. 1D for categorical BMI-defined obesity,
implying that genetic impacts onWHR tend to manifest in

children and exacerbate with age. In addition, in contrast
to BMI, high alcohol consumption associates with elevated
WHR, but the influence dissipates as genetic risk increases.
Similarly, longer working hours and more time spent driv-
ing have a greater tendency to elevate WHR for individuals
with low polygenic propensity to gain central adipose.

As with the categorical assessment, EA shows extensive
G×E of both types. Instances where EA is elevated across
the genetic spectrum but become progressively larger as
PGSEA increases once again are likely to indicate responses
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FIG. 7. The rank order of (de)canalization for the continuous traits. Each plot shows the deviation between the left and right tails (delta) for the
given exposure for BMI, WHR, and EA on unscaled measures of the traits. Blue bars indicate that the deviation was judged to be beyond 2 SDs of
the mean on the inverse-normalized data scale, implying decanalization to the left (positive delta) or canalization to the right.
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to higher education. They include the type of job and
transportation but also certain dietary indicators (whole
grain vs. white bread, cheese consumption). Some expo-
sures simply reflect differences in variance of the PGS with-
out a strong overall effect. For example, EA is less
associated with genetics in people who consume more
chicken or use their mobile phones more. A low
Townsend deprivation index and experiencing a single epi-
sode of DEP are both more likely to elevate EA for those
with a low genetic propensity, whereas the top quartiles
of the PGSEA distribution have little difference in outcome
relative to exposure. Consequently, since the exposure
with the higher prevalence overall has a less genetic vari-
ance, by our definition these are cases of canalization (al-
though as with CA, since the high-risk exposure is
actually high deprivation, this is perhaps just as well re-
garded as a case of decanalization relative to the more
healthy environment). It will be interesting to evaluate
how these effects decompose into cognitive and noncog-
nitive aspects of genetic propensity (Demange et al.
2021). Left and right tail deviations for the continuous
traits are shown in supplementary fig. S9, Supplementary
Material online.

Genetic and Environmental Correlations
The PGS distributions are rarely identical between expo-
sures. Rather, in general, there is a slight elevation of the
mean PGS in the “bad” (high-risk) exposure group, as ex-
pected since the disease incidence is higher. The SDs of
the PGS do not show any trend and, for the most part,
have low deviations. These values are reported in
supplementary table S3, Supplementary Material online.
To evaluate whether the elevated PGS explains higher
prevalence, we computed the effect of substituting a
PGS with the observed mean and variance into the best-fit
SP, MBL, and CF models for the low exposure. The most
extreme deviations are notably due to the exposure of
family members to the disease, suggesting that the ele-
vated PGS in those exposures reflects shared genetic rather
than environmental risk. However, even in the cases with
the highest observed increase in mean PGS, approximately
10%, the expected increase in prevalence was never more
than 10% of the observed increase. Consequently, most ef-
fects related to environmental exposures are somewhat in-
dependent of PGS distribution.

Nevertheless, there is a strong correlation between in-
creased genetic risk and an increased proportion of indivi-
duals in the high exposure group (Young et al. 2019). This
is seen in supplementary fig. S10, Supplementary Material
online for T2D as a function of Time spent watching TV,
Townsend Deprivation Index, and walking pace. The upper
plots show strong linear correlations of the ratio of
high-to-low-risk individuals in each percentile of polygenic
risk. These results are explained readily by the right-shift of
the high relative to low-risk curves. Although striking,
again, since the increase in PGS only explains a minor pro-
portion of the increase in risk, the genotype–environment

correlation only contributes to a minor fraction of devi-
ation between the risk profiles.

A priori, there is no reason why a PGS should differ
across environments when it is computed without adjust-
ment for those environments, but the systematic observa-
tion that it does suggests a couple of possibilities
(Dudbridge and Fletcher 2014). One is that the increase
in genetic effects in the high-risk condition is asymmetric
with the result that more individuals with high-risk dispos-
ition cross a threshold of liability, and hence the average
risk in the high-risk environment is slightly higher than
in the low-risk one. This could, for example, occur if myriad
small individual G×E interactions tend to operate more in
the direction of increased risk with exposure: variants that
increase the risk of obesity with a more sedentary lifestyle
may have correlated directional increases in sedentary in-
dividuals. Another possibility is reverse causation, where
the onset of a disease or condition (which is more likely
in higher PGS individuals) leads to a higher likelihood of in-
dividuals adopting the high-risk lifestyle (for example, be-
coming more sedentary).

Discussion
Under persistent stabilizing selection, which is thought to
be the predominant mode of selection acting on gene ex-
pression and many traits (Hodgins-Davis et al. 2015; Sanjak
et al. 2018), some theories suggest that genetic architec-
tures may evolve to ensure that most individuals are close
to the optimum (Hermisson et al. 2003; Geiler-Samerotte
et al. 2018). This process is known as canalization, which
is the evolution of genetic interactions that suppress the
generation of extreme phenotypes. Our study provides
the first evidence that this process may be widespread in
relation to the genetic predisposition to human disease.
Assuming the parsimonious genetic interpretation of the
PGS×E interactions, namely that elevated baseline risk
gives rise to larger combined odds ratios as the PGS in-
creases, the divergence in prevalence between the tails is
sometimes less than expected given the overall difference
in prevalence between two exposures. On the other hand,
particularly in relation to BMI-related obesity, CAD, and
T2D, the prevalence of the condition in individuals with
high-risk exposures is more often higher than it is expected
to be, implying decanalization (Gibson 2009; Gibson and
Lacek 2020). A particularly interesting observation is that
BMI and WHR have generally opposing evidence in rela-
tion to canalization, not just overall, but for specific expo-
sures such as gender and alcohol consumption. This may
relate to the contrasting strength of stabilizing selection
on cognitive and metabolic traits throughout mammalian
evolution and, more recently, in the human lineage.

Decanalization occurs when a novel environment re-
leases genetic variance, leading to an elevated number of
individuals with extreme phenotypes in the low and high
polygenic risk categories. On the face of it, the increasingly
elevated prevalence in those with both genetic and envir-
onmental exposure implies that substitution effects are
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increased under these conditions. In this sense, there is de-
canalization on the purely additive scale. As a matter of
epistemology, odds ratios are a useful statistical interpret-
ation that describe the patterns in the data but are blind to
the molecular mechanism. Genes operating inside cells
certainly see environmental effects, but their activity is
blind to the population mean, and there is no molecular
genetic reason to expect that absolute allelic substitution
effects would vary as a function of the baseline risk. Stated
another way, it may have been common for the baseline
that is acted on by the genetics to be constant across en-
vironments, and for the environment to increase risk addi-
tively, irrespective of PGS. This was sometimes observed,
but the overwhelming characteristic of the cases described
here is that the environment increases the baseline expos-
ure that is thenmultiplied by the PGS to yield the observed
prevalence–risk relationships. Our categorical analyses are
also complicated by the dependence of odds ratios on the
prevalence of the trait (Wray and Goddard 2010), which
increases as the genetically MBL of risk increases, deflating
allelic effects in the perturbing environment. We describe a
variety of approaches to adjust for this complication, by
deriving the expected prevalence of disease and comparing
deviations at the tails, and by modeling on the continuous
scale, but acknowledge the need for further theoretical de-
velopment of PGS–prevalence modeling.

The existence of PGS×E contrasts with accumulating
evidence regarding obesity, for example, where individual
SNP-by-environment interactions that are too small to sur-
vive strict GWAS multiple comparisons, even though they
contribute to broad-sense heritability (Abadi et al. 2017;
Tyrrell et al. 2017; Nagpal et al. 2018; Sulc et al. 2020). A
bias toward such effects operating in the same direction
can easily generate deviations in the genetic architecture
that may lead to modification of the prevalence–PGS rela-
tionships (Marigorta and Gibson 2014). On the other hand,
as noted, intuition suggests that in some cases, reverse
causality is more likely to explain the observations, namely
that those who develop a condition aremore likely to tran-
sition to a different environment. Diabetes, for example,
may impact mobility and diet, although in general, it is
not obvious why such effects would not just cause a linear
shift of the curve since theMBL should not be affected. Two
possibilities are (1) individuals with the highest genetic sus-
ceptibility experience more severe disease, which in turn
elevates the likelihood of behavioral change, and (2) pleio-
tropic genetic contributions impact the polygenic risk for
both the trait and the likelihood of experiencing the expos-
ure. Alternatively, transgenerational sharing of the environ-
mental exposuremay exist, whereby environmental factors
such as household income, bread choice, and type of job,
althoughmeasured for participants inmiddle age, are actu-
ally proxies for related factors culturally transmitted from
parents that act earlier in life. Differences in heritability
measured within families relative to that expected from
GWAS also led Mostafavi et al. (2020) to conclude that in-
direct genetic effects lead to more pervasive G×E than is
generally acknowledged.

Our results have implications for the modeling of the
evolution of the genetic architecture of complex traits.
The GWAS-enabled recognition of the pervasive omnige-
netic contributions to phenotypic variance led Simons
et al. (2018) to propose that differences in the number
and effect size distributions for different traits are
mediated by the mutational target size and fitness impact
under a model of stabilizing selection with extensive plei-
otropy. Evidence that genetic effects are modified in fluc-
tuating environments and specifically buffered in
suboptimal conditions, suggests more scope for modeling
this effect on the degree of polygenicity. Equally import-
antly, quantification of the degree of canalization and plei-
otropy may support renewed modeling of the evolution of
canalization (Hallgrimsson et al. 2019; Takahashi 2019) and
its compatibility with observed effect size distributions
across environments.

Three possible mechanisms are most likely to contrib-
ute to canalization. One is the existence of epistatic inter-
actions (G×G) that suppress the additive component of
the additive variance and have been postulated to evolve
under intense stabilizing selection with sufficient muta-
tional variance (Wagner et al. 1997). The second is the
emergence of G×E interactions in the perturbing environ-
ment that reduce individual allelic effects, a mechanism
that could evolve to reduce the impact of environmental
noise effectively. The third is the existence of cryptic gen-
etic variation, namely allelic effects at some loci that only
manifest in one or other of the environments, with the re-
sult that the PGS captures different amounts of the genetic
variance, indirectly influencing the variance explained by
the PGS. More complex developmental and physiological
systems may be prone to evolve canalization under the
constraints of networks that must be resistant to muta-
tions and environmental insults (Siegal and Bergman
2002), but molecular evidence for this remains elusive.

A limitation of this study is the lack of independent val-
idation. Some results may be replicable by large consor-
tium studies for specific traits, although it is not clear
how findings would be impacted by meta-analysis of con-
tributing cohorts or by specific cultural attributes in differ-
ent settings. It should also be noted that using large
cohorts entails risks related to hidden biases, such as
healthy volunteer bias in the UKB (Fry et al. 2017), self-
report bias, especially for behavioral traits (Xue et al.
2021), as well as sex-differential participation bias
(Pirastu et al. 2021). Given the low portability of PGS across
ancestry groups (Chen et al. 2015; Martin et al. 2017), par-
ticular attention to the development of ancestry-aware
scores will be needed before the application of our ap-
proach to other large public health genomic studies, in-
cluding different ancestry groups (Vujkovic et al. 2020).
Internally, we validated most findings by performing all
analyses with two different sets of SNPs ascertained at
stringent and permissive cutoffs. For BMI, we also adopted
the PRS–CS Bayesian approach (Ge et al. 2019) to PGS de-
velopment since it increases the variance explained, and
just as with the inclusion of more SNPs in the prune+
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threshold settings reported here, the PGS×E were not only
affirmed but became more robust.

Irrespective of causality, our findings have practical im-
plications regarding the implementation of polygenic risk
assessment for personalized medicine. Although logistic
regression approaches are beginning to offer joint genet-
ic–environmental assessments (Rudolph et al. 2018, Isgut
et al. 2021), they are unlikely to capture nonlinear inter-
actions, and new methods may need to be developed.
More generally, the pervasiveness of apparent PGS×E in-
teractions highlights how important it is to account for
the environment in offering individual risk assessments
(He et al. 2019). Thus, someone in the 25th percentile
for PGST2D with a pretax household income ,£52,000
has the same probability of developing diabetes, around
4%, as someone in the 75th percentile with a higher in-
come. Similarly, for the influence of maternal diabetes.
These data confirm widespread mismatches between
our genome and the contemporary environment.
Health disparities are shaped in part by genetic differ-
ences across populations, but to the extent that the en-
vironmental factors described here differ among
localities, interaction effects reinforce the complex inter-
play of nature and nurture in shaping the distribution of
disease on a fine geographic scale (Haworth et al. 2019;
Lakhani et al. 2019).

Materials and Methods
The UKB Cohort
The UKB is a large population-based cohort consisting of
�500,000 individuals, recruited between 2006 and 2010
at 22 assessment centers spread across the UK (Sudlow
et al. 2015). The participants, aged 40–69 at recruitment,
completed baseline questionnaires about lifestyle, physical
measures, medical history, and general health, as well as
providing biological samples (blood, urine, and saliva) for
genetic, proteomic, metabonomic analyses, and biomarker
identification (Elliott et al. 2008). In addition, the UKB has
also generated data fields to indicate the first occurrence
of a set of diagnostic codes for a wide range of health out-
comes across self-report, primary care, hospital inpatient
data, and death data, all mapped to a three-digit code of
International Classification of Disease (ICD-10). In this
study, we downloaded the genotype and phenotype
from the UKB under application number 17984. The im-
puted genotype data (named v3) released in May 2017
for � 96 million markers was downloaded (Bycroft et al.
2018). After selecting bi-allelic variants with imputation
score . 0.9, minor allele frequency .1%, Hardy–
Weinberg equilibrium P. 10−10 and ,5% missing rate,
a total of 8,063,507 SNPs were available for analysis.

The phenotypic data for 10 complex traits were down-
loaded and classified as categorical: obesity defined by BMI
and WHR, T2D, CAD, CA, DEP, and IBD, CD, and UC and
continuous: BMI, WHR, and EA in years. These included
both self-reported questionnaire data and ICD-10 codes.

The complete list of UKB data fields used, exclusion cri-
teria, and the number of cases and controls obtained are
provided in supplementary table S5, Supplementary
Material online. In addition, only self-reported White
British individuals (n= 408,925) were included in this
analysis.

Environmental Exposures
For the environmental exposures, we downloaded 151
data fields from the UKB broadly categorized into diet, life-
style, socioeconomic, early life factors, familial factors, psy-
chosocial factors, and general health. The phenotypic
values of 55 fields were numerical such as “pieces/bowls/
cup per day” for fresh fruit, bread, cereal, raw vegetable,
tea, coffee, water intake; “number of glasses” for average
weekly red wine intake, average weekly beer intake, aver-
age weekly champagne intake; “hours per day” for time
spent outdoors in summer, time spent driving, time spent
watching TV, sleep duration, duration of walks, number of
days/week of vigorous physical activity, Townsend depriv-
ation index score. An additional 98 fields had ordinal va-
lues in the form of responses such as: “Never,” “less than
once a week,” “once a week,” “2–4 times a week,” “5–6
times a week,” “once or more daily,” “special occasions
only,” for beef, processed meat, lamb, cheese intake, alco-
hol intake frequency; “yes,” “no,” “occasionally” for current
tobacco smoking; “slow,” “average,” “brisk” for walk pace,
and so on. Each exposure was dichotomized to represent
high and low exposure, either by the ceiling of the mean
phenotypic value for numerical fields or based on answers
for ordinal fields. Furthermore, individuals having missing
phenotypic values, or who answered “Do not know” or
“Prefer not to answer” were excluded. Supplementary
table S4, Supplementary Material online contains the list
of data fields used for 151 environmental exposures, the
criteria of defining high and low-risk environmental
groups, and their sample size. Five exposures with very
high PGS×E were excluded from computations since
they are almost certainly consequential to disease onset:
major dietary changes in the last 5 years, long-standing ill-
ness, overall health rating, health satisfaction, and short-
ness of breath.

GWAS and Calculation of PGS
Supplementary table S5, Supplementary Material online
provides the references and sample sizes of the
European-based GWAS summary statistics for nine com-
plex traits used for this analysis. First, we performed SNP
pruning on the summary statistics using “–indep-pairwise”
function in PLINK (Purcell et al. 2007) to filter out variants
within LD r2. 0.2 within a 1000 kb window. The numbers
of variants obtained after pruning are also listed in
supplementary table S5, Supplementary Material online.
Next, we selected variants at two significance thresholds:
(1) genome-wide significance level of P, 5×10−8 and
(2) at P, 0.001. These were used to compute PGS with
the “–score” function in PLINK at the two significance
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thresholds. Supplementary fig. S11, Supplementary
Material online shows the distribution of the effect sizes
and the PGSs for the traits. Further, for BMI, we also eval-
uated our results using the PRS–CS Bayesian approach (Ge
et al. 2019) of estimating posterior SNP effect sizes under
continuous shrinkage (CS) priors using GWAS summary
statistics and a reference LD panel. The estimated effect
sizes from PRS–CS were then used to construct PGS using
PLINK.

Assessment of PGS×Environment Interactions
To detect deviations in the prevalence–risk relationship
across environments, we compared the shapes of the
prevalence–risk curves, given that the underlying PGS
have essentially a similar distribution in both environ-
ments. For each of the 151 environmental exposures, di-
chotomized into low and high groups, the prevalence of
disease versus percentile PGS plots were generated. Next,
the difference between the prevalence of the high and
low curves (H-L) along the polygenic risk gradient was
computed. A monotonically increasing trend of the
(H-L) curve would indicate the case of decanalization, im-
plying that as the genetic risk increases, the impact on dis-
ease increases and more so in the bad exposure
environment. Conversely, a constant (H-L) curve along
the risk gradient would imply that the curves are simply
shifted, and there is no observed decanalization. For con-
sistency, high in all cases was defined simply as the envir-
onment with the elevated risk overall and is not taken
to imply that one or the other exposure is intrinsically
high risk. This occasionally leads to counterintuitive results
where the inference of canalization or decanalization is
flipped (note that decanalization with respect to one ex-
posure is canalization with respect to the other). A notable
example is Townsend Deprivation Index with College
Attainment, where the H exposure is low TDI since it
has a very slightly elevated prevalence of CA, and hence
canalization is reported in fig. 7 and supplementary figs.
4, 5, 6, 9, and 10, Supplementary Material online, yet intui-
tively since high TDI is the poor socioeconomic exposure,
this is discussed as a case of decanalization in
supplementary fig. S2, Supplementary Material online
and the text.

To evaluate this phenomenon quantitatively, permuta-
tion analysis was performed by randomly selecting indivi-
duals to high or low exposure groups, keeping the sample
size of the high and low groups the same as the real data in
the UKB (as given in supplementary table S4,
Supplementary Material online). The prevalence versus
percentile plots were generated for the randomly selected
individuals, and H-L curves were computed. In general, the
H-L curve from random permutations should follow a
nonmonotonic trend around zero. Therefore, to establish
the evidence of interactions, the following conditions
were required. (1) The derivative of the H-L curve be con-
sistently either greater or lesser than 0, and the median of
the derivative distribution is always higher than that

generated from 100 random iterations. This ensures a sig-
nificant monotonicity of the curve. (2) The absolute value
of the linear slope of H-L curve (equivalent to the delta be-
tween the upper and lower tails) must be greater than that
generated from 100 randomly permuted data. Once the
evidence of interactions was established, its degree was de-
fined as delta, the right versus left-tail deviation in preva-
lence at two SD units from the PGS mean (supplementary
fig. S12, Supplementary Material online shows the depart-
ure of delta observed from delta expected for 151 expo-
sures and all binary traits summarized, where a positive
departure represents decanalization and a negative de-
parture represent canalization. The dashed lines are at
+/− 2 SD units and +/− 1.3 SD units indicating conser-
vative and suggestive thresholds respectively). More de-
tails of this and subsequent methods are provided on
our Shiny app.

Modeling Canalization—Continuous Traits
A simple measure of canalization for continuous traits is a
difference in the slope of the regression of each individual’s
trait value on their PRS, in the two environments, adjusted
for the covariates age, gender, and population structure
(the first five principal components of the genotypes):

Trait= a.PGS+b.Env+g.(PGS× Env)+ c.Cov+1 (1)

where the significance of the α, β, and γ terms represent
main effects of the PGS, environmental category, and their
interaction (the canalization term), respectively, while e is
the residual error, assumed to be normally distributed with
a mean of zero. Inverse normal transformation of the trait
typically removes any curvature (see fig. 6E) and is a more
conservative analysis. Despite a very high significance of γ
in many cases (supplementary table S6, Supplementary
Material online), implying a difference in slope between
the environments, the scatter of points is very large, so
we prefer to evaluate canalization from the distribution
of trait (or inverse-normalized trait) means in each per-
centile of the PGS.

Then, to infer (de)canalization we compare the devia-
tions between the high and low mean trait-PGS curves.
First, nonlinear least-square regression is implemented
with the nls function in R, fitting each individual’s trait
as a function of a SP, MBL, PGS, and CF:

Trait = SP+MBL× exp(PGS/CF) (2)

This model captures the intuition that a PGS represents
the cumulative log odds ratio of the effect of SNPs on
the trait. The PGS is centered to a median of zero, with
an observed SD, implying that the expected trait value at
the 50th percentile where PGS= 0 is the MBL plus SP.
For example, the average BMI in a population maybe 27,
of which 15 units are independent of genetics (the SP),
and 12 units are modifiable by genetics (the MBL). In
this case, if the SD of the PGS is 1, then CF= 4 adjusts
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the exponential effect to fit the observed typical trait value
to those observed; for example, one SD unit above or be-
low the mean would be 30.41 (15+ 12*e1/4) and 24.35 (15
+ 12*e−1/4) respectively. However, if the MBL in the obe-
sogenic environment is 14 (two points higher) without
changing the SP, then the expected values would be
32.98 and 25.90. If they are actually 32.48 and 26.21, then
the CF would need to be 4.5, implying that the polygenic
effects are actually slightly reduced in this adverse environ-
ment, given the overall increase in BMI. Alternatively, if
most of the environmental effect was independent of
the genetics, a slight increase inMBL to 12.25 and elevation
of the SP to 16.75, without changing the CF, would also re-
sult in an expected BMI of 32.48, one SD unit above the
mean, but in this case, the value one SD unit below the
mean would be slightly higher at 26.29. The nls regression
generally estimates different values for all three parameters
(SP, MBL, and CF) in each environment, indicating that all
three parameters must be adjusted to obtain optimal
curve fits. Note that since the PGS itself does not generally
have a variance of 1, the proportion of individuals at any
particular risk level is also a function of the observed vari-
ance of the PGS. The mean square R2 estimate of the mod-
els approximates the SNP heritability, namely the variance
explained by the PGS, which is also typically higher in the
elevated risk environment.

Even though the CF is generally larger in the high envir-
onment, the SP is generally lower, consistent with a greater
slope of the simple linear regression model. Since these
two results, increase in the linear term but effective de-
crease in PGS as the CF increases, are contradictory with
respect to the overall impact of genetics, we instead per-
form the high versus low comparison on the inverse-
normalized trait scale to assess evidence for canalization.
Constraining the MBL to be the same in both environ-
ments (set to the observed value in the low environment)
ensures that prevalence is the same at the median risk, and
hence that only the SP and CF determine the shape of the
mean invNormTrait-PGS curve. Given the measured para-
meters from the data, as well as the observed variance of
the PGS, σ2, the median trait value is estimated as [SP+
MBL], the mean trait value E{Y} as [SP+MBL×exp
(σ2/2CF2)], and the variance of the trait value Var{Y} as
[SP2+MBL2×exp(2σ2/CF2)+ 2×SP×MBL×exp(σ2/2CF2)−
(SP+MBL×exp(σ2/2CF2))2]. At both the right and left tails, 2
SD units greater or lesser than the PGS mean, we compute
the expected mean trait value as E{Trait|PGS. 2σ}=
[SP× (1−CDF(2,0,1))+MBL× (1−CDF(2−σ/CF),0,1)× exp
(σ2/2CF2)]/(1−CDF(2,0,1)), replacing 1−CDF with CDF for
E{Trait|PGS,−2σ}. These values are computed in the high
and low environments, yielding expected right and left tail de-
viations, the difference between which is delta (fig. 7 and
supplementary fig. S9, Supplementary Material online). The
magnitude of delta is then compared with that computed
from 100 permutations of the environment labels of the indi-
viduals. We infer decanalization if delta is greater than all
permutations and canalization if it is lesser than all permuta-
tions and observe that this measure is highly correlated with

the Var{Y}, which yields a concordant measure of (de)canal-
ization (supplementary fig. S8, Supplementary Material
online).

Modeling Canalization—Binary Traits
Estimation of the expected deviation between environ-
ments is complicated for categorical (case–control) traits
because under the threshold liability model, odds ratios
are a function of prevalence. Consequently, in an
environment with higher prevalence, genetic effect sizes
are expected to be smaller, and the PGS estimated
from the full data set will tend to overestimate the
variance in the high environment and underestimate it
in the low environment. The observed required
increase in CF can be interpreted as simply correcting for
this bias. We thus again turn to comparison at the
extremes to define instances of canalization but
compare the observed deviations with those expected
from modeling the prevalence–PGS relationships. We
also expect that deviations at the extreme will be usually
be associated with PGS×E influences on risk throughout
the distribution.

We assume that within each percentile of risk, indivi-
duals have a liability, μi, that is a function of their PGS
and environment (μi= a * PGS+ b * Env+ c), and a preva-
lence, Pi= 1−CDF(N(μi,1), t), where the threshold t is
constant and estimated from the overall liability distribu-
tion, t=CDF−1(1− Poverall) for N(0,1). That is to say, the
overall liability distribution is a collection of 100 liability
distributions for which μi increases as the PGS increases
in an environment-specific manner. Since we observe the
mean PGS and prevalence in each percentile bin, and
μi= a * PGS+ b * Env+ c= t−CDF−1(1− Pi), linear re-
gression is used to estimate a, b, and c from the 200
data points of each percentile bin in environments 0 and
1. These values are then used to estimate the expected
prevalence in each bin, E{Pi}= 1−CDF(N(μi,1), t) and
compared with the real data in the left and right tails, as
well as with a model that includes a PGS×Env interaction
term.

Departure from the null was computed as
delta-observed (the difference between the right and left
tail deviations in risk in the two environments) minus
delta-expected (the mean difference between the right
and left tails computed by 10 iterations of sampling
from N(μi,SD), where SD is the residual error of the linear
model), divided by the mean SD of delta-expected across
all exposures for the trait. That is to say, we computed
the difference between the observed and expected devia-
tions between the tails and scaled it by the magnitude of
the SD of the expected effect. Statistical significance of po-
tential decanalization was then defined as cases where the
observed departure from the null was more than two SD
units larger than the expected deviation. This is slightly
more conservative than using the exposure-specific devia-
tions, which may be under-estimated in some cases.
Suggestive cases were defined with the departure of delta
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observed from delta expected under null greater or lesser
than +1.3 SD units (top 10%). Table 1 shows the depart-
ure (in SD units) of exposures which passed the conserva-
tive threshold for CAD, T2D, obesity, DEP and IBD and
supplementary table S2, Supplementary Material online
shows the departure (in SD units) for all 151 exposures
and binary traits. Supplementary fig. S4, Supplementary
Material online shows the delta observed versus delta ex-
pected under null along with departure in SD;
supplementary fig. S5, Supplementary Material online
shows the left versus right tail deviations for all exposures
and binary traits.

Since some exposures are relatively uncommon, the er-
ror in the observed prevalence can be large, so we also re-
quired that the overall high-low prevalence curve be
outside the 95% confidence interval of the computed ex-
pected deviation under the null (fig. 5). In fact, this criter-
ion suggests considerably more cases of PGS×E than the
strict definition defined by deviation at the tails.
Furthermore, in each case of presumptive canalization
(less deviation than expected) or decanalization (more de-
viation), fitting the linear regression to estimate a, b, c with
an interaction term for PGS×E completely abrogated the
deviation between observed and expected, confirming the
significance of the interaction effects.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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