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SNRPD1 confers diagnostic and therapeutic 
values on breast cancers through cell cycle 
regulation
Xiaofeng Dai1*†  , Lihui Yu1†, Xiao Chen2 and Jianying Zhang3 

Abstract 

Background:  SNRPD1 is a spliceosome-associated protein and has previously been implicated with important roles 
in cancer development.

Methods:  Through analyzing the differential expression patterns and clinical association of splicing associated genes 
among tumor and tumor adjacent samples across different tumors and among different breast cancer subtypes, we 
identify the tumor promotive role of SNRPD1 using multiple publicly available datasets. Through pathway, gene ontol-
ogy enrichment analysis and network construction, we linked the onco-therapeutic role of SNRPD1 with cell cycle. Via 
a series of experimental studies including knockdown assay, qPCR, western blotting, cell cycle, drug response assay, 
we confirmed the higher expression of SNPRD1 at both gene and protein expression levels in triple negative breast 
cancer cells, as well as its roles in promoting cell cycle and chemotherapy response.

Results:  Our study revealed that SNRPD1 over-expression was significantly associated with genes involved in cell 
cycle, cell mitosis and chromatin replication, and silencing SNRPD1 in breast cancer cells could lead to halted tumor 
cell growth and cell cycle arrest at the G0/G1 stage. We also found that triple negative breast cancer cells with reduced 
SNRPD1 expression lost certain sensitivity to doxorubicin whereas luminal cancer cells did not.

Conclusions:  Our results suggested the prognostic value of SNRPD1 on breast cancer survival, its potential as the 
therapeutic target halting cell cycle progression for breast cancer control, and warranted special attention on the 
combined use of doxorubicin and drugs targeting SNRPD1.
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Introduction
Spliceosome is a dynamic complex that catalyzes the 
splicing of precursor RNA into mRNA in eukaryotic 
cells and comprised of 5 small nuclear ribonucleopro-
teins (snRNPs), i.e., U1, U2, U4, U5, U6, and more than 
200 polypeptides [1, 2]. Most spliceosomal snRNPs 
contain a common set of core Sm proteins, i.e., SNRPB, 
SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF, SNRPG 

[2]. It is widely acknowledged that accurate splicing is 
essential to ensure normal cell functionalities such as 
cell cycle, apoptosis, migration and invasion [3–8]. It 
was observed that altered expression of genes involved 
in the splicing machinery was correlated with the inci-
dence of hematological diseases such as chronic lym-
phocytic leukemia and myelodysplasia [9–12]. We 
analyzed the transcriptomic profiles of the 7 core Sm 
proteins across 31 cancer types and among breast can-
cer subtypes, and found that SNRPD1 had the high-
est number of cancers with over 2 folds up-regulation 
between cancer and normal tissues (Table  1), and the 
distribution of SNPRD1 could be nicely split into two 
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sub-distributions by TNBC and non-TNBC while 
the other genes did not (Fig.  1a). In addition, spliceo-
some assembly components were revealed as the most 
enriched pathway deregulated in breast cancers with 
SNRPD1 being an important player according to exonic 
expression profiling of 120 breast tumors and 45 benign 
lesions [13]. A recent reprint identified SNRPD1 as 
one of the top 10 essential ribosome binding proteins 
for breast cancer survival from both the genome-scale 
RNAi loss-of-function screens (DEMETER2) and the 
genome-scale CRISPR-Cas9 loss-of-function screens 
(CERES) [14]. SNRPD1 over-expression was used to 

define subsets of highly aggressive cancers [15] and 
was proposed as therapeutic targets of multiple can-
cers such as melanoma, lung and breast tumor cells as a 
result of induced autophagy [15].

We therefore decided to focus on SNRPD1 and 
explore its potential diagnostic and therapeutic values 
in breast cancers.

Through computational predictions followed by 
experimental validations, we identified from this 
study that SNRPD1 over-expression is prognostic of 
high malignancies among breast cancer patients due 
to accelerated cell cycle, and proposed that targeting 

Table 1  Log2 fold change of gene expression between tumor and adjacent normal tissues across 31 cancer types using 
transcriptomic data stored in TCGA​
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Fig. 1  Rational and workflow of this study. a Distribution of the gene expression of spliceosomal core Sm proteins across breast cancer subtypes 
using TCGA transcriptomic data (gene_TCGA). b Study workflow
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SNRPD1 could halt cell cycle progression at the G0/G1 
phase for effective breast cancer management.

Materials and methods
Computational analysis
Data
The breast cancer quantitative proteomic data set, which 
is comprised of 9995 proteins and 45 samples, was down-
loaded from https://​www.​nature.​com/​artic​les/​s41467-​
019-​09018-y [16], namely the ‘Protein_ NC’ dataset.

TCGA breast cancer transcriptomic data together 
with the clinical data were retrieved from TCGA [17] 
data portal (http://​cance​rgeno​me.​nih.​gov) on Date April 
1st 2018. Files containing patients’ transcriptome data 
were combined into a single matrix comprised of 20,531 
genes and 931 patients including 84 death events. The 
maximum follow-up time on overall survival (OS) is 
120  months. This dataset contains 110 TNBC patients, 
36 HER2 positive patients, and 785 luminal patients. The 
mRNA data was log2 transformed before data process-
ing. This data was referred to as the ‘gene_TCGA’ dataset 
in this study.

Gene expression data of splicosome core proteins 
across 31 cancers were retrieved from GEPIA2 [18], 
which holds RNA sequencing data of 9736 tumors and 
8587 normal samples from the TCGA and the GTEx 
(Genotype-Tisuse Expression) projects.

Breast cancer cell line microarray data consisting of 
183 primary breast tumor samples was downloaded 
from https://​www.​ebi.​ac.​uk/​array​expre​ss/​exper​iments/​E-​
MTAB-​181/ [19, 20]. The data was quantile-normalized 
followed by log2 transformation, and referred to as the 
‘gene_CLM’ dataset in this study.

The web interface tool named ‘GEPIA’ was used to 
retrieve TCGA mRNA expression data of input genes 
across all cancer types [18].

Survival analysis
The 10-year breast cancer OS analysis and relapse free 
survival (RFS) analysis of SNRPD1 were performed using 
Kaplan Meier plotter [21] (http://​kmplot.​com/​analy​sis/). 
A p-value < 0.05 from the log rank test was used as the 
threshold to assess the test statistical significance.

Enrichment analysis
Gene Ontology (GO) [22] and Kyoto Encyclopedia of 
Genes and Genomes database (KEGG) [23] enrichment 
analysis were performed using the R package ‘cluster-
Profiler’ and ‘org.Hs.db.eg’ [24]. Fisher’s exact test was 
utilized to measure the significance of GO terms and bio-
logical pathways. The p-values were adjusted using Ben-
jamini–Hochberg false discovery rate (FDR), and p < 0.01 
was considered as the significance threshold [25]. Gene 

Set Enrichment Analysis (GSEA) was performed to test 
each functional biological term.

Hierarchical clustering
Samples and genes were clustered in a form of heatmap 
using the ‘pheatmap’ function, which uses the hierarchi-
cal clustering function ‘hclust’ with ‘distance’ as the cor-
relation and ‘ward.D2′ as the clustering method. Patient 
subtype was annotated using different colors on the top 
of the heatmap.

Correlation analysis
Pearson correlation was calculated using the ‘gene_
TCGA’ dataset to evaluate the correlations of SNRPD1 
with Ki67, ER, and HER2. The calculation was performed 
in R using function ‘corr’.

Correlation analysis
Receiver operating characteristic (ROC) curves were 
calculated using the R package ‘ROCR’ to compare the 
performances of SNRPD1 and KI67 in prognosing triple 
negative breast cancers.

Experiments
Cell culture
The luminal cell line MCF7 and TNBC cell line 
MDAMB231 were used. Both cells were stored in liquid 
nitrogen in 90% FBS and 10% DMSO solution, thawed 
in DMEM medium supplemented with 10% fetal bovine 
serum (Gibco), and cultured at 37 °C with 5% CO2.

siRNA design
Two siRNAs targeting SNRPD1 were synthesized by 
company GenePharma (Additional file  1: Table  S1) and 
pooled together on usage. GenePharma Silencer Select 
Negative Control was used as the negative control.

Q‑PCR
Total RNA was extracted using TRIzol reagent (Tian-
Gen) 24  h after siRNA transfection, following reverse 
transcription into cDNA using PrimeScriptRT reverse 
transcriptase (Takara). Primers for Q-PCR were listed 
in Additional file  1: Table  S2. The qPCR experiments 
were conducted using the qPCR kit (CWbio) following 
the manufacture’s protocol and using the Roche Light-
Cycler 480 qPCR system. The relative expression levels 
were calculated using the 2−△△Ct methods. Student T 
test was used to evaluate the statistical significance with 
p value < 0.05 being considered statistically significant. 
Primers designed for qPCR were listed in Additional 
file 1: Table S2.

https://www.nature.com/articles/s41467-019-09018-y
https://www.nature.com/articles/s41467-019-09018-y
http://cancergenome.nih.gov
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-181/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-181/
http://kmplot.com/analysis/
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Western blot
Total protein was extracted 48 h after transfection using 
RIPA lysis buffer supplemented with protease inhibitors. 
The protein concentration was estimated using the BCA 
Protein Assay Kit (Tiangen) following the standard pro-
tocol. Protein samples were separated on SDS polyacryla-
mide gel and transferred to polyvinylidene difluoride 
(PVDF) membranes using BioRad wet transfer apparatus. 
The membrane was incubated with primary antibodies 
overnight at 4℃ and with secondary antibodies for 2  h 
after being blocked in 5% non-fat milk for 1 h at the room 
temperature. The signal was detected using Tanon High-
sigECL western Blotting substrate reagents and BioRad 
imaging apparatus.

Proliferation assay
Cells were prepared in 96-well plates with ~ 50% conflu-
ency before transfection. The siRNAs and lipo3000 rea-
gents were mixed in Opti-MEM medium for 15–20 min 
before transfection with a final siRNA concentration 
being 20  nl per well. Cell proliferation was measured 
using CKK-8 (Dojindo) 48  h after transfection, and 
luminescence was detected using EZ Read 800 micro-
plate Reader (Biochrom) after incubation at 37ºC for 2 h. 
Student T test was performed using R to evaluate cell 
viability reduction with p value < 0.05 being considered 
statistically significant.

Cell flow cytometry
Cell flow cytometry was performed 48  h after siRNA 
transfection. Cells were collected using EDTA-free 
trypsin, washed twice using 0.5  ml PBS, suspended in 
cold 70% ethanol, and stored in 4  °C overnight. Ethanol 
was removed and cells were re-suspended in PBS the 
next day followed by 0.05  mg/ml Propidium Iodide (PI) 
addition. Cells were kept in darkness on ice for 30  min 
before being sent to BD C6 flow cytometry. Analysis was 
performed using the flowjo software.

Doxorubicin resistance assays
Various concentrations of doxorubicin (1  nM, 10  nM, 
100  nM, 1000  nM, 10,000  nM) with 3 replicates were 
used for both control and SNRPD1 knocked down cell-
lines. Doxorubicin (Sigma) was added 24  h after siRNA 
transfection. 10ul per well of CKK-8 regent was added 
96  h after transfection, and luminescence was detected 
using EZ Read 800 microplate Reader after cell incuba-
tion at 37ºC for 2 h. The dose–response curve and half-
maximum inhibitory concentration (IC50) values were 
obtained using the ‘drc’ package [26] in R, where a four 
parameter log-logistic model (LL.4) was used for data fit-
ting. Statistical significance on IC50 alteration was evalu-
ated by student T test.

The workflow of this study was presented as Fig. 1b.

Results
Bioinformatics analysis predicts the association of SNPRD1 
with cell cycle
SNRPD1 expression is higher in malignant or highly pro-
liferative cells than normal cells in all types of cancers 
except for LAML (Acute Myeloid Leukemia) according 
to TCGA mRNA data (Fig.  2a). Triple negative breast 
cancers (TNBCs) are more malignant and grow faster 
than the other breast cancer subtypes [27], which exhib-
ited higher SNRPD1 expression than non-TNBCs in 
TCGA patient transcriptomic data (p = 8.4E−4, Fig. 2b) 
and patient protein data protein_NC (p = 0.0016, Fig. 2d). 
Basal breast cancer cells are the counterpart of TNBCs at 
the cell line level, which showed higher SNRPD1 expres-
sion than non-basal cells according to the CLM cell line 
gene expression data (p < 2E−16, Fig.  2c). Both OS and 
RFS analyses showed that high SNRPD1 expression was 
prognostic of unfavourable clinical outcome with statisti-
cal significance (HR = 1.49, p = 0.0021 for OS, HR = 1.52, 
p = 1.6E−13 for RFS, Fig. 2e, f ). ROC curves showed the 
performances of SNRPD1 and KI67 in prognosing tri-
ple negative breast cancers (AUC = 0.82 for SNRPD1, 
AUC = 0.8 for KI67, Fig. 2g).

We defined genes differentially expressed between 
TNBC and non-TNBC cells and highly correlated with 
SNRPD1 expression as ‘spliceosome-related fast-growing 
cell identifiers’ (SRFGs) and identified 434 SRFGs from 
the proteomic data (Additional file 1: Table S3).

GO and KEGG pathway enrichment analyses showed 
that SRFGs were enriched in ‘cell cycle’, ‘DNA replica-
tion’ and ‘mitosis’ using both the ‘protein_NC’ proteomic 
(Fig. 3a, b) and ‘gene_TCGA’ transcriptomic data (Fig. 3c, 
d). It was shown that ‘DNA transcription’, ‘DNA repair’ 
and ‘Cell cycle’ were the most significantly enriched GO 
terms besides ‘splicing’. A network depicting the relation-
ship between the enriched GO terms was constructed 
using SRFGs from the protein_NC data, where each node 
represents an enriched GO term and nodes with similari-
ties > 0.3 were connected by edges. The nodes in the GO 
term network were categorized according to their general 
functionalities, where ‘RNA processing’ and ‘cell cycle’ 
were popped up as two major clusters. The ‘cell cycle’ 
cluster was primarily comprised of 5 inter-connected 
sub-clusters (Fig. 3e).

In order to confirm the role of cell cycle in breast can-
cer development, unsupervised hierarchical clustering of 
protein and mRNA data was performed. TNBC patients 
were clustered together using cell cycle genes from 
SRFGs as the classifier using both the proteomic data 
(Fig.  4a) and the transcriptomic data (Fig.  4c), sugges-
tive of the important role of cell cycle in differentiating 
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TNBC and non-TNBC patients (Fig. 4a, c). GSEA further 
confirmed the enrichment of cell cycle related genes in 
SRFGs using both protein_NC and gene_TCGA datasets 
(Fig. 4b, d).

Correlation analysis showed that SNPRD1 expression 
was highly correlated with cell cycle, with the correlation 
scores being 0.44, 0.25 and 0.35, respectively, in the pro-
tein_NC, gene_TCGA and gene_CLM datasets.
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Fig. 2  Expression profiles and clinical relevance of SNRPD1. a SNRPD1 expression across all cancer types in the gene_TCGA dataset. Expansion of 
abbreviations of the tumor names is listed in Additional file 1: Table S5. SNRPD1 expression across breast cancer subtypes in b gene_TCGA, c gene_
CLM, and d protein_NC datasets. Overall survival (e) and relapse free survival (f) of SNRPD1 in breast cancer patients drawn using Kaplan Meier 
Plotter. g ROC curves of SNRPD1 and KI67
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Fig. 3  Functional enrichment of SRFGs. a KEGG and b GO enrichment of SRFGs using the protein_NC dataset. c KEGG and d GO enrichment of 
SRFGs using the gene_TCGA dataset. e Network of enriched GO terms constructed using protein_NC data
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Experimental validation confirms the role of SNRPD1 in cell 
cycle control
Two siRNAs were designed (Fig.  5a) and purchased 
(Additional file  1: Table  S1). E value was used to assess 
the significance of the homologous similarity of two 
sequences, where two sequences with E < 10E−5 were 
considered highly homologous and such a homology was 
nearly confirmed without a need of further validation if 
E < 10E−6. The siRNA-1 could target the NM_006938.4 
transcript and the siRNA-2 could target both the 
NM_006938.4 and the NM_001291916.2 transcripts. 
None of these two siRNAs could target cell cycle related 
siRNAs assessed in this study with statistically significant 
E value (Table 2).

Both siRNAs could significantly silence SNRPD1 
(p = 0.002 for siRNA-1 and p = 8.6E−4 for siRNA2 in 
MCF7; p = 0.0091 for siRNA-1 and p = 0.0093 for siRNA2 
in MDAMB231), and we obtained considerably improved 
inhibitory effects on SNRPD1 expression by pool-
ing these two siRNAs together (p = 1.22E−5 in MCF7, 
p = 1.64E−5 in MDAMB231, Fig. 5b). Similarly, SNRPD1 
was effectively knocked down in MCF7 and MDAMB231 
cells at the protein expression level (Fig. 5c). We therefore 
used pooled siRNAs in the following assays. In particu-
lar, SNRPD1 mRNA expression was reduced to less than 
10–25% of that of the control cells at the gene expression 
level (Fig. 5b), and about 5–11% of that of the control at 
the protein expression level (Fig. 5c) upon pooled siRNA 
transfection.

Both MCF7 and MDAMB231 cells were subjected 
to reduced cell viability on SNRPD1 knockdown 
(p = 7.56E−7 for MCF7, p = 1.1E−03 for MDAMD231, 
Fig.  5d). Significant discrepancies in G1/G2 propor-
tion were observed between the control and si-SNPRD1 
cells, suggestive of the important role of SNRPD1 in ‘cell 
cycle’. Cells were arrested at the G1 phase, resulting in 
35% increase of G1 phase cells and 55.7% decrease of S 
phase cells, and a slight increase of G2 phase cells were 
observed in si-SNRPD1 cells (Fig.  6a, b). Similar results 
were observed in MDAMB361 and HCC1937 cell lines 
(Fig. 6c, d).

Doxorubicin is one type of anthracycline-like drugs 
that confers cytotoxicity through its antimitotic activity 
and thus is effective in killing cells with accelerated cell 
cycle progression including malignant cells. By apply-
ing doxorubicin to SNRPD1-silenced cells, we observed 

significantly right-ward shifted IC50 in triple negative 
breast cancer cells MDAMB231 and HCC1937 (Fig.  7b, 
7d) but not in luminal cells MCF7 and MDAMB361 
(Fig. 7a, c).

There were 92 SRFGs enriched in the cell cycle pathway 
(HSA-1640170, Additional file  1: Table  S4) as predicted 
using STRING [28]. By classifying these genes into four 
categories, i.e., ‘M’ (genes specific to M phase regulation), 
‘M checkpoint’ (genes specific to M phase checkpoint 
regulation), ‘S’ (genes specific to S phase regulation), ‘S 
checkpoint’ (genes specific to S phase checkpoint regu-
lation), we identified CDCA5 as the sole gene specific to 
M and S phase regulation, 30 and 12 genes specific to M 
and S phase checkpoint regulation, respectively (Table 3). 
We chose one gene from each of the four categories, i.e., 
CDCA5 (represents both ‘M’ and ‘S’), NDC80, CCNA2, 
three genes from G1/S transition (CCNB1, CDK1, PCNA, 
Table 4) to examine whether these cell cycle related genes 
could be significantly modulated by SNRPD1 silenc-
ing in  vitro. All tested genes were significantly altered 
on SNRPD1 silencing in both MCF7 (p = 8.2E−4 for 
CDCA5, p = 0.027 for NDC80, p = 6.2E−4 for CCNA2, 
p = 0.013 for CCNB1, p = 5.1E−4 for CDK1, p = 0.011 for 
PCNA, Fig.  8a) and MDAMB231 cells (p = 3.56E−4 for 
CDCA5, p = 0.0062 for NDC80, p = 2.96E−4 for CCNA2, 
p = 0.009 for CCNB1, p = 0.001 for CDK1, p = 0.005 for 
PCNA, Fig. 8a).

We, in addition, tested the expression of CCND1 whose 
down-regulation is associated with G0/G1 arrest [29] but 
missed from the dataset we used for SRFG identifica-
tion. CCND1 was down-regulated to approximately 20% 
and 60% of the control in SNPRD1-silenced MCF7 and 
MDAMB231 cells at both gene and protein expression 
levels (p = 0.022 at the gene expression level, p = 1.53E−4 
at the protein expression level in MCF7, p = 0.0023 at 
the gene expression level, p = 1.7E−166 at the protein 
expression level in MDAMB231, Fig. 8b), suggestive of a 
G0/G1 cell cycle arrest.

We next explored whether SNRPD1 directly interacts 
with cell cycle related genes. By constructing a protein–
protein interaction network of SNRPD1 and the analyzed 
cell cycle proteins using STRING version 11.0 (https://​
string-​db.​org), we found that SNRPD1 is co-expressed 
with PCNA with a potential direct interaction (Fig.  8c). 
We thus conducted immunoprecipitation to assess 
the interactions of SNPRD1 with PCNA in MCF7 and 

Fig. 4  Assessment of the relationship between SNRPD1 and cell cycle. a Heatmap drawn using cell cycle related genes from SRFGs, and b GSEA 
of ‘GO_CELL_CYCLE’ using the protein_NC dataset. c Heatmap drawn using cell cycle related genes from SRFGs, and d GSEA of ‘BIOCARTA_
CELLCYCLE_PATHWAY’ using the gene_TCGA dataset. e Forest plot showing correlations between SNRPD1 and cell cycle related genes from SRFGs 
across multiple datasets

(See figure on next page.)

https://string-db.org
https://string-db.org
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MDAMB231 cells, and the results showed that SNPRD1 
physically interacts with PCNA in both cell lines (Fig. 8d).

Discussion
Through computational predictions followed by experi-
mental validations, we proposed in this study that 
SNRPD1 over-expression contributes to cell cycle 

progression whose differential expression is prognostic of 
breast cancer outcome and associated with breast cancer 
subtypes, and targeting SNRPD1 could lead to cell cycle 
arrest at the G0/G1 stage.

Downward-regulated expression of CDCA5 [30, 31], 
NDC80 [32], CCNA2 [33] on SNRPD1 silencing sug-
gested reduced synthesis of DNA and proteins as well 

b 

a 

MCF7

d 

p=7.56E-7 
* 

p=1.1E-3 
* 

GAPDH

SNRPD1

NC   Si-1  Si-2  Si-1+2
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c

Fig. 5  Cell viability upon knocking down SNRPD1. a Sequence alignment results showing the target loci of the two siRNAs on SNRPD1. Knocking 
down efficiency of siRNAs used for silencing SNRPD1 in MCF7 and MDAMB231 cells as assessed using b q-PCR and c western blot. ‘si-1’, ‘si-2’ and 
‘si-1 + 2’ each represents siRNA-1, siRNA-2 and their pooled effects. d Normalized cell viability upon SNRPD1 silencing using pooled siRNAs



Page 11 of 16Dai et al. Cancer Cell Int          (2021) 21:229 	

as recessed cell mitosis. Further evidence on reduced 
CCND1 expression after knocking down SNRPD1 impli-
cated the accumulation of cells in the G0/G1 state given 
the regulatory role of CCND1 in triggering G0/G1 cell 
cycle arrest [29].

Results from cell flow cytometry showed that reduced 
SNRPD1 could lead to considerable reduction on the S 
phase, supporting the hypothesis that cells are arrested at 
the G0/G1 stage and explaining the mechanism leading to 
reduced cell viability and increased Anthracycline resist-
ance on knocking down SNRPD1.

It was worth noticing that the role of SNPRD1 in cell 
cycle arrest is independent of breast cancer subtype 
though cell cycle related genes could effectively cluster 
breast cancers into distinct clinically relevant subtypes. 
This is because that although cell cycle progression is 
deterministic of cell proliferation, migration and conse-
quently associated with cancer aggressiveness and sub-
typing, halting cells at a certain cell cycle stage could 
unanimously block cells from progression regardless of 
the types of tumor cells.

Being a spliceosomal core Sm protein, SNRPD1 could 
nicely stratify breast cancer subtypes into TNBCs and 
non-TNBCs (Fig.  1a), showed comparable sensitivity 

Table 2  Sequence alignment of two designed SNPRD1 siRNA 
against SNRPD1 and cell cycle related genes experimentally 
assessed in this study

Type Gene Accession E value Significance

siRNA-1 PCNA NM_182649.2 0.18

CCND1 NM_053056.3 2.4

CCNB1 NM_031966.4 0.29

CDK1 NM_001786.5 0.068

CDCA5 NM_080668.4 1.4

NDC80 NM_006101.3 0.077

CCNA2 NM_001237.5 0.39

SNRPD1 NM_006938.4 0.0000002 *
SNRPD1 NM_001291916.2 0.16

siRNA-2 PCNA NM_182649.2 0.012

CCND1 NM_053056.3 0.15

CCNB1 NM_031966.4 0.29

CDK1 NM_001786.5 /

CDCA5 NM_080668.4 1.4

NDC80 NM_006101.3 0.3

CCNA2 NM_001237.5 0.39

SNRPD1 NM_006938.4 0.0000002 *
SNRPD1 NM_001291916.2 0.0000002 *

Fig. 6  Cell cycle alteration measurement upon knocking down SNRPD1. Quantified Cell cycle profiles as measured by cell flowmetry upon SNRPD1 
silencing in a MCF7 cell line, b MDAMB231 cell line, c MDAMB361 cell line, d HCC1937 cell line
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Fig. 7  Cell viability in response to Doxorubicin upon knocking down SNRPD1. Drug response curves with and without silencing SNRPD1 in a MCF7 
cell line, b MDAMB231 cell line, c MDAMB361 cell line, d HCC1937 cell line

Table 3  Classification of genes enriched in the cell cycle from Reactome pathways among the 434 SRTNS

STRING version 11.0 was used to conduct the enrichment analysis. Experimentally tested genes are highlighted in bold face. ‘M’ and ‘S’ each represents genes specific 
the M and S phase, respectively. ‘M checkpoint’ and ‘S checkpoint’ each means genes specific to M and S phase check point regulation, respectively, which were 
obtained by taking the intersection of genes between ‘M phase’ or ‘S phase’ and ‘cell cycle checkpoint’ pathways. ‘Common’ and ‘Rest’ each represents genes present in 
and absent from all ‘M’, ‘M checkpoint’, ‘S’, ‘S checkpoint’ categories, respectively

M M checkpoint S S checkpoint Rest Common

AAAS NCAPG2 BUB1B NDC80 CDCA5 CCNA2 BLM PSMD3

CDCA5 NCAPH CCNB1 NUF2 CUL1 CDC45 CDC7 PSMD14

CEP152 NCAPH2 CDC20 NUP107 FEN1 MCM2 CHEK1 RPS27A

HAUS1 NDC1 CDCA8 NUP133 PCNA MCM3 GMNN

HAUS2 NUP153 CDK1 NUP160 POLA1 MCM4 MCM10

HAUS3 NUP155 CENPF NUP85 POLA2 MCM5 MDC1

HAUS4 NUP205 CENPH PLK1 POLE MCM6 MND1

HAUS5 NUP210 CENPI RCC2 PRIM1 MCM7 TOP3A

HAUS6 NUP50 CENPO SKA1 PRIM2 ORC6 TOPBP1

HAUS8 NUP93 CENPQ SPC24 RFC2 TPX2

KIF20A SMC2 CENPU SPC25 RFC4 WHSC1

MASTL SMC4 ERCC6L XPO1 RFC5

NCAPD2 VRK1 INCENP ZW10

NCAPD3 KIF2C ZWILCH

NCAPG KNTC1 ZWINT
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and accuracy with the canonical proliferation marker 
KI67 in breast cancer subtyping (Fig. 2g), and exhibited 
similar correlations with KI67 (cor = 0.38, p = 9.2E−33) 
and the primary breast cancer subtyping marker ER 
(cor = − 0.39, p = 4.1E−36), suggesting the prognostic 
value of SNRPD1 on breast cancer subtyping and its rel-
evance with cell proliferation.

As doxorubicin is a chemotherapy that is known to tar-
get highly proliferative cells and typically used to treat 
TNBCs (TNBC cells are more sensitive to doxorubicin 
treatment and have faster cell cycle progression due to 
their more aggressive nature as compared with luminal 
cancer cells) in clinics, silencing SNRPD1 would dampen 
its anti-cancer efficacy if SNRPD1 over-expression was 
associated with enhanced cell cycle progression. As 
expected, doxorubicin resistance in response to SNRPD1 
silencing was observed in triple negative cell lines but 
not luminal cells, which complies with our findings on 
the role of SNRPD1 in cell cycle. Our results also warrant 
special attention in the combined use of drugs targeting 
SNRPD1 and anthracycline-like chemotherapies in the 
treatment of triple negative breast cancers, which needs 
further in vivo validation.

Abnormal alternative splicing has already been impli-
cated in cancer progression such as cell proliferation, 
programmed cell death, metabolism, angiogenesis and 

metastasis [34, 35], rendering splicing an attractive thera-
peutic target for various types of malignancies[1]. For 
instance, inhibiting splicing was considered an effective 
approach to target multiple vulnerabilities of basal A type 
of TNBCs which reply on RNA splicing for survival [36]. 
Tumor cells have evolved abilities to hijack the RNA splic-
ing machinery to reprogram gene expression towards their 
own advantages. It is likely that SNRPD1 over-represen-
tation leads to over-expression of genes promoting cell 
progression and down-regulation of those with cell cycle 
inhibitory roles due to altered RNA splicing.

We also examined the effect of SNRPD1 on other spli-
ceosome complex proteins using SNRPE as an example. 
As a result, no visible variation on SNRPE expression was 
found by silencing SNRPD1 (Additional file 2: Figure S1), 
suggestive of the independent role of SNRPD1 in breast 
cancer survival. This does not exclude the possible exist-
ence of a cross-talk between SNRPD1 and other ribosome 
binding proteins such as SF3B1, SF3B2, RPL5, ARCN1, 
EIF3B, RAN, COPB1, RPL14, VCP, HSPE1, SNRNP200, 
SARS, EEF2, RPL37, CCT3, KPNB1, RPL23 that have 
been reported essential for breast cancer survival besides 
SNRPD1 [14]. However, these are beyond the scope of this 
paper that focuses on core Sm proteins.

It is worth mentioning that we did not examine the func-
tionalities of SNRPD1 on mRNA splicing which has already 
been documented [37]. Instead, our focus is laid on the 
tight association of SNRPD1 with cell cycle to expand our 
understandings on the multifaceted roles of SNRPD1 and 
splicing. Splicesome inhibition has been proposed as an 
effective therapeutic approach for treating MYC-driven 
breast cancers [38]. Breast cancer cell lines we used in 
this study include MCF7, MDAMB231, MDAMB361 and 
HCC1937, which are all not MYC-driven as compared with 
the quasi-normal cell line MCF10A (Additional file 2: Fig-
ure S2). Thus, cell lines we used in this study may not be 
vulnerable to splicesome inhibitors as to silencing SNRPD1. 
On the other hand, none of the known splicesome inhibi-
tors (including pladienolide B, E7107, FR901464, meay-
amycin, spliceostatin A, and sudemycines, isoginkgetin, 
herboxidine) was reported to target SNRPD1, whereas 
SF3b was identified as the common target of pladienolides 
and spliceostatin A [39, 40], SAP155 was that of herbox-
idine [41], and MMP9 was that of isoginkgetin [42]. Thus, 
splicesome inhibitors, though modulating the splicing pro-
cess, may not affect SNRPD1 expression and thus achieve 

Table 4  Classification of genes enriched in cell cycle transitions 
from Reactome pathways among the 434 SRTNS

STRING was used to conduct the enrichment analysis. Experimentally tested 
genes involved in G1/S transition are highlighted in bold face

G1/S transition G2/M transition

CCNA2 MCM6 CCNA2 HAUS8

CCNB1 MCM7 CCNB1 PLK1

CDC45 ORC6 CDK1 PSMD14

CDC7 PCNA CENPF PSMD3

CDK1 POLA1 CEP152 RPS27A

CUL1 POLA2 CUL1 TPX2

GMNN POLE HAUS1 XPO1

MCM10 PRIM1 HAUS2

MCM2 PRIM2 HAUS3

MCM3 PSMD14 HAUS4

MCM4 PSMD3 HAUS5

MCM5 RPS27A HAUS6

Fig. 8  Expression of cell cycle related genes and potential mechanism of SNRPD1 in cell cycle regulation. a Expression of cell cycle related genes 
CDCA5, NDC80, CCNA2, PCNA, CCNB1, CDK1, CCND1 after silencing SNRPD1 at the mRNA level in MCF7 and MDAMB231 cells. b Expression of cell cycle 
related gene CCND1 after silencing SNRPD1 at the (b) proteomic levels together with its quantified signal intensity in MCF7 and MDAMB231 cells. 
c Predicted protein–protein interaction network of SNRPD1 and cell cycle related proteins using STRING. d Immunoprecipitation of SNRPD1 and 
PCNA in MCF7 and MDAMB231 cells

(See figure on next page.)
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similar effects. As one evidence here, silencing SNRPD1 did 
not affect the VEGF/VEGFR axis (Additional file 2: Figure 
S3) that was reported to be modulated by spliceostatin A 
[43]. In addition, due to cytotoxicity, spliceosome inhibitors 
may cause cell cycle alterations under appropriate dosing 
[44] which, however, is not through targeting SNRPD1.

Conclusions
We identified the novel association of SNRPD1 with cell 
cycle progression in breast cancers, and therefore pro-
posed SNRPD1 as a novel target for breast cancer control 
through halting cell cycle progression at the G0/G1 phase. 
We are the first to link the role of SNRPD1 with cell cycle 
progression and explain the distinct clinical outcomes 
of breast cancer subtypes using its differential expres-
sion. This study implicates the therapeutic potential of 
SNRPD1 in breast cancer control that might be expanded 
to other types of cancers and warrants the combined use 
of doxorubicin and drugs targeting SNRPD1 in treating 
triple negative breast cancers, which are subjected to 
experimental validations.
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