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Abstract

Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged
post-synaptic density (PSD) and serve as the primary post-synaptic location of the excitatory neurotransmission that
underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle
myosin IIB (MIIB) activity determines where spines form and whether they persist as filopodia-like spine precursors or
mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation
of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of
the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB
activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor
activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a
mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer
restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases
PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only
mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in
mushroom-shaped spines with an enlarged PSD.
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Introduction

Dendritic spines are the primary post-synaptic sites of excitatory

neurotransmission in the brain [1]. They are highly dynamic

structures that develop from exploratory, filopodia-like processes

into a compact, mushroom-shaped structure with a highly orga-

nized post-synaptic density (PSD) located at the tip [2,3]. The PSD

contains cell adhesion proteins, glutamate receptors, cytoskeletal

molecules, and a complex membrane-associated, cytoplasmic sig-

naling network [4,5,6]. Appropriate spine density, morphology, and

PSD organization are critical for the neuronal function that

underlies learning and memory [7,8]. As such, a diverse spectrum

of learning and memory disorders exhibit dendritic spine abnor-

malities, including neurodevelopmental disorders, such as autism,

Down’s syndrome, non-syndromic mental retardation, neurode-

generative diseases, like Alzheimer’s, and psychoses, such as

schizophrenia [9,10].

Despite the importance of proper spine morphology and PSD

organization, the structural and regulatory mechanisms that

organize them are not understood. Recent evidence implicates

the polymerization and organization of actin in spine organization,

although how it does this is unclear [11,12]. Myosin IIB (MIIB),

the predominant non-muscle myosin II isoform found in brain,

contributes to actin organization in most cell types through its

cross-linking and contractile properties and is implicated in spine

morphology [13,14,15]. MIIB activity is regulated by phosphor-

ylation on residues Thr18 and/or Ser19 in its regulatory light

chain (RLC); simultaneous phosphorylation on both residues

promotes maximal myosin ATPase activity and formation of large

actin bundles [14,16,17]. We have previously identified a signaling

cascade that functions through RLC phosphorylation to regulate

spine density [18]. More recent evidence points to MIIB as a

potentially important regulator of the spine dynamics underlying

learning and memory [15,18,19]. In particular, short-term inhibi-

tion of MIIB activity induces immature filopodia-like spines and

results in a corresponding disruption of long-term potentiation

(LTP) and memory acquisition [15,19]. While the importance of

MIIB seems clear, the mechanism by which it shapes spine

morphology is unknown.

In addition to spine morphology, proper organization of the

PSD is also important for synaptic signaling, as PSD size is related

to spine head area and directly correlated with synaptic strength
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Figure 1. Inhibition of myosin IIB activity increases the number and length of filopodia-like protrusions. A) Hippocampal neurons
transfected with GFP at DIV 6 were fixed and immunostained for endogenous MIIB at DIV 9, 16, and 21. Arrows point to different spine morphology
types. B) Hippocampal neurons were co-transfected at DIV 6 with GFP and either an shRNA vector against MIIB (pSUPER-IIB) or a control empty vector
(pSUPER). Neurons were fixed at DIV 21 and scored for (C–G) changes in spine length, branching number and length, morphology and head area.

MIIB Dictates Spine and PSD Morphology
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[20,21]. While many molecules that reside in the PSD have been

identified, much less is known about the mechanisms that

determine its morphology and organization [4,6]. The PSD is

now thought to be dynamic and undergo rapid fluctuations in

morphology [22,23]. Several proteins within the PSD scaffold

reportedly interact with the actin cytoskeleton [5,24], raising the

possibility that actin organization may underlie PSD morphology.

The dramatic effect of MIIB on actin organization points to a

likely role for it in the organization of the PSD and regulation of

synaptic plasticity.

In this study, we dissect the contributions of MIIB activity to

spine morphology and PSD organization during maturation and

in response to stimuli. We find that MIIB activity restricts the

formation of nascent protrusions on dendrites. However, MIIB

activity subsequently mediates spine maturation, with RLC T18,

S19 di-phosphorylation required for mature, compact spines. This

maturation is mediated by the contractile activity of MIIB since an

actin-cross linking, contractile-deficient mutant of MIIB, MIIB-

R709C, does not promote maturation. Stimulation induced

maturation of spines also requires di-phosphorylated RLC. MIIB

also plays a central role in PSD organization. When inhibited, it

creates elongated PSDs localized away from the spine tip; how-

ever, when fully active, it drives PSD compaction and localization

to the spine tip. Thus, MIIB activity determines spine formation

and orchestrates the spine and PSD morphologies that underlie

post-synaptic plasticity.

Results

Myosin IIB Regulates Spine Morphology and Dynamics
MIIB localizes to dendritic protrusions of various morphologies,

including filopodia-like protrusions, as well as thin, stubby and

mushroom-shaped spines (Fig. 1A). Chronic inhibition of MIIB by

shRNA knockdown does not change spine density detectably

(,1.2 spines/mm dendrite for both day in-vitro (DIV) 21 control

and MIIB-deficient neurons) [15]. Instead, it produces longer

spines as measured from base to tip (including protrusions

emanating from the spine head) (Fig. 1 B–C) [15,25]. Spine heads

were identified as focal expansions, which contain a PSD (PSD-95

immunostaining not shown). Noticeably, there is an increase in the

number of long protrusions branching from MIIB-deficient spine

heads, resulting in the spine head positioned away from the spine

tip (Fig. 1 B, D, E). At DIV 21, control neurons predominantly

display mushroom-shaped spines, consisting of a large bulbous

spine head on top of a short spine neck. However, MIIB knock-

down neurons display significantly less mushroom-shaped spines

and more filopodia-like protrusions than controls (note: mush-

room-shaped spines with emanating protrusions were classified as

‘‘mushroom’’) (Fig. 1B, F). While these MIIB-deficient spine heads

exhibit a significantly larger area than controls, they are often

more elongated in shape (Fig. 1B, G). Thus, MIIB is required for

spines to develop and maintain a mushroom-shape.

To monitor the acute effects of MIIB inhibition on spine

dynamics, we used time-lapse confocal imaging of local application

of blebbistatin using a micropipette. Nascent spines emerge and

protrude in response to the local application of blebbistatin (Fig. 2A

and Video S1), showing that local MII inhibition leads to

formation of new protrusions (Fig. 2B). However, blebbistatin

micropipetting also increased spine retraction (Fig. 2C and Video

S1), demonstrating that inhibition of MIIB activity does not

disrupt spine pruning, but promotes the dynamic assembly and

disassembly of spines. Similarly, in MIIB knockdown neurons, we

observed that protrusions extend and retract more frequently and

were substantially longer than those in the corresponding controls

(Fig. 2D, E and Videos S2, S3). Despite their length, these

protrusions are not de novo dendrites, as post-imaging fixation and

immunostaining reveal actin-rich structures that do not contain

the dendrite marker, MAP2 (data not shown).

Myosin IIB is required for Spine Maturation in Response
to NMDA Receptor Stimulation

Since MIIB inhibition creates filopodia-like protrusions and

inhibits spine development into compact, mushroom-shaped

structures, we hypothesized that MIIB also mediates the acute,

activity-induced morphology changes that underlie spine matura-

tion. To test this, we selectively activated synaptic NMDA

receptors with the co-agonist glycine and assayed for morpholog-

ical changes indicative of spine maturation, including decreased

spine length and increased spine tip width (i.e., mushroom-shaped)

[26]. At DIV 14–17, neurons display many immature filopodia-

like spines, allowing us to observe an accelerated, acute maturation

response to stimulation. Glycine stimulation of control neurons

promotes extensive maturation, including spine shortening and

spine tip enlargement, resulting in the appearance of numerous

mushroom-shaped spines (Fig. 3). In contrast, acute inhibition of

MIIB with blebbistatin prevented both spine shortening and

increased spine tip width; instead, spines persisted as filopodia-like

projections even when stimulated with glycine (Fig. 3A–D).

However, shRNA knockdown of MIIB did not prevent spine

shortening in response to glycine, but did prevent an increase in

spine tip width (Fig. 3E–G). Thus, shRNA knockdown of MIIB

also leads to the persistence of filopodia-like protrusions (Fig. 3H).

Together these results demonstrate that MIIB mediates the

morphological transition from immature filopodia-like protrusions

into mature mushroom-shaped spines.

Myosin IIB-mediated Contractility Underlies Spine
Maturation

MIIB organizes actin filaments by two mechanisms: it cross-

links to form actomyosin bundles, and it also moves antiparallel

filaments in an ATPase-dependent manner, thereby contracting

them [14]. Overexpression of wild type (WT) MIIB accelerates

spine maturation into a mushroom-shape, suggesting that

Knockdown of MIIB in hippocampal neurons causes a ,2-fold increase in spine length, C. Knockdown of MIIB causes a large increase in the number
of protrusions branching from the spine head. Spine heads were identified by morphology and localization of PSD-95. Note the small fraction of
spines that contain protrusions branching from the spine head in the controls, D. MIIB knockdown produces many long protrusions branching from
the spine head, which results in spine head positioning away from the spine tip, E. MIIB knockdown creates an increase in the fraction of thin (long
protrusions with small head at tip) and filopodia-like spines (long protrusions without a spine head) with a concomitant decrease in the fraction of
mushroom and stubby spines, F. Spine heads present in MIIB knockdown neurons are larger in area, G. For each quantification, 512 spines from 23
control neurons and 619 spines from 36 MIIB knockdown neurons were analyzed. Error bars represent SEM. p-values were derived using the Mann-
Whitney test (C, D, E, G) and Chi-square test (F). Scale bar = 5 mm for all panels.
doi:10.1371/journal.pone.0024149.g001

MIIB Dictates Spine and PSD Morphology

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e24149



MIIB Dictates Spine and PSD Morphology

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e24149



MIIB-mediated contractility enhances spine maturation (Fig. 4A–

D). To determine whether contractility, per se, is sufficient to

create mushroom-shaped spines, we expressed a mutant, MIIB

R709C, which has inhibited ATPase activity but is locked in an

actin-bound state. This mutant incorporates into actomyosin

bundles with high effective affinity and promotes actomyosin

bundling, but not contraction [27,28]. When MIIB-R709C is

expressed in hippocampal neurons, it leads to the persistence of

filopodia-like spines (Fig. 4A, D), even into later stages of neuronal

development (data not shown). It also induces a two-fold longer

spine length when compared to WT MIIB- or GFP-expressing

controls (Fig. 4 A, B). Furthermore, WT-MIIB, but not MIIB-

R709C, increased PSD size (Fig. 4E, F), which correlates with

spine head volume and LTP [29]. Finally, WT-MIIB, but not

MIIB-R709C, induces a significant (p,0.001) increase in the

number of post-synaptic sites per mm dendrite (1.29 PSDs/mm

dendrite for WT-MIIB, 0.81 PSDs/mm dendrite for GFP, and

0.75 PSDs/mm dendrite for MIIB-R709C). These results suggest

that MIIB contractility mediates spine and PSD maturation.

Differential Myosin Regulatory Light Chain (RLC)
Phosphorylation Dictates Distinct Spine Morphologies

MIIB localizes to both immature filopodia-like protrusions as

well as mature mushroom-shape spines (Fig. 1A). How MIIB

activity is regulated to determine spine morphology is unclear. In

fibroblasts, simultaneous RLC phosphorylation on residues T18

and S19 increases MIIB activity and creates front-back polarity

[16,30]. We therefore asked whether RLC phosphorylation

regulates post-synaptic MIIB activity to create mature mush-

room-shaped spines. In response to NMDA receptor activation by

glycine, we stained for di-phosphorylated RLC (T18, S19), and

observed a significant increase (Fig. 5 A-B). To determine whether

RLC-T18,P, S19,P di-phosphorylation is necessary for spine

maturation, we activated NMDA receptors with glycine in neurons

expressing RLC-T18A, S19D (RLC-A, D), which mimics mono-

but prevents di-phosphorylation [16]. While control neurons

matured into a mushroom-shaped spine, RLC-A,D prevented

spine maturation; instead they persisted as filopodia-like protrusions

(Fig. 5 C–D). In contrast, expression of a di-phosphomimetic

mutant, RLC-T18D,S19D (RLC–D,D) increased spine maturation

and PSD area when compared to GFP or RLC-AD expressing

neurons (Fig. 5 E–G). Therefore, while mono-phosphorylation

inhibits spine maturation and PSD enlargement, RLC di-phos-

phorylation is necessary for and promotes it.

Rho Kinase (ROCK) regulates RLC T18, S19
di-phosphorylation and spine maturation

ROCK is a kinase that increases RLC phosphorylation on T18

and S19 both directly and indirectly through inhibition of myosin

light chain phosphatase [31,32]. We therefore determined whether

ROCK regulates post-synaptic RLC di-phosphorylation and spine

morphology. Neurons treated with the ROCK inhibitor, Y-27632,

showed long filopodia-like spines with an increased length (Fig. 6

A–B) and similar to those observed when RLC di-phosphorylation

is inhibited by expression of RLC-AD (Fig. 5) [33]. In contrast,

inhibition of myosin light chain kinase, another RLC kinase, did

not increase spine length (data not shown) [34]. Furthermore,

expression of the di-phosphomimetic RLC-D,D mutant supersed-

ed the effects of Y-27632 on spine length, suggesting that RLC is a

major post-synaptic target of ROCK activity (Fig. 6B). Using an

antibody specific for di-phosphorylated RLC T18P, S19P, we

observed an ,20% decrease in the post-synaptic levels of di-

phosphorylated RLC with Y-27632, coincident with an increase in

spine length (Fig. 6 C–D). Calyculin A, which inhibits myosin light

chain phosphatase [35] increased RLC-P,P and induced the

formation of mushroom-shaped spines with enlarged PSDs (Fig. 6

C–F). Thus, post-synaptic regulation of RLC di-phosphorylation

underlies spine maturation.

Myosin IIB Regulates Post-Synaptic Density Organization
The PSD is a highly ordered, yet dynamic structure, undergoing

continual variations in morphology [22]. We therefore asked

whether actomyosin activity regulated the size, shape, or location

of the PSD in the spine. To study PSD morphology, we stained for

the PDZ-containing synaptic scaffold protein PSD-95, which is a

canonical PSD marker that appears early during PSD formation

[36]. Whereas control spines exhibit a compact, round, or slightly

elliptical PSD, MIIB knockdown spines displayed an elongated

PSD with larger perimeters (Fig. 7 A–C). Furthermore, in control

cells, PSD-95 localizes mainly to the spine tip; however, in MIIB-

deficient neurons, the elongated PSD localizes away from the

spine tip and base, toward the center of the filopodia-like spine

(Fig. 7 D, E). Similar results were observed using another PSD

marker, shank (Fig. 7F) [24], suggesting that MIIB controls the

morphology of the PSD globally, rather than through specific

effects on some of its constituents.

Discussion

Non-muscle myosin II plays a major role in the organization of

actin filaments and dictates the diverse morphologies and

directional movement of various cell types. These include the

apical constriction of epithelial cells, nuclear positioning, orienta-

tion of the microtubule-organizing center, Golgi and the con-

tractile ring of dividing cells, and polarization of migrating fibro-

blasts [14]. Of the MII isoforms, MIIB is the predominant one

found in hippocampal neurons, and its activity and effective

affinity for actomyosin filaments is regulated by RLC [13,14].

Previous studies have implicated MIIB as a target of a signaling

Figure 2. Inhibition of myosin IIB activity affects spine dynamics. A) A DIV 7 cortical neuron expressing DsRed2 was locally micropipetted
with either DMSO or 100 mM blebbistatin at the indicated times. Note the increase in the fraction of spines that appear and extend in response to
blebbistatin. Arrowheads indicate either nascent or elongating spines as shown in Video S1. Scale bar = 5 mm. B–C) Quantification of new spine
formation (B) or loss of spines (C) following blebbistatin micropipetting (micropipetting of 5 different cortical neurons). The number of new or lost
spines is corrected for the number of new or lost spines observed prior to micropipetting, i.e. the control period. D–E) Time-lapse confocal imaging
was performed on DIV 13–14 hippocampal neurons co-expressing GFP and either an shRNA vector against MIIB or a control empty vector. Scale
bar = 5 mm. Spines from MIIB knockdown neurons extend and retract more frequently (arrows) than spines in control neurons (arrowheads), D. MIIB
knockdown increases the frequency of spine protrusion and retraction, E. Note the unusual length of the protrusions in the MIIB knockdown neurons.
Quantification in (E) is based on 3 MIIB knockdown neurons and 5 control neurons each acquired for 15 minutes. Error bars represent SEM. *p,0.01,
Mann-Whitney test.
doi:10.1371/journal.pone.0024149.g002
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pathway that is mutated in non-syndromic mental retardation and

in spine development and memory formation [15,18,19,37]. We

now address the mechanisms by which MIIB acts on spines and

show that differential MIIB activity determines where spines form,

creates diverse post-synaptic spine morphologies, and mediates the

morphology, size, and positioning of the PSD. It also mediates the

changes in spine morphology in response to stimuli. Thus, MIIB

emerges as a major downstream regulator of the component

processes underlying post-synaptic plasticity, and implicitly, learn-

ing and memory.

Spine maturation consists of three stages: emergence of

protrusions along the dendritic shaft, spine elongation, and

maturation into a mushroom-shape [3]. Our results demonstrate

that differential MIIB activity mediates and coordinates these

diverse stages of spine development. Highly branched and dynamic

spines emerge along the dendritic shaft and proceed to develop into

the long dendritic protrusions that characterize immature spines,

which persist in the absence of full, i.e., di-phosphorylated RLC,

MIIB activation. This suggests that MIIB normally functions to

restrict membrane protrusion and branching [38,39]. It also

suggests that the elongation of filopodia-like protrusions occurs in

the absence of strong MIIB contractile activity. Several observations

support this hypothesis. Myosin IIB inhibition or knockdown

produces numerous long filopodia that do not mature [15]. In

addition, the contractile-deficient myosin IIB mutant, R709C,

cross-links but does not contract actin and results in persistently long

spines. Similarly, inhibition of RLC T18, S19 di-phosphorylation by

expressing RLC T18A, S19D or inhibiting ROCK activity using Y-

27632 similarly produces filopodia-like spine precursors; however

we cannot exclude contributions from other ROCK targets, like

LIMK1 [33,40,41].

Excitatory stimulation increases PSD size, which directly

correlates with synaptic strength and leads to long-term potenti-

ation [7,29,42]. MIIB determines PSD positioning as well as its

morphology. When MIIB is inhibited, the PSD becomes elongated

and is no longer at the spine tip. An analogous change is seen in

migrating fibroblasts, where large central adhesions tend to

disperse when MII activity is inhibited [43,44,45]. In addition,

increased myosin IIB activity via RLC T18, S19 di-phosphory-

lation, enlarges both the PSD and fibroblast adhesions [16]. In this

context, the combination of crosslinking and contraction induced

by MII activity, likely serves to cluster the numerous PDZ- and

SH3-domain containing actin binding proteins found within the

PSD [46,47,48]. MIIB-generated forces could also increase PSD

size by inducing conformational changes in PSD components that

present new binding sites for the recruitment of additional

molecules, as also reported in fibroblasts [49,50].

During post-synaptic development, changes in spine morphol-

ogy correlate with changes in PSD organization and synaptic

signaling. Specifically, maturation of spines into a mushroom-

shape and PSD enlargement at the spine tip enhances the synaptic

signaling that underlies learning and memory formation [7]. Our

findings show that myosin IIB coordinates the spine and PSD

morphological changes that occur in response to excitatory

stimulation. Furthermore, differential regulation of MIIB activity

through RLC phosphorylation states switches spine and PSD

shape from filopodia-like spine precursors with smaller PSDs to

mature mushroom-shape spines with larger PSDs. Thus, myosin

IIB serves as a critical regulator of post-synaptic plasticity,

consistent with the observation that myosin IIB is necessary for

memory formation [19].

Our observations and previous literature lead to a model for the

role of MIIB in spine formation and maturation. Spines form in

regions of inactive MIIB and can extend into long filopodia-like

structures in the absence of high MIIB activity. The most likely

mechanism for this formation and extension is due to localized

activation of Rac. The GIT1/PIX/PAK complex, which contains

the Rac-activator PIX and Rac-effector PAK, is one mechanism

by which Rac activation is localized to generate spines [18,51].

These filopodia-like spines are highly dynamic and protrude and

retract frequently; since MIIB is not required for this activity, it is

likely that this arises largely from actin polymerization and

depolymerization. In contrast, the maturation into a compact,

mushroom-shaped structure requires MIIB contractile activity;

however, Arp2/3-driven actin polymerization may contribute as

well to drive spine head expansion, in analogy with the broad

protrusions it mediates in migrating fibroblasts [52,53,54]. Finally,

MIIB may also serve to localize signals that affect spine mor-

phology and function, such as GEFs that mediate Rac activity,

e.g., ß-PIX and Kalirin-7, or other mechanoresponsive molecules

that regulate signaling in other cell types [18,55,56]. Our holistic

view of the effect of myosin II on the component processes of post-

synaptic development provides the framework for the identifica-

tion of critical therapeutic targets, such as ROCK, for the

treatment of learning and memory disorders.

Materials and Methods

Antibodies and reagents
Postsynaptic density-95 (PSD-95) monoclonal antibody was

purchased from Santa Cruz Biotechnology (Santa Cruz, CA) and

used at ratio of 1:100 for immunostaining. Non-muscle myosin

heavy chain II-B polyclonal antibody was obtained from Covance

(Emeryville, CA) and used at a ratio of 1:1000. A polyclonal

Figure 3. Inhibition of myosin IIB activity prevents spine morphological changes in response to NMDA receptor activation. A, E)
When MIIB is inhibited using blebbistatin (A) or MIIB knockdown (E), spines do not shorten or assume a ‘‘mushroom’’ morphology in response to
glycine. Hippocampal neurons were transfected on DIV 6 with GFP or co-transfected with GFP and either an shRNA vector against MIIB or a control
empty vector. Neurons were treated with glycine on DIV14 (in the presence of DMSO or blebbistatin, A) or DIV16 (MIIB knockdown or empty vector
control, E) to activate NMDA receptors. B–D, F–H) Quantification of spine morphology in response to MIIB inhibition and glycine stimulation.
Blebbistatin (B) or MIIB knockdown (F) prevents spine shortening in response to glycine stimulation and increases spine length compared to controls;
note some decrease in spine length in the knockdown in response to glycine. Fraction of spines with a large head, spine tip width $ 0.4 mm,
increases in response to glycine stimulation but is prevented by blebbistatin (C) or MIIB knockdown (G). In the presence of blebbistatin (D) or MIIB
knockdown (H), glycine does not increase the fraction of mushroom-shaped spines in contrast to stimulated controls. For each condition, 530–895
spines from 15–21 neurons were analyzed. Error bars represent SEM. *p,0.001, Mann-Whitney test (B, F), t-test (C, G), Chi-square test (D, H). Scale
bar = 5 mm for all panels.
doi:10.1371/journal.pone.0024149.g003
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antibody against phosphorylated RLC-T18, S19 was purchased

from Cell Signaling Technologies and used at a ratio of 1:100-1:200

(Danvers, MA). Secondary anti-mouse and anti-rabbit antibodies

conjugated to Alexa488, 568 and 647 were from Invitrogen.

Blebbistatin, Calyculin A, and Y-27632 were purchased from

Calbiochem (La Jolla, CA) and used at the concentrations indicated

in the figures. Tetrodotoxin and strychnine were purchased from

Sigma and reconstituted in dH2O.

Plasmids
The shRNA knockdown vector for MIIB has been described

elsewhere [27]. GFP-MIIB was a gift from Robert S. Adelstein

[57]. RNAi-insensitive GFP-MIIB and GFP-MIIB-R709C mu-

tants have been described previously [27]. The 39-UTR

encompassing 1500nt’s was cut out of both GFP-MIIB and

GFP-MIIB-R709C vectors using XmaI restriction enzyme. The

1.5 kb DNA piece was ligated into the 9 kb vector backbone and

sequenced to verify correct orientation of the insert. PSD-95-GFP

was a gift from David Bredt [58]. RLC-GFP constructs (WT, DD)

were kindly provided by Kathleen Kelly (National Cancer

Institute, Bethesda, MD), and RLC-AD-GFP was generated as

previously described [16].

Neuronal culture and transfection
Low-density hippocampal cultures were prepared from E19 rat

embryos as described previously [59]. All experiments were

carried out in compliance with the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and

approved by the University of Virginia Animal Care and Use

Committee (Protocol Number: 2884). Neurons were plated

on glass coverslips coated with 1 mg/ml poly-L-lysine at an

approximate density of 70 cells/mm2 and were transfected using a

modified calcium phosphate precipitation method as described

previously [51]. Cortical neurons were nucleofected with DsRed2

as described by [60], and plated on poly-L-lysine coated imaging

dishes. DIV 5–12 cortical neurons were micropipetted with

100 mM-1 mM blebbistatin for 10 msec-1 sec with 5psi pressure

using an IM 300 Microinjector from Narishige International USA,

Inc. (East Meadow, NY). For the chemical stimulation experi-

ments involving knockdown or inhibition of MIIB (Fig. 3),

DIV14–17 neurons were removed from the glia-feeder layer and

placed in 1X Mg2+-free extracellular solution containing 15 mM

NaCl, 0.5 mM KCl, 0.2 mM CaCl2, 3 mM glucose, 1 mM

Hepes, 0.5 mM tetrodotoxin, and 1 mM strychnine, pH7.4 [26].

Stimulated neurons are treated with 200 mM glycine and

incubated at 35uC, 5% CO2 for 3 min. The solution is removed

and replaced with 1X Mg2+-free extracellular solution with

tetrodotoxin and strychnine and incubated at 35uC, 5% CO2 for

20 minutes before fixation. For inhibition of MIIB activity with

blebbistatin, neurons were pre-treated for 30 minutes and

throughout the protocol with either 100 mM blebbistatin or a

corresponding volume of DMSO as a control. Alternatively (Fig. 5),

neurons were chronically treated with 100 mM of the NMDA

receptor antagonist, AP-5, from DIV 6-21 to inhibit NMDA

receptor activation and spine maturation. Neurons were then

stimulated by AP-5 withdrawal and addition of 200 mM glycine,

while control neurons continued in the presence of AP-5

(200 mM), as described by others [61,62].

Immunocytochemistry
Neurons were fixed in PBS containing 4% formaldehyde,

methanol-free, ultra-pure EM grade (Polysciences, Inc., Warring-

ton, PA) with 4% sucrose for 20 min at room temperature and

permeabilized with 0.2% Triton X-100 for 10 min. Alternatively,

for PSD-95 and RLC-T18P, S19P staining, neurons were

simultaneously fixed and permeabilized in 2% formaldehyde with

4% sucrose for 10 min at room temperature and then with cold

methanol for 10 min at 220uC. After blocking with 20% goat

serum/PBS for one hour at room temperature, the neurons were

incubated with the appropriate antibodies in 5% goat serum/PBS

for one hour at 37uC. RLC-PP staining was performed in PBS

only. Coverslips were mounted with Vectashield mounting media

(Vector Laboratories, Burlingame, CA).

Imaging and analysis
Confocal images were collected on an Olympus Fluoview 1000

microscope (IX81 base) equipped with a 60X/1.35 NA (oil)

UPLSAPO 60X objective (Olympus). Green probes (GFP and

Alexa488) were excited using the 488 nm laser line of a multi Ar

laser; red probes (DsRed2 and Alexa568) were excited with the

543 nm laser line of a He-Ne laser; the far-red probe Alexa647 was

excited with the 635 nm line of an LD laser. Fluorescence

emission was collected using the following dichroic mirror/filter

combinations: SDM560/BA505–525 (GFP), SDM640/BA560–

620 (DsRed2, Alexa568 and RhodamineX) and BA655–755

(Alexa647). Two-color fluorescence images of Alexa488 (GFP)/

Alexa568 (RhodamineX/DsRed2) were collected in a Z-stack and

in sequential mode. Images were acquired using Fluoview software

(Olympus). Spine length, width, PSD-95 long and short axis, area,

and perimeter were quantified using Image J software. Statistical

analysis was performed using Sigma Plot 11. Spine morphologies

were defined as either filopodia-like, thin, mushroom, or stubby

[3]. Filopodia-like spines are long and thin without a spine head,

whereas thin spines contain a small head at the spine tip.

Mushroom-shaped spines are shorter with a large spine head atop

a neck. Stubby spines are short protrusions, either thin or wide,

with no discernable neck. Statistical analysis of spine morphology

in Figures 1, 3 and 4 were performed with SAS 9.2.

Figure 4. Myosin contractility promotes spine maturation. A) Hippocampal neurons were co-transfected at DIV 6 with DsRed2 and either GFP,
GFP-MIIB WT (wild type), or GFP-MIIB-R709C (an actin-binding but contractile-deficient mutant) and fixed at DIV 14 or 15. Note the increased length of
the non-contractile mutant and increase in mushroom-shaped spines in the cells expressing ectopic MIIB. B–D) Spine length, measured via DsRed2, is
significantly longer in neurons expressing GFP-MIIB-R709C but is not different between GFP control and neurons expressing GFP-MIIB WT, B. Spine
head width, visualized using cytoplasmic DsRed2, is greater in neurons expressing GFP-MIIB WT; but there is no difference in the spine head width of
neurons expressing GFP-IIB-R709C and GFP control neurons, C. The fraction of mushroom shaped spines is greater in neurons expressing GFP-MIIB
WT; whereas the fraction of filopodia-like spines is greater in neurons expressing GFP-MIIB-R709C, D. E–F) The PSD area increases in DIV 21–23
neurons expressing WT-MIIB, but not in the controls or neurons expressing R709C. For each condition, 424–582 spines from 6–15 neurons were
analyzed. Error bars represent SEM. *p,0.001, Mann-Whitney test (B, C, F), Chi-square test (D). Scale bar = 5 mm for all panels.
doi:10.1371/journal.pone.0024149.g004

MIIB Dictates Spine and PSD Morphology

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e24149



Figure 5. RLC T18, S19 di-phosphorylation mediates spine maturation. A) Glycine-activation of NMDA receptors stimulates spine
maturation and increases RLC-T18, S19 di-phosphorylation in spines (arrowheads indicate increased RLC-T18, S19 ,P in glycine-stimulated spines).
DIV 21 neurons expressing GFP were chronically treated with the NMDA receptor antagonist AP-5 to inhibit spine maturation. Neurons were acutely
stimulated by AP-5 withdrawal and the addition of 200 mM glycine, while control neurons were continuously treated with AP-5. B) Quantification of
spine-associated RLC-T18, S19 di-phosphorylation by staining reveals a significant increase following NMDA receptor activation. 706 spines from 7
neurons were analyzed for AP5 controls and 843 spines from 8 glycine stimulated neurons. C) RLC-AD inhibits spine maturation in response to
glycine activation of NMDA receptors. DIV 21 neurons were treated as described in (A) and immunostained for the dendrite marker, MAP-2 (magenta).
D) RLC-AD prevents spine shortening in response to glycine (4C, arrows). We analyzed 2032 spines from 12 AP-5-treated GFP neurons, 1698 spines
from 15 glycine stimulated GFP neurons, 1017 spines from 7 AP-5-treated RLC-AD neurons, 1116 spines from 8 glycine-stimulated RLC-AD neurons. E)
RLC-AD expression creates filopodia-like spine precursors, while RLC-DD contracts spines into a mushroom-shaped morphology with increased PSD
area. Neurons between DIV 21–33 expressing either GFP, RLC-AD GFP or RLC-DD GFP were fixed and immunostained for the PSD marker, PSD-95. F)
RLC-DD significantly increases PSD area in comparison to GFP or RLC-AD. PSD measurements are from neurons between DIV 21–33. We analyzed 442
PSDs from 4 GFP neurons, 2204 PSDs from 16 RLC-AD neurons, and 2167 PSDs from 15 RLC-DD neurons. G) RLC-DD expression increases the
percentage of mushroom-shape spines, while RLC-AD increases the percentage of filopodia-like spines. Spine morphology distribution of a
representative culture is shown. Error bars represent SEM. *p,0.001, Mann Whitney test (B,D,F), t-test (G). Scale bar = 5 mm for all panels.
doi:10.1371/journal.pone.0024149.g005
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Figure 6. ROCK regulates spine morphology through RLC-T18, S19 di-phosphorylation. A) ROCK inhibition (Y-27632) produces filopodia-
like spines (arrowheads). DIV14 neurons expressing GFP were treated with 120 mM Y-27632 for 2 hours or left untreated as a control. B) RLC-DD
prevents the increase in spine length with Y-27632 We analyzed 1199 spines from 13 GFP untreated neurons, 1056 spines from 9 GFP neurons treated
with Y-27632, 1142 spines from 6 RLC-DD untreated neurons, and 809 spines from 8 RLC-DD neurons treated with Y-27632. C) Y-27632 decreases
endogenous RLC-T18, S19 di-phosphorylation concomitant with the formation of filopodia-like spines. In contrast, inhibition of myosin light chain
phosphatase with calyculin A (CalA), increases RLC-T18, S19 di-phosphorylation. Arrowheads indicate spine-associated RLC-PP. Neurons were treated
with 100 mM Y-27632 for 2 hours or 20nM calyculin A for 20min or left untreated. D) Y-27632 decreases the levels of spine-associated RLC-PP staining;
whereas calyculin A increases it. We analyzed 855 spines from 10 untreated neurons, 901 spines from 9 Y-27632-treated neurons, and 989 spines from
9 calyculin A-treated neurons. E–F) Calyculin A increases PSD area in comparison with untreated or Y-27632-treated neurons. Neurons were treated
as in C. We analyzed 499 PSDs from 10 untreated neurons, 519 PSDs from 9 Y-27632-treated neurons, and 452 PSDs from calyculin A-treated neurons.
Error bars represent SEM. *p,0.001, Mann-Whitney test. Scale bar = 5 mm.
doi:10.1371/journal.pone.0024149.g006
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Figure 7. Myosin IIB regulates post-synaptic density morphology. A) Myosin IIB knockdown alters PSD morphology and positioning.
Hippocampal neurons were co-transfected on DIV 6 with GFP and either an shRNA vector against MIIB or a control empty vector and fixed and
immunostained for endogenous PSD-95 at DIV 21. B) The PSD axis ratio (B) is expressed as the long axis (y) of each PSD divided by the short axis (x).
The PSD axis ratio is significantly greater in neurons with MIIB knocked down. C) shRNA knockdown of MIIB increases the PSD perimeter. D) Distance
from PSD-95 to the spine tip (D in diagram) is significantly greater in neurons with MIIB knocked down. E) Distance from PSD-95 to the spine base (E
in diagram) is significantly greater in neurons with MIIB knocked down. For each condition, 524–738 spines of 10–14 neurons were analyzed. F)
Immunostaining for Shank confirms the elongated PSD morphology in response to MIIB knockdown. Error bars represent SEM. *p,0.001, Mann-
Whitney test. Scale bar = 5 mm.
doi:10.1371/journal.pone.0024149.g007
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Supporting Information

Video S1 Local blebbistatin micropipetting increases
spine formation. Blebbistatin, but not DMSO, increases spine

formation and extension (arrowheads). Equal volumes of blebbis-

tatin and DMSO were used. Video S1 corresponds to still images

in Fig. 2A. Images were acquired every ,6 seconds using confocal

microscopy. 20 frames/sec shown.

(AVI)

Video S2 Spine dynamics of control neurons. Time-lapse

confocal imaging was performed on DIV14 hippocampal neurons

co-expressing GFP and a control empty vector. Video S2

corresponds to still images in top row of Fig. 2D. Images were

acquired every 1-minute using confocal microscopy. 3 frames/sec

shown.

(AVI)

Video S3 MIIB knockdown increases spine dynamics.
Spines from MIIB knockdown neurons extend and retract more

frequently than spines in control neurons (S2). Note the increased

length of spine extensions in MIIB knockdown neurons. Time-

lapse confocal imaging was performed on DIV14 hippocampal

neurons co-expressing GFP and an shRNA vector against MIIB.

Video S3 corresponds to still images in bottom row of Fig. 2D.

Images were acquired every 1-minute using confocal microscopy.

3 frames/sec shown.

(AVI)
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